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Similar history biases for distinct 
prospective decisions of self-
performance
Ning Mei1, Sean Rankine3, Einar Olafsson3 & David Soto1,2*

Metacognition can be deployed retrospectively -to reflect on the correctness of our behavior- or 
prospectively -to make predictions of success in one’s future behavior or make decisions about 
strategies to solve future problems. We investigated the factors that determine prospective decision 
making. Human participants performed a visual discrimination task followed by ratings of visibility and 
response confidence. Prior to each trial, participants made prospective judgments. In Experiment 1, 
they rated their belief of future success. In Experiment 2, they rated their decision to adopt a focused 
attention state. Prospective beliefs of success were associated with no performance changes while 
prospective decisions to engage attention were followed by better self-evaluation of the correctness of 
behavioral responses. Using standard machine learning classifiers we found that the current prospective 
decision could be predicted from information concerning task-correctness, stimulus visibility and 
response confidence from previous trials. In both Experiments, awareness and confidence were 
more diagnostic of the prospective decision than task correctness. Notably, classifiers trained with 
prospective beliefs of success in Experiment 1 predicted decisions to engage in Experiment 2 and vice-
versa. These results indicate that the formation of these seemingly different prospective decisions share 
a common, dynamic representational structure.

The capacity to think about one’s own thoughts and behaviour is a fundamental constituent of the human mind 
which is known as metacognition. We rely on it to recognize that we have made a mistake, to realize that we have 
forgotten something important or to appreciate how confident we are about our own knowledge. An influential 
model of metacognition1 highlights the interplay between first-order, task-related processes (i.e., involving our 
perceptions and responses during task performance) and second-order processes, originating from the prefrontal 
cortex, that ‘monitor’ the correctness of the first-order process2,3.

Monitoring of one’s own behavioural performance is typically assessed by means of retrospective reports, in 
which participants give ratings of confidence about their perceptual judgments or rate the state of visual aware-
ness associated with the relevant stimulus. However, metacognitive processes are not just about thinking about 
one’s past and ongoing mental states. Metacognition can also be used prospectively to guide our future behaviour. 
For instance, we can mentally simulate ourselves in future probable scenarios, pre-empt the type of cognitive 
strategies needed to solve specific problems and adapt behaviour according to learning needs.

Prior research in the memory domain addressed how people make prospective judgments of learning during 
study4,5, and revealed, for instance, how decisions to study further rely on the evaluation of one’s own learning6,7 
and how this self-evaluation during study relates to subsequent memory accuracy. However, little is know about 
the factors that influence prospective metacognition during perceptual decision making. In addition to monitor-
ing one’s own behavioral performance and forming prospective beliefs about future success, people also engage 
in self-regulation. For instance, people may also decide to put more attention when they lack confidence in their 
knowledge or stop further study when they are confident.

We here sought to investigate whether or not the formation of seemingly different types of prospective deci-
sions (i.e. beliefs of success and decisions to engage with the environment) make use of similar information and 
recruit similar processes. Specifically, using a paradigm involving visual perceptual decisions we investigated the 
factors that predict future prospective beliefs of performance success vs. prospective decisions to engage with 
the environment (i.e. decisions to adopt a focussed attention state). Being successful in a higher proportion of 
recent trials may influence one’s estimation of prospective confidence, leading to predictions of a high probability 
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of success in the next trial8. A recent study by Fleming and colleagues (2016) investigated the formation of pro-
spective and retrospective confidence9. In this study, participants were asked to perform a motion discrimination 
task following by confidence ratings, and, every five trials participants also rated the prospective belief of success 
in the upcoming trial. The results showed that the prospective judgments were not associated with subsequent 
metacognitive performance (i.e. the association between confidence and accuracy). By contrast, in keeping with 
prior work, retrospective confidence judgments were closely aligned with task accuracy. Fleming and colleagues 
then modeled the influence of information in previous trials related to confidence and accuracy on the subjective 
estimates of prospective and retrospective confidence for a given trial. The results showed that current retrospec-
tive confidence can be predicted by the estimate of retrospective confidence in the previous trial. Prospective 
confidence was however dependent on the previous estimate of prospective confidence, and also on the prior 
retrospective confidence ratings over a longer timeframe (i.e. involving the previous four trials). The influence of 
task accuracy on prospective beliefs of success was far weaker by comparison.

Here we wondered whether different types of prospective decisions may rely on specific sources of infor-
mation. After all, one’s certainty of the adequacy of one’s behavioural responses may be dependent on a host of 
different factors, including stimulus visibility, interference from distracting information and additional biases 
and heuristics10. For instance, given a challenging perceptual task, a state of low visibility of the critical target may 
encourage the observer to decide to invest more effort in the next trial but may also lead to a reduction in con-
fidence about his prospective accuracy. It is not known whether or not seemingly different types of prospective 
decisions are dependent on the same factors.

We modified an existing paradigm11 to quantify the contribution of the state of visual awareness, 
task-confidence and task-correctness to prospective decisions. We asked whether a similar or distinct pattern 
of experiences influenced different types of prospective beliefs, namely, predictions of success and decisions to 
engage with the environment. Participants were presented with an oriented Gabor patch near the threshold of 
visual awareness. Prior to the presentation of the Gabor, on each trial, participants indicated their belief of suc-
cess (i.e. low or high) in the upcoming orientation discrimination task (Experiment 1) or indicated their deci-
sion to engage a focussed attention state (low or high; Experiment 2). Following the presentation of the Gabor, 
participants rated their visual awareness, responded to its orientation and rated their confidence in the orien-
tation response11,12. Using standard machine learning algorithms, we sought to predict these seemingly differ-
ent prospective decisions using information from previous trials concerning of awareness, task-confidence, and 
task-accuracy. We also evaluated the relative importance of these factors for prospective judgements using the 
coefficients from logistic regression. We also used a random forest classifier in order to estimate the stability of the 
decoding performance. Similar results were obtained. The results from the random forest classifier are presented 
in the Supplemental Materials.

