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Abstract

Motivation: Recognition of different genomic signals and regions (GSRs) in DNA is crucial for

understanding genome organization, gene regulation, and gene function, which in turn generate

better genome and gene annotations. Although many methods have been developed to recognize

GSRs, their pure computational identification remains challenging. Moreover, various GSRs usual-

ly require a specialized set of features for developing robust recognition models. Recently, deep-

learning (DL) methods have been shown to generate more accurate prediction models than

‘shallow’ methods without the need to develop specialized features for the problems in question.

Here, we explore the potential use of DL for the recognition of GSRs.

Results: We developed DeepGSR, an optimized DL architecture for the prediction of different types

of GSRs. The performance of the DeepGSR structure is evaluated on the recognition of polyadeny-

lation signals (PAS) and translation initiation sites (TIS) of different organisms: human, mouse, bo-

vine and fruit fly. The results show that DeepGSR outperformed the state-of-the-art methods,

reducing the classification error rate of the PAS and TIS prediction in the human genome by up to

29% and 86%, respectively. Moreover, the cross-organisms and genome-wide analyses we per-

formed, confirmed the robustness of DeepGSR and provided new insights into the conservation of

examined GSRs across species.

Availability and implementation: DeepGSR is implemented in Python using Keras API; it is avail-

able as open-source software and can be obtained at https://doi.org/10.5281/zenodo.1117159.

Contact: vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

All eukaryotic organisms share a complex gene structure associated

with various control signals (Brown, 2002), as illustrated in

Figure 1. Recognition of these genomic signals and regions (GSRs)

helps in understanding genome organization, gene regulation, and

functions. Additionally, the translation of that knowledge into

systems-based applications, combined with genome variations,

allows for the association of genes to diseases and facilitates

molecular-based medical applications (Dougherty et al., 2009).

However, the diverse models proposed for the recognition of specific

types of GSRs for different organisms with manually-crafted fea-

tures bring questions regarding the strengths, weaknesses, and
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differences of these models. Moreover, different types of GSRs re-

quire different sets of features for building efficient recognition mod-

els. However, the presence of many types of GSRs in the genomic

DNA and the lack of a unified approach to accurately predict them

by computational means, make the GSR prediction a challenging

problem. Although a considerable number of computational

approaches have been published in the past, there is still no available

standard procedure or generalized model structure that can be used

for the prediction of different types of GSR in various organisms.

For example, Sharan and Myers (2005) attempted to derive a

generalized method to detect signals and their recurrent motifs

using a support vector machine for classification. The method is

based on probabilistic models for discriminative motifs and their

spatial combination. The authors applied their approach for the

recognition of core promoters, alternatively spliced exons, and cell-

cycle regulated genes and achieved results comparable to other

methods.