Finally, we asked whether these seemingly different prospective decisions play a functional role in shaping 
our subsequent perception or metacognitive performance. We then tested whether the performance was affected 
by the type of prospective belief or decision to engage attention. The ‘self-fulfilling prophecy’ offers a view on the 
potential effect of prospective beliefs upon behavioural performance. Prospective beliefs may set an expectation 
that the participant is motivated to meet13,14. One possibility is that estimations of high probability of success may 
encourage observers to invest more cognitive resources in the upcoming trial and hence facilitate performance in 
a similar way to decisions to engage focussed attention. This study was devised to test these hypotheses.

Experiment 1: Predictions of success
Methods.  Participants.  Following informed consent, eighteen participants (19–23 years, mean age: 20.6, 
6 males) took part in return of monetary compensation. This sample size was selected based on our prior study 
in which a similar paradigm was used11. Data from three participants were excluded before analyses. One of the 
participants only reported a total of 3% of aware trials and two participants provided no responses in three con-
ditions of awareness and confidence, impeding further analyses. This was likely due to inadequate pre-calibration 
of stimulus luminance (see below). The study conformed to the Declaration of Helsinki and was approved by the 
West London Research Local Research Ethics committee.

Experimental task and procedure.  The experiment took place in a dimly lit room with a viewing distance of 
approximately 90 cm. The task was programmed and controlled by Psychopy15. Stimuli were presented in a CRT 
monitor with a resolution of 1.600 × 1.200 pixels and a refresh rate of 85 Hz.

  Figure 1 illustrates the experimental task. On each trial, participants were required to discriminate the ori-
entation of a brief, masked Gabor, presented at the threshold of visual awareness. Prior to the presentation of the 
Gabor, participants reported their prospective belief of success associated with the upcoming trial (low vs high). 
Following the offset of the Gabor, participants rated their visual awareness of the Gabor, responded to its orienta-
tion and provided confidence ratings on the accuracy of the orientation responses.

During each trial, participants first made the prospective metacognitive decision during an unlimited time 
window. Then, a Gabor patch was presented in the center of the screen with a grey background (luminance 
= 10.48 cd/m2. Mask luminance was 11.34 cd/m2. The orientation of the Gabor was either 40 degrees to the 
left or right from vertical, and was randomly varied on each trial, with equal probability for each orientation. 
Participants responses were recorded using the keyboard.

Participants were instructed to complete a preliminary practice phase in order to get used to the orientation 
discrimination task. During this phase, the Gabor was presented for 362 ms with a fixed luminance of 11.93 cd/
m2, and followed by immediate feedback regarding the accuracy of their response. Next, a calibration phase took 
place with a 35 ms Gabor stimulus duration and a 353 ms mask, similar to the experimental trials. Here, its lumi-
nance was varied using a staircase procedure. This meant that luminance increased when participants reported 
being unaware of the orientation of the Gabor and vice versa when they reported awareness. Participants were 
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instructed to report ‘unawareness’ when they had no experience of the Gabor or saw a brief glimpse but otherwise 
had no awareness whatsoever of the orientation. They were instructed to report awareness of the Gabor when 
they could see its orientation somewhat or almost clear. The initial luminance was set to 11.97 cd/m2. The percent-
age of aware responses was computed on a trial to trial basis and the individual awareness threshold for each par-
ticipant was determined by the luminance at the point where the probability of aware reports stabilized at around 
0.5 for at least 10 trials, which were used to compute the average luminance to be used in the next procedural step.

Following the calibration, participants went through a training phase where they completed 15 trials identical 
to the experimental trials. The Gabor was presented for 35 ms during these trials. Prior to the presentation of the 
Gabor target, participants were instructed to report their belief of success in the upcoming task (high or low). 
Participants were not given specific instructions to report each belief equally often. Following the presentation of 
the target Gabor, participants reported their awareness of the Gabor, its orientation, and then rated their confi-
dence in the orientation response. During the visibility response period, participants were presented with a screen 
displaying the response options (Unaware Aware). During the confidence response, period participants saw a 
screen with potential responses (Confidence: low high).

The justification for this particular order of responses is the following. Visual awareness of the stimulus was 
rated first to make sure that awareness was a genuine estimate of perceptual experience without being contami-
nated by memory interference from a longer delay between the stimulus and the awareness rating. The confidence 
judgment was given last because this referred to the orientation discrimination response, which followed the 
visual awareness response.

There was no response deadline for any of the three judgments. Participants were asked to provide precise 
ratings of awareness, and confidence, and accurate orientation discriminations without worrying about the speed 
of responding. Regarding the orientation response, participants were told that even if they were unaware of the 
stimulus, they should use their intuition and make their best guess about the orientation of the Gabor. Regarding 
the confidence report, participants were instructed to report how confident they were about the correctness of 
the orientation response on a relative scale of 1 (relatively less) to 2 (relatively more) confident. Participants were 
instructed that confidence ratings should be conceived in a relative fashion and hence they were asked to use all 
the confidence ratings independently of the awareness rating so that participants would not simply choose low 
confidence every time they were unaware and vice-versa on aware trials. Previous studies using a similar para-
digm indicated that observers can display metacognitive sensitivity in both aware and unaware trials11,12.

Prior to the experimental trials, there was a second calibration of the luminance of the Gabor starting with the 
luminance value from the first calibration. Each participant then completed 12 blocks of 50 trials (600 in total), 
with breaks between each block.

Machine learning protocols.  We used standard machine learning algorithms (i.e. logistic regression and random 
forests models; Scikit-learn implementation) to predict whether the belief of success was low or high given a 
vector of features (i.e. correctness, visual awareness, and confidence) from the previous trials, considering 1-back, 
2-back, 3-back, and 4-back trials, separately. Note that all the time series of trials back are not included in the 
classification. For instance, when we decode the belief of success based on the pattern of confidence, correctness 
and awareness of 4 trials back, we are only feeding the classifier with the data from that trial and do not include 
trials 1, 2 and 3 back. This range of trials was included based on a prior study9, which showed that prospective 
confidence estimates were related to the confidence level four trials back, with this relatioship becoming stronger 
for trials closer to the current trial.