The prediction of selected GSRs has been addressed separately in

previous studies using traditional machine learning techniques, for

example (Bajic et al., 2002; Choudhuri, 2014; Jia, 2010; Prohaska

et al., 2007; Sonnenburg et al., 2008). On the other hand, gene find-

ing tools implement a set of specialized statistical features to identify

different GSRs, such as, introns, coding exons, 50 and 30 untrans-

lated regions, among others (Burge, 1997; Hoff et al., 2016; Parra

et al., 2000; Reese et al., 2000; Schiex et al., 2001; Stanke et al.,

2004). Consequently, the development of many such tools may re-

quire a tremendous amount of work. Therefore, an unbiased and

generalizable method for the accurate identification of different

GSRs would facilitate the development of more accurate gene find-

ing tools and would enable large-scale analyses of different organ-

isms with significantly smaller development efforts. Recently,

deep-learning (DL) techniques have been shown to achieve out-

standing results in many cases without the need for manually-

crafted features (LeCun et al., 2015). As a result, there is a growing

number of studies proposing the use of DL techniques with DNA

sequences to tackle various computational biology problems

(Khurana et al., 2018; Li et al., 2018; Magana-Mora and Bajic,

2017; Veltri et al., 2018; Xiong et al., 2017). A convolutional neural

network (CNN) is a suitable DL model for pattern recognition and

image classification and exploits spatial correlation/dependencies in

the data (Zuo et al., 2015) and has been applied for the prediction

of different GSRs. For example, the CNNProm method (Umarov

and Solovyev, 2017) for promoter prediction uses a single-

dimension CNN to predict promoter regions. The authors derived

an independent CNN with customized parameters for each of the

five considered organisms and achieved promising results. Alipanahi

and colleagues (Alipanahi et al., 2015) proposed the DeepBind

method based on a CNN to predict DNA and RNA sequence specif-

icities of the DNA and RNA-binding proteins, as well as for the

discovery of new patterns in the sequence. Similarly, another study

on the same problem was discussed by Zeng and colleagues (Zeng

et al., 2016) achieving comparable results to the study of DNA se-

quence binding using a large transcription factors dataset. Later,

Zhang and colleagues (Zhang et al., 2017) proposed TITER, a DL

framework for the prediction of both canonical and non-canonical

start codons. TITER framework is based on QTI-seq data, which

captures real-time translation initiation events qualitatively and

quantitatively. The TITER framework has two approaches for the

prediction of translation initiation sites (TIS): one with a prior pref-

erence of a TIS codon and the other without such information.

Additionally, CNNs have also been applied for the prediction of

non-coding functions. In this direction, DeepSEA (Zhou and

Troyanskaya, 2015), based on a CNN, predicts the functional

effects of the non-coding variants from large-scale chromatin-profil-

ing data. Later, Quang and Xie (2016), developed the DanQ frame-

work, which uses a combination of a CNN and a recurrent neural

network for predicting the function of non-coding genes directly

from the sequence. Finally, Singh and colleagues (Singh et al., 2016)

proposed DeepChrome, the first DL framework for gene expression

classification using histone modification data, which outperformed

the conventional state-of-the-art methods on 56 different cell types.

More applications of DL to problems in bioinformatics and compu-

tational biology are reviewed by Min et al. (2016). Even though the

previously mentioned studies based on DL models aim at generating

data features directly from the sequence, they remain confined to

specific tasks and, in many cases, they are tested on a single

organism.

Here, we propose a novel DL structure, DeepGSR, for the recog-

nition of different types of GSRs in genomic DNA and explore its

potential for the accurate prediction of two such signals. The DL

architecture relies on the proper data representation of the GSRs,

their genomic neighborhoods, and utilization of the spatial correl-

ation. We evaluated the efficiency of our framework on two types of

GSRs, namely, polyadenylation signals (PAS) and TIS signals, in

four organisms: Homo sapiens (human), Mus musculus (mouse),

Bos taurus (bovine) and Drosophila melanogaster (fruit fly). We

conducted genome-wide experiments to assess the performance of

DeepGSR using 1) specific models for each organism independently,

and 2) cross-organism model testing (i.e., model is developed using

data from one organism, and tested on genomic data of different

organisms not used for model training). The results demonstrated

that DeepGSR outperforms the start-of-the-art results in recognition

of both PAS and TIS in the human genome. As such, DeepGSR

reduced the classification error rate by more than 29% and 86% for

PAS and TIS prediction in human, respectively, and produced an ac-

ceptable performance for both genome-wide and cross-organisms

Fig. 1. Hypothetical gene structure and surrounding control signals of eukaryotes
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experiments, suggesting high conservation of these GSR signals

across different species.

2 Materials and methods

Poorly tuned CNN architectures may yield poorer performance than

simpler shallow models (Zeng et al., 2016). Therefore, the

DeepGSR structure performs a comprehensive and systematic ana-

lysis of the CNN architecture, its hyperparameters, and the type of

data representation that fit the classification problem in question.

Moreover, DL requires a sufficiently large amount of training

data to properly learn an abstract representation of the data under

study (Chen and Lin, 2014). Therefore, we first describe the data ex-

traction procedure for PAS and TIS followed by the details of the

building, training, and optimization methods for the recognition

model based on CNN.

2.1 Datasets
Genomic data extraction is a crucial step in genomic studies and

genome analysis. In this study, we extracted PAS and TIS sequences

from the genomes of four organisms (human, mouse, bovine, and

fruit fly) using the available cDNA data of their respective genomes.

We used cDNA data as a starting point to extract two different

types of GSRs related to protein-coding genes, PAS and TIS. The

data for the four considered organisms are available online and can

be obtained from the National Center for Biotechnology

Information (NCBI), University of California Santa Cruz (UCSC)

genome browser, Mammalian Gene Collection (MGC), FlyBase,

and Ensembl resources (Aken et al., 2016; Gramates et al., 2017;

Strausberg et al., 1999; Temple et al., 2009). Then, we mapped the

cDNA data back to the genome using Genomic Mapping and

Alignment Program (GMAP) (Wu and Watanabe, 2005). Finally,

we used bedtools (Quinlan and Hall, 2010) to determine flanking

sequences of the considered GSR with 300 nucleotides both up-

stream and downstream, resulting in a sequence of 600 nucleotides

plus the length of the GSR, i.e., 603 and 606 nucleotides for TIS and

PAS, respectively. This method can be applied for the extraction of

several other types of GSRs, i.e., splice sites, stop codons, etc. The

complete workflow for data extraction is depicted in Supplementary

Figure S1.

Sequences with false PAS and false TIS (i.e., hexamers and trinu-

cleotides having the same motifs but with no links to the polyadeny-

lation and translation processes, respectively) were selected to be

equal in number to the signals determined via cDNA (i.e., positive

samples). Moreover, false PAS and false TIS samples were extracted

from the chromosome with the closest average of GC-content to the

average GC-content of the whole genome. As such, negative data

were extracted from chromosomes 21, 13, 28, and X for human,

mouse, bovine, and fruit fly, respectively.

Our pipeline extracted in this way 20 933, 18 693, 12 082, and

27 203 true PAS data in total for the 16 PAS motifs; and 28 244,

25 205, 17 558, and 30 283 true TIS data with the ATG signal for

human, mouse, bovine, and fruit fly, respectively. Supplementary

Table S1 illustrates the comparison between the numbers of all var-

iants of true PAS signals we extracted from the four considered

genomes.

The extracted PAS and TIS data for the four organisms provide

different insights about the data distribution and the frequency-

based ranking of the different motifs. Supplementary Section S1

presents more details about the data extraction procedure and the

findings from the extracted data.

2.2 The DeepGSR method
Developing a unified framework with the potential to recognize

many different types of GSRs is challenging. We used DL to achieve

this objective due to its advantages in generating suitable higher-

order features for the problem in question.

In the following subsections, we describe the most relevant

aspects to consider for deriving a robust DL model, i.e., selecting the

proper data representation, setting the structure of the DL model,

and search within the large space of hyperparameters to find the op-

timal parameter set.

2.2.1 Data representation

Since DL relies to a considerable degree on a proper representation

of the raw data per se, we experimented with multiple data represen-

tations and used them to derive a basic CNN structure with fixed

parameters. For this, we represent each sequence in a two-

dimensional (2D) space that corresponds to mononucleotides

(Fig. 2A), dinucleotides (Fig. 2B), and trinucleotides (Fig. 2C), as

well as the electron-ion interaction pseudo potential (Nair and

Sreenadhan, 2006; Veljkovi�c and Lalovi�c, 1973; Veljkovi�c and

Slavi�c, 1972), thermodynamic feature (Friedel et al., 2009), and

base stacking energy information (Abeel et al., 2008). The results in

Supplementary Figures S5 and S6 show a significant correlation be-

tween the data representation and the model’s capability to learn

directly from data. Notably, the thermodynamic and base stacking

data representations completely prevented the network from learn-

ing, in which cases the performance accuracy was similar to random

predictions. Conversely, the trinucleotide representation achieved

the best performance compared to the other representations for both

PAS and TIS data (we acknowledge the bias of these two GSRs

regarding the coding regions in the upstream region of PAS signals

and downstream region in TIS signals). Therefore, DeepGSR uses

the trinucleotide data representation as input. The dimensions of the

2 D space for each sequence represented by trinucleotides are (600–

2) � 64, where 600 is the length of a DNA sequence with the GSR

signal excluded, while 64 corresponds to the trinucleotides sorted in

the alphabetic order. For instance, Figure 2C shows a sequence ex-

ample where the values of one indicate that trinucleotides AAC and

TTT are found at the beginning and the end of the sequence, respect-

ively. It is worth noting that the random ordering of the trinucleoti-

des produced comparable results.