Scikit-learn by default implements the logistic regression with an L2 regularization built-in, which reduces 
the interpretability of the weight coefficients estimated by the regression. Therefore, we set the regularization to 
be very small in order to emulate no regularization as in the simplest form of logistic regression. During training, 
the model optimizer (LIBLINEAR), achieved the minimization of the difference between the predictions of the 
model and the true values we wanted to predict using a coordinate descent algorithm16. Note the order of regres-
sors does not matter because the Scikit-learn implemented logistic regression computes predictions by searching 
for the best-fit weights of the regressors using liblinear gradient descent algorithm16. Since the weights, as param-
eters, are specific to the regressors, the order does not matter.

Cross-validation. We conducted a 100-fold shuffle splitting cross-validation for each subject, each decoding 
goal (1-back, 2-back, 3-back, and 4-back). Each fold was constructed by shuffling the examples. 80% of the data 
were selected to form a training set while the remaining 20% became the testing set. The predictive performance 
was estimated in each fold by comparing the target vector with the probabilistic predictions. The comparison was 

Figure 1.  Illustration of the experimental protocol.
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measured by the area under the receiver operating curve (ROC AUC). ROC AUC is a sensitive, nonparametric 
criterion-free, and less biased measure of predictive performance in binary classification17, with 0.5 being the 
theoretical chance level. The AUC-ROC represents the ratio of the true positive classification rate (TPR, i.e. the 
classifier predicts ‘animal’ given the example is an animal) against the false positive rate (FPR, i.e. the classifier 
predicts ‘animal’ given the example is a tool).

Post-decoding. In order to estimate the significance level of the decoding performance, we generated a null 
distribution of decoding scores for each subject using a permutation analysis with 100 iterations. The null distri-
butions were used as the empirical chance level. The null distribution of each subject was estimated by conducting 
the same cross-validation procedures with the same feature matrices and target vectors, except that the order of 
rows of the feature matrices and the target vectors were randomized independently. The average performance 
score over the permutation iterations represented the chance level estimate. This was found to be centered on the 
theoretical chance level of 0.5.

The statistical significance of the classification scores in each condition (i.e. trial back) was determined by 
using a non-parametric t-test. In it, the decoding scores were assessed relative to their corresponding chance level 
estimates. A permutation t-test was conducted to compute the uncorrected p-value for each trial back (1, 2, 3, 
4), across all the subjects. However, for each experiment raw p values were corrected using Bonferroni multiple 
comparison correction procedure and compared to the nominal significance level of 0.05. The same applied for 
post-hoc tests after an ANOVA.

In plotting the classification results, the error bars represent bootstrapped 95% confidence intervals resampled 
from the average decoding scores of individual participants by the classifier with 1000 iterations18.

Results.  Classification analyses.  First, we report the pairwise Phi correlations between the features used for 
classification. We note that since the correlation coefficient is inherently restricted to a range from −1 to +1, 
an arc-hyperbolic tangent transform19 was applied prior to statistical testing. The pairwise correlations were as 
follow: for (i) awareness and confidence: 0.224726 +/− 0.20307, t(14) = 4.28, p = 0.00226; (ii) correctness and 
awareness: 0.22878 +/− 0.10525, t(14) = 7.61, p = 0.000007; correctness and confidence: 0.16983 +/− 0.09330, 
t(14) = 6.61, p = 0.0000353. Although the correlations are higher than chance, they are far from 1, which is the 
maximal theoretical value that Phi can take. However, the maximal empirical value that Phi can take is likely to 
be less than 1 (i.e. the empirical distributions of the vectors for the two variables are unlike to be identical). In any 
case. these results indicate there is room for each variable to provide relevant information to classify the prospec-
tive belief of success.

We used a standard logistic regression classifier to predict the prospective belief of success on a given trial 
by using awareness, confidence, and correctness as training features from the preceding trials. We note that the 
probability of high beliefs of success was 0.5069 +/− 0.1507, which is not different from 0.5 (p = 0.57) and hence 
showing the overall the likelihood of each type of belief was similar. The results show that prospective belief of 
success could be predicted above chance levels using information from the previous trials. As shown in Fig. 2, the 
prediction of success could be classified with the highest accuracy by using the features from the previous trial, 
with prediction accuracy dropping close to chance level based on information from 4 trials back. P-values fol-
lowing the permutation tests for the different classification analyses were as follows: 1-back: p < 0.0004, 2-back: 
p < 0.0004, 3-back: p < 0.0056, 4-back: p < 0.0084. Unless otherwise noted all p values reported are Bonferroni 
corrected for multiple comparisons. This pattern of results was also observed with a Random Forest Classifier (see 
Supplemental Fig. 1).

Next, we assessed the relevance of each of the different attributes (awareness, confidence, and correctness) 
for the classification. As we were interested in understanding the factors that contribute to future beliefs of suc-
cess, we analyzed the weight coefficients (odd ratios) from the logistic regression (see Methods) by means of an 
ANOVA with time window (1, 2, 3 and 4 trials back) and feature attribute as factors. Note that our main interest 
here is to understand the contribution of the different attributes for the classification. Since the above classifi-
cation results already showed that classification accuracy decreases with the number of trials back, additional 
analyses based on significant main effects of time window are not considered further.

The analysis of the odd ratios of the logistic regression showed a main effect of window, F(3, 42) = 19.15, p 
< 0.00001, η2 = 0.176, and a main effect of attributes, F(2, 28) = 14.43, p = 0.00005, η2 = 0.179. Further t-tests 
showed that the odd ratios of both confidence (p = 0.0003449) and awareness (p = 0.0008536) was different 
from correctness. These results show that when observers rated high confidence/high awareness on the previous 
trial, then a belief of high success on the next trial was over 3 times more likely. Figure 3 illustrates this pattern of 
results. There was also an interaction between factors, F(6, 84) = 10.66, p < 0.00001, η2 = 0.083. In the case of one 

Figure 2.  Results from the logistic regression classification model tested separately for each of trials back. Error 
bars represent bootstrapped 95% confidence intervals. **p < 0.01, ***p < 0.001.
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trial back (N = 1), the odd ratio for confidence (p = 0.00012) and awareness (p = 0.0265) was higher than the 
odd ratio for correctness, but there was not difference between confidence and awareness (p = 1). In N = 2, the 
odd ratios of confidence and awareness were different from correctness (p = 0.00876 and p = 0.03797), but there 
was not difference between confidence and awareness (p = 1). This pattern of results was not observed for N = 3 
and N = 4 (all ps > 0.08). Similar results were observed in the analyses of the feature importance of the Random 
Forest classifier (see Supplemental Fig. 2). We also note that the variance of the odd ratios for the previous trial 
was larger than for increasing number of trials back. This is likely due to the odd ratios being closer to a value of 1 
with increased numbers of trials back, meaning that features bear no influence on the prediction. The odd ratios 
displayed an effect of awareness and confidence at N-1 but the effect size is small and accordingly with a larger 
variance.

Univariate analyses.  We also performed univariate analyses of the probability of high success as a function of 
the experimental features of the previous trial. We used 1 trial back for the univariate analyses because here the 
multivariate classification results were strongest and thus provided an opportunity to verify the commonalities 
between the approaches. Accordingly, we calculated the conditional probability of high belief of success in the 
current trial as function of each level of correctness, awareness and confidence on the previous trial. Then we 
conducted a 2 (Correctness: Hit, Error) × 2 (Awareness: Aware, Unaware × 2 Confidence (high, low) repeated 
measures ANOVA on the probability of a belief of high success. There was no main effect of correctness on the 
probability of a belief of high success (F(1, 13) = 1.703, p = 0.214). There was a main effect of awareness (F(1, 13) 
= 14.091, p = 0.002) and also a main effect of confidence (F(1, 13) = 62.429, p < 0.001. The probability of a belief 
of a high success in the next trial was higher when the participants were aware of the stimulus on the previous 
trial and also when they were more confident. There was an interaction between correctness and awareness (F(1, 
13) = 5.796, p = 0.032). No other interactions were significant: F(1, 13) = 0.535, p = 0.478, for correctness and 
confidence; F(1, 13) = 0.924, p = 0.354, for awareness and confidence; and F(1, 13) = 0.726, p = 0.409, for the 
three-way interaction. These results are in keeping with the classification analyses reported above. These results 
are shown in Supplementary Fig. 3.

Further, we performed a linear mixed regression analysis using the lmerTest package20 to predict the prospec-
tive belief of success with fixed effects for each of the confidence, awareness and accuracy attributes considering 
the recent trial history up to 4 trials back with lagged factors (12 regressors in total) and random intercepts for 
each participant. The results indicate that confidence and awareness at 1-trial and 2-trials back predict the current 
prospective choice, which is also predicted from the confidence ratings at 3- and 4-trials back (see Supplemental 
Fig. 4). This pattern of results is consistent with the multivariate classification approach, indicating that there 
there is information up to 4-trials back that is associated with the current prospective belief of success. Note 
that because the classification analyses were conducted for each trial back separately, it was unclear whether 
the prediction score based on information from several (e.g. 3) trials back was over-and-above that from 1 or 2 
trials back. The linear mixed regression model including all the regressors addresses this issue (see also Fleming 
and colleagues9). Importantly, both univariate and multivariate classification approaches are complementary. 
For instance, in contrast with the univariate analyses in which all data is fit at once, the multivariate classification 
estimated model performance using cross-validation, hence allowing is to build a predictive model and assess 
its generalization to new samples. This is a clear advantage of the classification approach which will probe more 
critical for assessing the generalization of history biases across different prospective decisions in Experiment 1 
(prospective beliefs of success) and Experiment 2 (decisions to engage attention), namely, whether the prior his-
tory of confidence, awareness and correctness in Experiment 1 predicts a seemingly different prospective choice 
in Experiment 2 (and vice versa). Assessing this cross-domain generalization is impossible to achieve using a 
standard univariate regression model in which all data is fitted at once.

Signal detection analyses.  We computed type-1 d’ to index the observer’s sensitivity to discriminate the orien-
tation of the Gabor, and also type-2 d’ or meta-d’ as a measu re of metacognitive sensitivity21, which is basically 
a parametric estimation of the type-2 sensitivity (i.e. the capacity to discriminate correct from incorrect type-1 
responses based on the confidence ratings) which is achieved by fitting a type-1 signal detection model to the 
observed type-2 performance and estimating the type-2 receiver operating characteristic (ROC) curves. In the 
type-1 model, the ‘signal’ and ‘noise’ were defined as left and right oriented Gabor, respectively. A ‘hit’ was, there-
fore, a correct response (‘left’) to a left-oriented Gabor and a ‘correct rejection’ was a correct response (‘right’) to 

Figure 3.  Illustration of odd ratios from the logistic regression for the different features involved in the 
classification of the belief of success. Odd ratios were computed separately for each of trials back. A value of 1 
indicates that the odds of predicting the class is the same regardless of the feature value. Error bars represent 
bootstrapped 95% confidence intervals. *p < 0.05, **p < 0.01.
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a right-oriented Gabor. A ‘false alarm’ was an incorrect response (left) to a right-oriented Gabor and a ‘miss’ was 
an incorrect response (right) to a left-oriented Gabor.

A 2 × 2 ANOVA with awareness state (unaware, aware) and belief of success (high, low) as factors was carried 
out on the perceptual sensitivity to the orientation of the Gabor. There was an effect of awareness on type-1 d’ 
(F(1, 14) = 52.44, p < 0.000004, η2 = 0.353). Perceptual sensitivity was higher on aware relative to unaware trials. 
There was no effect of prediction of success on perceptual sensitivity (F(1, 14) = 0.021, p = 0.888, η2 = 0.00004) 
and no interaction effect between factors (F(1, 14) = 0.096, 0.761, η2 = 0.0002). These results are depicted in 
Fig. 4.

A similar ANOVA was carried out on metacognitive sensitivity scores. There was no effect of awareness on 
type-2 d’ (F(1, 14) = 3.273, p < 0.0919, η2 = 0.063), no effect of the belief of success (F(1, 14) = 0, p = 0.988, η2 = 
0.00002) and no interaction effect between belief of success and awareness (F(1, 14) = 0.042, 0.84, η2 = 0.0008). 
Metacognitive sensitivity was well above chance even in trials that participants reported being unaware of the 
target (t(14) = 3.891, p < 0.0016 and t(14) = 5.218, p < 0.00013, for high and low belief of success cases).