2.2.2 Model structure selection and tuning of model

hyperparameters

The CNN has a very complex structure due to the different configu-

rations of stacked layers and tunable hyperparameters, which in

turn results in a computationally expensive training of the model. In

our implementation of the network, we used Keras (Chollet et al.,

2015), a minimalist, highly modular neural networks library, writ-

ten in Python. We also used Theano library (Al-Rfou et al., 2016;

Fig. 2. (A) Mononucleotide data representation. (B) Dinucleotide data repre-

sentation. (C) Trinucleotide data representation. The best performance was

achieved by using the trinucleotide representation
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Bastien et al., 2012) as a backend and used GPUs to speed up the

network training (Nickolls et al., 2008).

We first defined a general structure of the DeepGSR model con-

sisting of two 2 D convolutional layers as we observed that increas-

ing the number of convolutional layers prevented efficient training,

which may be attributed to the vanishing gradient problem (Nielsen,

2015). To introduce the nonlinearity to the system and to tackle the

vanishing gradient effect, each of the two convolutional layers is fol-

lowed by a nonlinear layer with a rectified linear unit (ReLU) as ac-

tivation function (Glorot et al., 2011), determined according to

Equation (1). These convolutional layers are followed by a dropout

layer, which is followed by a fully connected layer that functions as

a conventional artificial neural network (ANN).

f ðxÞ ¼
n x; x � 0

0; x < 0
(1)

We considered a random search algorithm for selecting the opti-

mized set of hyperparameters (Bergstra and Bengio, 2012) for the

dropout layers, fully connected layer, and the first convolutional

layer (number and size of filters, optimization methods, initializa-

tion methods, batch size, etc.). Due to the large number of possible

parameter combinations, the hyperparameters of the second convo-

lutional layer were fixed a priori. Moreover, a single dropout ex-

pectation value was tuned during the random search algorithm for

both dropout layers. Hundred-random combinations of parameter

values were considered, and the best performing model based on the

validation set was selected. The hyperparameters search space for

the first convolutional and fully connected layers is listed in Table 1,

where the parameters in bold indicate the optimized values found. It

is important to mention that the number of filters in a convolutional

layer is equivalent to the number of features extracted from the

data.

The architecture of DeepGSR is depicted in Figure 3 with details

of the selected parameters (from Table 1). The first convolutional

layer scans the input with 50 filters of size 30�32, a stride of one,

and zero padding (to preserve the spatial size of the input layer,

598�64). This layer is then followed by a maxpooling layer of size

1�2 that selects the best features obtained from the respective filter.

The maxpooling layer reduces the spatial dimensions, which lessens

both the computation costs and the overfitting of the training data.

In our experiments, we observed that the use of average or global

pooling negatively affects the results. The combination of the first

convolutional and pooling layers may be considered as the global

feature extraction block of DeepGSR. The second convolutional

layer with 100 filters of size 10�8, a stride of one, and no zero pad-

ding (producing a reduced output volume with dimensions

589�25), extracts 100 more features from the output of the previ-

ous layer, representing more specific/local features as they are

extracted from a deeper layer of the network (Lu et al., 2017).

Similarly, the second convolutional layer is followed by a maxpool-

ing layer of size 1�2. To further control the overfitting, the output

of the second pooling layer is then followed by a dropout layer (with

a dropout expectation of 0.1 selected during the hyperparameters

search) that prunes the DeepGSR network during training (by tem-

porarily removing some neurons randomly; Srivastava et al., 2014).

After the stacked convolutional layers are used for feature ex-

traction, the output is converted from 3 D (589�12�100) to 1 D

(706, 800) by the flattening layer to make it suitable for a fully-

connected layer with 256 hidden neurons, tanh as the nonlinear

activation function, and a dropout layer (using the same dropout

expectation value as for the first dropout layer). Finally, the fully

connected layer is connected to an output classification layer with

two output neurons with softmax activation function. These output

neurons correspond to the positive (true) and negative (false) target

classes (Fig. 3).