There were no effects of the belief of success on M-ratio (meta-d’/d’), which is an index of metacognitive effi-
ciency that factors out the level of d’21 (F(1, 14) = 2.78, p = 0.12. There was also no effect of awareness (F(1, 14) = 
0.007, p = 0.93) and no interaction between belief of success and awareness (F(1, 14) = 2.44, p = 0.14).

Discussion.  We found that visual awareness had a profound effect on perceptual sensitivity, however, the 
effect of awareness on metacognitive sensitivity was far weaker. However, metacognitive sensitivity was well 
above chance across (un)awareness states. This replicates our prior observation11 and suggests that metacogni-
tive operations are not necessarily carried out on the same type of representation or follow a similar process to 
that underlying first-order performance. In other words, the precision of retrospective metacognitive confidence 
judgments can be dissociable from factors that influence task performance (i.e. stimulus visibility). Hence, the 
results are in keeping with the proposal that metacognitive confidence and visual awareness can be dissociated 
(see also22) and with the view that higher-order cognitive processes are to some extent dissociable from conscious 
experience11,12,23–25. However, further studies are needed in which metacognitive processing of perceptual deci-
sion making is assessed using both neural and behavioural measures under experimental conditions associated 
with null perceptual sensitivity26–28.

Most important for the aims of the present study, we observed that the current prospective belief of perfor-
mance success could be predicted based on the pattern of visual awareness, task-confidence, and task-correctness, 
notably from several trials back. The prediction of this belief was strongest considering information from the 
most recent previous trial, with classification performance decreasing with longer time windows. Furthermore, 
we found that both confidence and awareness states, relative to task correctness, are more relevant for the classi-
fication of the prospective belief. However, this type of prospective beliefs did not appear to play a functional role 
in behavioural performance. Both perceptual sensitivity and metacognitive sensitivity were similar regardless of 
whether the prospective belief of success was high or low. This finding seems at odds with the possibility that pro-
spective beliefs are associated with cognitive processing changes deployed to meet the belief (i.e. the ‘self-fulfilling 
prophecy’)13,14. This raises the question of whether a different type of prospective decision (e.g. deciding whether 
to invest more attention on the current trial) may be predicted by the same information pattern that predicts 
prospective beliefs of success, and whether this type of prospective decision to engage with the environment may 
play a functional role in behavioural performance. Experiment 2 was designed with this in mind.

Experiment 2: Decisions to engage attention
Experiment 2 was similar to Experiment 1 except that here a new set of participants reported their decision to 
engage in a more or less focussed attentional state on the upcoming trial, instead of making a prospective belief 
of their performance success. The goal of Experiment 2 was to test whether or not the findings of Experiment 1 
generalize to this new context.

Methods.  Participants.  Following informed consent, nineteen healthy volunteers (10 males and 9 females) 
took part in the experiment in return for monetary compensation. None of the participants took part in 
Experiment 1. They were aged between 18 and 47 years (mean age 21.6). Three participants were excluded prior 
to data analyses due to the absence of aware trials, likely due to inadequate stimulus calibration. All partici-
pants were right-handed and had normal or corrected-to-normal vision. They were naive to the experimental 

Figure 4.  Perceptual sensitivity and metacogntive sensitivity scores as function of the state of awareness and the 
belief of success. Error bars represent standard error of the mean. n.s (not significant); ***p < 0.001.
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hypotheses and did not take part in Experiment 1. The study conformed to the Declaration of Helsinki and was 
approved by the West London Research Local Research Ethics committee.

Experimental task and procedure.  This was similar to Experiment 1 except that here, instead of reporting their 
belief of success, participants were instructed to report their decision to engage a focussed attention state in the 
upcoming trial (low vs high).

Machine learning protocols.  These were similar to Experiment 1 except that here we employed the logistic 
regression to predict the decision to engage focussed attention (i.e. low vs high).

Results.  Classification results.  First, we report the pairwise correlations between the features used for clas-
sification: (i) awareness and confidence: 0.25873 +/− 0.255267, t(15) = 3.81, p = 0.00515; (ii) correctness and 
awareness: 0.267667 +/− 0.116857, t(15) = 8.23, p = 0.00000182; (iii) correctness and confidence is 0.20129 +/− 
0.157274, t(15) = 4.88, p = 0.00059. There is room therefore for each variable to provide distinctive information 
for the classification of the decision to engage attention.

We then employed a logistic regression classifier to predict the decision to engage attention on a given trial 
based on awareness, confidence, and correctness features from the preceding trials. We note that the probability 
of a decision to adopt a focussed attention state was 0.5005 +/− 0.0510, which is not different from 0.5 (p = 
0.86) and hence indicates that the likelihood of each decision to engage attention was similar. We found that the 
decision to engage a particular state of attention could be significantly predicted above chance levels using infor-
mation from the previous trials. As shown in Fig. 5, classification accuracy was highest when information from 
the previous trial was used. Prediction accuracy dropping close to chance level based on information from 3 trials 
back. P-values following the permutation analyses for the different time windows were as follow: 1-back: p < 
0.0025, 2-back: p < 0.0081, 3-back: p = 0.268, 4-back: p < 0.022. Similar results were obtained with the Random 
Forest classifier (see Supplemental Fig. 5).

Next, we assessed the relevance of each of the different attributes (awareness, confidence, and correctness) for 
the classification. Similar to Experiment 1, we performed an ANOVA over the odd ratios of the logistic regression 
with time window (1, 2, 3 and 4 trials back) and attributes as factors. The results showed a main effect of time 
window, F(3, 45) = 3.224, p = 0.0313, η2 = 0.043, but there was no main effect of attributes, F(2, 30) = 2.052, p 
= 0.146, η2 = 0.023, and no interaction, F(4, 60) = 0.97, p = 0.45, η2 = 0.023. However, Fig. 6 shows that at least 
when observers rated high confidence on the previous trial, the probability of a decision to engage a focussed 
attention state on the next trial increased by 1.45, which was significantly different from correctness (p = 0.03, 
corrected). A similar result was obtained with the Random Forest classifier; however this also showed that aware-
ness was more important for the classification than correctness (see Supplemental Fig. 6).