It is important to note that although the optimized initialization

mode for the first convolutional layer is zero, other initialization

modes for this layer achieved competitive results. However, caution

has to be made when considering zero initialization. For instance, if

the weights for all layers in a network were initialized to zero, all

neurons would follow the same gradient during backpropagation,

hampering the learning of the CNN. DeepGSR avoids this by using

Glorot initialization in the second convolutional and fully connected

layers (Glorot and Bengio, 2010).

The 2D-CNN setup has a large number of parameters (�182

000 000) that need to be tuned during the training, highlighting the

need for GPUs to speed up the training process. However, using the

same DeepGSR architecture (Fig. 3) but with 1D-CNN and consid-

ering the genomic sequences as a text of overlapped trinucleotide

words (word embedding) would provide a model with a simpler

structure that reduces both the training time and the number of

parameters to tune (�4 000 000). For this, we used the embedding

Table 1. DeepGSR parameters

Layer Parameters Search space

Conv. layer 1 Number of filters [20, 50, 100, 150, 200, 250]

Filter length [10, 20, 30, 40, 50]

Filter width [2, 4, 8, 16, 32, 64]

Initialization mode [uniform, lecun_uniform, normal, zero, glorot_normal, glorot_uniform,

he_normal, he_uniform]

Conv. layer 2 Number of filters 100

Filter length 10

Filter width 8

Initialization mode glorot_uniform

Fully connected layer Activation function [softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear]

Number of neurons [32, 64, 128, 256, 512]

Initialization mode glorot_uniform

Learning Learning batch size [4, 16, 32, 64, 128]

Optimizer [SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam]

Regularization Dropout expectation [0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]

Note: A single dropout expectation value was tuned for both dropout layers.

Parameters in bold indicate the optimized values found by using a random search algorithm.
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layer in Keras that provides numerical representation for the raw se-

quence data as a text of overlapped trinucleotide words. The embed-

ding layer takes a matrix of unique words and indices as input, as

well as the required embedding dimension. In this setup, we used a

grid search algorithm to find the best embedding dimension in the

space of 10 to 100 with a step of 10; we found that 20 is the best

embedding dimension for DeepGSR.

3 Results

Zeng and colleagues (Zeng et al., 2016) reported that a poorly tuned

CNN structure may result in the loss of the functionality and effi-

ciency of the model. However, the number of hyperparameters in

CNN makes its tuning a serious challenge. In this study, we per-

formed an extensive and systematic analysis of the multiple hyper-

parameters combinations and data representation to derive a robust

DL structure for the recognition of different GSRs (Section 2).

Therefore, the key contribution of our study is the development of

DeepGSR, a fixed DL structure with optimized hyperparameters, so

that such same structure can be retrained for the recognition of dif-

ferent types of GSRs without making any changes to the originally

optimized DL structure. In this study, we trained the DeepGSR

structure for the recognition of PAS and TIS signals. We used the

human genome data of the most common PAS variant (AATAAA)

to select the best data representation, model structure, and set of

hyperparameters (Section 2). Since we used the same number of

positive and negative samples (balanced data), we report the results

based on the accuracy performance measure defined as

Accuracy ¼ True predictions

All predictions
¼ tpþ tn

tpþ fnþ tnþ fp
(2)

where tp, tn, fp, and fn denote the number of true positive, true

negatives, false positives, and false negatives, respectively. In add-

ition to the accuracy measure, Supplementary Tables S4–S6 show

the results using the sensitivity, specificity, and area under the preci-

sion recall (AUPR) as performance measures. Additionally,

Supplementary Table S7 shows the results of human PAS

(AATAAA) and TIS when considering input data with random

ordering of trinucleotides.

The optimized set of hyperparameters of DeepGSR were deter-

mined by using a random search algorithm (Section 2). For all

results reported in this section, the optimized structure was trained

by using 75% of the data and tested on the remaining 25% of the

data. We used the early-stopping technique with a validation set

(obtained by selecting randomly 20% of the data from the training

set) to stop the training of the network and minimize the overfitting

of the model (Prechelt, 1998). Figure 4A shows a comparison be-

tween the results obtained by using a 2D-CNN and 1D-CNN with

word embedding demonstrating the superiority of the 2 D represen-

tation. Therefore, the rest of the reported results are obtained by

using the 2 D representation. Nonetheless, we make 1D-CNN model

available as it might be suitable for larger scale analyses or for users

with limited computational facilities.