Univariate results.  We also performed univariate analyses of the probability of a decision to engage a focussed 
attention state a as function of each level of correctness, awareness and confidence on the previous trial. Because 
the multivariate classification results were strongest based on information from 1 trial back, we conducted the 
univariate analyses for 1 trial back to assess the commonalities between the approaches. Accordingly, we con-
ducted a 2 (Correctness: Hit, Error) × 2 (Awareness: Aware, Unaware × 2 Confidence (high, low) repeated meas-
ures ANOVA on the probability ofa decision to engage focussed attention. There was no main effect of correctness 

Figure 5.  Results from the logistic regression classification model of the decision to engage attention tested 
separately for each of trials back. A value of 1 indicates that the odds of predicting the class is the same 
regardless of the feature value. Error bars represent bootstrapped 95% confidence intervals. n.s (not significant); 
*p < 0.05, ***p < 0.001.

Figure 6.  Illustration of odd ratios from the logistic regression for the different features involved in the 
classification of the decision to engage attention. Odd ratios were computed separately for each of trials back. 
Error bars represent bootstrapped 95% confidence intervals. *p < 0.05.
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on the probability of a belief of high success (F(1, 13) = 0.25, p = 0.625), no main effect of awareness (F(1, 13) 
= 0.607, p = 0.45) and no main effect of confidence (F(1, 13) = 4.463, p = 0.055). There were no interactions 
between factors F(1, 13) = 0.901, p = 0.360, for awareness and correctness; F(1, 13) = 0.133, p = 0.721, for 
correctness and confidence; F(1, 13) = 0.994, p = 0.337, for awareness and confidence, and F(1, 13) = 0.371,  
p = 0.553, for the three-way interaction. The probability of a decision to engage attention in the next trial did not 
appear to be affected by the visual awareness state on the previous trial, not by the actual accuracy in the task. 
Only the main effect of confidence marginally approached significance; higher confidence in the previous trial 
was associated with decisions to invest more attention in the next trial. This is consistent with the classification 
analyses reported above, however it is clear that the multivariate classifier in the context of cross-validation was 
able to capture more information than univariate analyses based on significance testing of probability difference 
in which all data is used at once to fit the model.

Further, we performed a linear mixed regression analysis to predict the prospective decision to engage atten-
tion with fixed effects for each of the confidence, awareness and accuracy attributes considering the recent trial 
history up to 4 trials back with lagged factors and random intercepts for each participant. The results showed 
that confidence ratings from 1-trial back predicted the decision to engage attention in the current trial (see 
Supplemental Fig. 7). While the classification results showed that information up to 2-trials back predicted the 
decision to engage attention (Fig. 5), the present results are nevertheless in keeping with the analysis of the odd 
ratios of the logistic regression classifier which also indicated that confidence of 1-trial back significantly pre-
dicted the current decision (Fig. 6).

Signal detection results.  A 2 by 2 ANOVA with awareness (unaware, aware) and decision to engage a focussed 
state of attention (low, high) as factors was carried out on the observer’s perceptual sensitivity to the orientation of 
the Gabor. There was an effect of awareness on type-1 d’ (F(1, 15) = 69.53, p < 0.000000515, η2 = 0.462682189). 
Perceptual sensitivity was higher on aware relative to unaware trials. There was no effect of the decision to engage 
attention on type-1 d’ (F(1, 15) = 1.388, p = 0.257, η2 = 0.0054) and no interaction effect between decision to 
engage and awareness (F(1, 15) = 1.877, 0.191, η2 = 0.00216).

A similar ANOVA was carried out on metacognitive sensitivity scores. There was an effect of awareness on 
meta-d’ (F(1, 15) = 7.084, p = 0.0178, η2 = 0.065). Metacognitive sensitivity was slightly better on aware relative 
to unaware trials, though it remained significantly above chance in the unaware trials (i.e. t(15) = 2.88, p < 0.011 
and t(15) = 3.47, p < 0.003, for the decisions to engage less and more attention respectively). There was also an 
effect of the decision of engage attention on meta-d’ (F(1, 15) = 8.824, p = 0.00953, η2 = 0.0631). Metacognitive 
sensitivity was better following decisions to engage a more focussed attention state. There was also an interaction 
between the factors (F(1, 15) = 5.279, p = 0.0364, η2 = 0.027). Pairwise comparisons showed that on aware trials, 
meta-d’ was better when participants decided to adopt a more focussed attention state (t(15) = 2.79, p < 0.014). 
This was not the case when the participants reported being unaware of the target (t(15) = 1.772, p = 0.097). 
These results are depicted in Fig. 7. This result indicates that the decision to attend had an effect on metacognitive 
sensitivity. We note, however, there were no effects of the decision to engage attention on M-ratio (F(1, 15) = 
2.55, p = 0.13). There was also no effect of awareness (F(1, 15) = 0.005, p = 0.94) and no interaction between the 
decision to engage and the state of visual awareness on M-ratio (F(2, 15) = 0.502, p = 0.48). However, we believe 
it is unlikely that the influence of the decision to engage attention in meta-d’ can be explained by differences in d’. 
We shall come back to this point in the Discussion.

Discussion.  The results showed that decisions to engage a focussed attentional state do not seem to affect 
perceptual sensitivity, at least in the current experimental conditions with single targets and no competing dis-
tracters. However, decisions to engage in a more focussed attention state influenced the observer’s metacognitive 
sensitivity. Although there was no effect of the decision to engage attention on M-ratio, we think it is unlikely that 
the effect of the decision to engage in meta-d’ can be accounted for in terms of differences in d’ given that these 
were only minimal and statistically insignificant. Most critically, previous research indicates that d’ and meta-d’ 
can be sensitive to different factors. For instance, using a similar paradigm to the one used in this study, we have 
previously shown that visibility has a strong effect on d’ but not on meta-d’11, indicating that meta-d’ and d’ are 
not necessarily based on a similar process, or operate on a similar type of information (see also22).

This result is also in keeping with evicendece that that metacognitive confidence and task performance are 
dissociable22,29–31. Hence, we think the application of M-ratio in the current experimental context may not be 
optimal. In any case, the data indicate that the decision to engage attention had an effect on meta-d’, while this 

Figure 7.  Perceptual sensitivity and metacogntive sensitivity scores as function of the state of awareness and the 
decision to engage attention. Error bars represent standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001.
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was not the case for prospective beliefs of success in Experiment 1. This suggests that decisions to engage atten-
tion may influence the observer’s evaluation of the correctness of perceptual decisions, although we note that no 
effects were seen in M-ratio.

On the other hand, the present results replicate the findings of Experiment 1 concerning the prediction of the 
future prospective belief of success, but crucially in a new decision context related to the attention state for the 
upcoming task. Intriguingly, we observed that high confidence in the previous trial predicted decisions to engage 
a more focussed attentional state in the next trial. Yet the opposite might be argued, namely, that when observers 
have held low confidence or have been incorrect, they would then decide to engage more focussed attention on 
the next trial. This is because errors or low confidence may in principle prompt subjects to be more cautious and 
try to boost attention to improve performance in the next trial. However, this is not always the case32 and it has 
been argued that it may depend on the type of error33,34. A related issue is the extent to which decisions to attend 
are metacognitive in nature. We think that prospective decisions are metacognitive insofar observers monitor 
their own recent behavioural performance and attentional state in order to engage in a cognitive setting that can 
promote more adaptive behaviour in the next trials. However, we acknowledge that our study is not well suited to 
address this issue given that we did not collect information from our participants regarding the type of strategies 
they used to make prospective decisions to attend.

We now turn to integrate the findings from the two experiments.

Across-experiment Generalization Results
Finally, we analyzed the data from both experiments together in order to estimate how much information learned 
from one experiment can be transferred to the other experiment. We fitted the models with the features in one 
experiment (i.e. prospective of belief of success), and then test the trained model in the other experiment. To esti-
mate the variance of the cross-experiment generalization, we conducted a cross-validation procedure as follows. 
First, we selected one of the experiment as the source and the other experiment as the target. Second, we preproc-
essed both the source and target experiment as described in the preprocessing section. Data from all the subjects 
were concatenated as one whole dataset. Third, the cross-validation method described above was applied to both 
the source data and the target data, while the training data was sampled from the source data and the testing data 
was sampled from the target data. Particularly, in each fold, 80% of the source data formed the training set and 
20% of the target data formed the testing set. With 100 iterations of the cross-validation procedure, we estimated 
the variances of the transfer learning given N-back trials (N = 1, 2, 3, 4).

We first trained the classifiers using the data from the prospective belief of success (Experiment 1) and tested 
the classifiers using the data from the prospective decision to engage attention (Experiment 2). We found that the 
logistic regression model was able to decode the decision to attend based on the pattern of awareness, confidence, 
and correctness in the previous trial of the belief of success experiment (p = 0.0106), but not with the attributes 
in 2, 3, or 4 trial back (p > 0.9).

We then trained the classifier using the data from the prospective decision to engage attention (Experiment 
2) and tested the classifier using the data from the prospective belief of success (Experiment 1). The classifier was 
able to decode the prospective belief of success based on the pattern of awareness, confidence, and correctness in 
the previous trial of the decision to attend experiment (p = 0.0004), but this was not the case for N = 2 or 3 or 4 
trials back (lowest p-value = 0.0739).

These results are depicted in Fig. 8. This pattern of results found with the random forest classifier was similar, 
though the random forest classifier trained with data from 3 trials back in Experiment 2 generalised to predict 
beliefs of success in the current trial of Experiment 1 (see Supplemental Fig. 8).

Figure 8.  Across-experiment generalization results. Classifiers were trained on data from either experiment 
and tested on the other experiment. This was done separately for each of trials back. Error bars represent 
bootstrapped 95% confidence intervals. n.s (not significant); *p < 0.05, **p < 0.01, ***p < 0.001.
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We also performed a cross-experiment comparison on the effect of the prospective decision on metacognitive 
sensitivity. Recall that in Experiment 1 we did not find that the prospective belief of success had any influence on 
type-1 perceptual sensitivity or type-2 metacognitive performance. To quantify whether the result of Experiment 
2 was significantly different from Experiment 1 we compared the pattern of metacognitive sensitivity across 
experiments. In particular, we used the aware trials - in which the effect of the decision to engage attention 
was found- to compute the difference in meta-d’ following decisions to adopt a more focussed relative to a less 
focussed attention state. The same was done in Experiment 1 for the high vs low prospective belief of success. An 
unpaired t-test showed that the influence of the decision to attend on meta-d’ was higher than the influence of the 
prospective belief of success (t(28) = 2.06, p = 0.048).

General Discussion
We sought to understand the sources of information determining prospective decision making in the context of 
a perceptual task using standard machine learning techniques. Across two experiments, we found that a logistic 
regression classifier significantly predicted the upcoming prospective belief of success based on the pattern of 
awareness, confidence, and correctness exhibited in previous trials. Information from the previous trial led to 
the highest accuracy in the prospective belief of success, with classification accuracy increasingly dropping with 
up to four trials back. Both types of prospective decisions were predicted by the prior states of response confi-
dence and visual awareness. Across the two experiments, we observed that task correctness was less important 
than both awareness and confidence for the classification of both prospective decisions. Importantly, the novel 
question addressed in the current study related to the cross-experiment generalization of the different prospective 
decisions. Accordingly, multivariate classification analyses were conducted for each trial back separately because 
this allowed us to assess whether a classifier trained in the context of one type of prospective decision (e.g. pro-
spective confidence), in a particular trial back, generalised to predict a different type of prospective decision (i.e. 
to engage attention). We found that a classifier trained with information from 1 trial back was predictive of the 
other prospective decision, crucially, in a different set of participants which had only performed one of the exper-
iments. There was no such generalization for 2, 3 and 4 trials back. We believe the absence of cross-experiment 
generalisation based 2, 3 or 4 trials likely reflects that just preceding decisions are most powerful to guide current 
decisions. This is in keeping with the study by Fleming and colleagues (2016) in which retrospective confidence 
judgments were more strongly related to information from the prior trial and a similar pattern was observed for 
prospective confidence. Strong lag-1 recency biases have also been reported in different experimental contexts 
beyond decision making. For instance, serial dependency effects in perceptual experience are strongest based on 
the similarity between the current stimulus and the stimulus of the previous trial35. We also note that strong lag-1 
dependency has also been observed in other dependent variables that are critical for confidence generation, such 
as the latencies of perceptual choices36 and also the latencies of confidence judgments37. Hence we believe that a 
simple recency-bias is likely to explain why the predictions from the just the preceding trial are strongest.

The classification results conducted separately in each experiment with beliefs of success or decisions to 
engage showed that information from up to several trials back was predictive of the current prospective decision. 
However, the extent to which information from 3 or 4 trials back played a role in guiding the current prospective 
decision remains an outstanding question. These results merely show that there is information from up to 3 and 4 
trials back that is associated with the current prospective decision. Yet, prediction scores and also the coefficients 
from linear models in which all data are fit at once, only provide information that is necessary but not sufficient 
to conclude that information from several trials back is genuinely causally involved in the formation of the cur-
rent prospective decision, namely, that participants employ that past information to guide the current choice. 
This limitation may be addressed by devising novel paradigms to experimentally manipulate confidence and 
awareness and assess the effects on subsequent prospective decisions. Additional work is needed to make further 
determinations.

Previous research has shown that components of retrospective confidence estimates (e.g. mean, variance) 
are highly correlated across testing sessions involving a similar experimental task, although the generalization of 
confidence components across different task contexts was weaker38. Additional studies support the view that the 
precision of retrospective metacognitive judgments correlates across perceptual and memory tasks39,40 and across 
sensory modalities41. Other studies have shown that observers use a similar confidence scale for different tasks of 
the same or different modality42,43 and that confidence estimates on a given trial of a task carry-over to subsequent 
trial of a different task44. Across the two experiments of the present study, information related to visual awareness 
and response confidence on the most recent trials determines future prospective decision making, regardless of 
the type of prospective judgment (i.e. prospective belief of success or a decision to engage attention). The results 
indicates that a common pattern of information underlies the formation of seemingly different prospective deci-
sions. This conclusion is also supported by cross-experiment generalization results.

However, despite the common information pattern based on past confidence and awareness that underlies 
the formation of prospective judgments, only the prospective decisions to attend appeared to influence type-2 
performance, namely, the observer’s retrospective evaluation of the correctness of perceptual decisions (meta-d’), 
but this was not the case following a prospective belief of high success. From the perspective of the ‘self-fulfilling 
prophecy’, prospective beliefs of success may set an expectation concerning upcoming behavioural performance 
that the participant is motivated to meet13,14 and accordingly, a belief of performance success might in principle 
encourage observers to invest more cognitive resources in the upcoming trial. Our results suggest that this is not 
the case.

Prospective beliefs of success concerned here a low-level perceptual discrimination task. It is possible that pro-
spective beliefs are more diagnostic of the upcoming behavioural performance in different task domains, namely, 
memory4,45. Another possibility is that decisions to engage attention are more likely to be embodied by compar-
ison to beliefs of success. Accordingly, recent theoretical frameworks borrowing from ecological psychology46 
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propose that perceptual biases and decisions are not independent of action. In this framework, perception drives 
decisions and action, but actions also drive subsequent experiences in a dynamic perception-action loop47. We 
propose that decisions to engage with the environment (i.e. to deploy a focussed attention state) are more likely 
to be embodied in the action system and hence are very likely to trigger commitment towards that action, while 
prospective beliefs may not. It is possible that decisions to engage attention trigger preparatory control which in 
turn can influence subsequent cognitive processing. Decisions to engage attention influenced participants eval-
uation of the correctness of perceptual decisions but had no effect on perceptual processing itself, however. The 
latter is likely due to the absence of visual competition in the displays with single targets at central fixation. It is 
well known that attention effects on visual processing are stronger when there is space- or object-based compe-
tition for selection48.

A important question is whether prospective decisions to engage attention are causally, rather than merely 
associated, with subsequent changes in behavioural performance. Our study did not manipulate confidence or 
awareness in a way that allowed us to infer causal relationships with subsequent behavioural performance. Hence 
the correlational nature of our design is a limitation of the present study which should be addressed in future 
work. However, there are grounds to argue that prospective decisions can play a causal role in behavioural control. 
First, this view is consistent with the theoretical framework outlined above that proposes the existence of dynamic 
perception-decision-action loops. Accordingly, causal associations between prospective decisions and subsequent 
cognitive and action control processes are expected within this framework. Moreover, in the memory domain, 
judgments of learning are typically thought to play an important role in how individuals control their own learn-
ing; similar effects, even stronger, have been recently reported for retrospective confidence judgements49. More 
relevant for the present study is recent work showing that prospective confidence estimates are associated with 
neural markers of proactive control50. In this study, participants performed a color judgment task in a multi-item 
display followed by a confidence rating. This task was preceded by visual cues that were paired with target dis-
plays, which in the critical medium difficulty conditions (i.e. colour search displays with low mean-low variance 
and high mean-high variance) were associated with different levels of confidence during task performance, while 
crucially the level of performance accuracy was matched. On a different type of trials, participants were only 
presented with the cues and then rated the confidence associated with performing the task, as if the stimulus was 
presented. The results showed that participants learned the confidence associated with each cue, and this estimate 
was similar to the confidence rated following task performance. Notably, EEG markers of preparatory control and 
evidence accumulation were influenced by the level of predicted confidence50; however, little evidence for this 
was found in the critical medium difficulty trials, namely, EEG markers of preparatory control were influenced 
by the level of predicted confidence in the most easy and hard conditions, which were also associated with per-
formance differences. Hence, while there is some suggestive evidence that prospective decisions may be causally 
involved in the control of behaviour, our study only found weak evidence for this (i.e. the prospective decision to 
engage attention was associated with better type-2 metacognitive performance but there were no effects on type-1 
performance).

In summary, the present study indicates that a common representational structure supports the dynamic 
formation of seemingly different types of prospective judgements. Additional research is however needed to test 
whether these observations generalize to different task contexts and cognitive domains beyond perceptual deci-
sion making.

Data availability
Data and code are available at https://github.com/nmningmei/metacognition.
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