3.1 GSR recognition and cross-organism conservation
We conducted cross-organism testing and organism-specific

analyses for the recognition of both PAS and TIS in order to

assess the performance of the optimized DeepGSR structure. For

the cross-organism testing, we derived a DeepGSR model by

using the AATAAA PAS variant (human_AATAAA_DeepGSR),

and a DeepGSR model trained on human TIS data

(human_ATG_DeepGSR). To assess the generalization capabilities

of the human_AATAAA_classifier, we tested the model using all

PAS variants pooled together, as well as AATAAA variant alone.

Moreover, we tested these human-derived models on the genome

data of other organisms. Figure 4B shows the results obtained from

the model cross-organism testing.

Since the training of DL models requires a sufficiently large

training data, it was not possible to derive a model for each PAS

variant (as in the case for AATAAA) due to the insufficient number

of samples in the less common PAS variants. Therefore, we pooled

all PAS variants and trained a classifier, human_pooled-

PAS_classifier. Again, we used human PAS data for building the

classifier and tested it on data from other genomes for cross-

organisms testing. Figure 4C shows the results obtained by the

human_pooled-PAS_classifier. In this setup, we obtained similar

results as with the human_AATAAA_classifier.

Finally, we conducted organism-specific experiments in which

the model was trained and tested on the data from the same genome.

We applied this to both PAS and TIS data (Fig. 4D). It is worth men-

tioning that all results presented in this section are obtained using

the same DL structure with the optimized hyperparameters, giving

support to a unified framework for GSR recognition.

3.2 Comparison with the state-of-the-art methods
The results in Figure 4D and Supplementary Table S6 show an error

rate of 13.06% and 5.68% for the recognition of PAS and TIS in

human, respectively. Although our proposed method is free of any

GSR-specific or manually crafter features, DeepGSR consistently

achieved competitive results for the other considered organisms, and

Fig. 3. The DeepGSR model architecture using 2D-CNN. Each of the two convolutional layers uses ReLU activation function and a maxpooling layer. The input

layer is a matrix of size 598�64 based on the trinucleotide data representation
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it was able to reduce the error rate of the domain-specific models

that were published for the same problems. We compared DeepGSR

with Dragon PolyA Spotter (DPS) (Kalkatawi et al., 2013), HMM-

SVM (Xie et al., 2013) and Omni-polyA (Magana-Mora et al.,

2017) as shown in Table 2 for PAS prediction in the human genome.

Table 3 shows the comparison between DeepGSR and TIS-ANN

(Haitham et al., 2012; Magana-Mora et al., 2013), iTIS-PseTNC

(Chen et al., 2014) and TITER for TIS recognition in the human

genome. From the comparison of the results, we observe that

DeepGSR models reduced the classification error rate by up to 29%

for PAS prediction, and up to 86% for TIS prediction in human

compared the state-of-the-art results. The reduction of the error rate

was calculated by Equations (3, 4), where x is the method in ques-

tion, x1 is a state-of-the-art method and x2 is DeepGSR.

error rateðxÞ ¼ 100� AccuracyðxÞ (3)

relative error rateðx1;x2Þ ¼
jerror rateðx1Þ � error rateðx2Þj

error rateðx1Þ
(4)

It is important to note that the published results for the TITER

method (TIS predictor) are in terms of the AUROC and AUPR. For

a fair comparison, we calculated the classification error reduction

achieved by DeepGSR using AUROC measure for TITER, represent-

ing a reduction of 47.79% compared to TITER’s published results

and 36.82% to TITER’s results on DeepGSR data.

3.3 Performance comparison between manually-crafted

features and DL
One important characteristic of DL methods is the ability to auto-

matically extract abstract features from the data. To prove the effi-

cacy of our DL approach presented in DeepGSR, we derived non-

GSR-specific manually-crafted features from DNA and compared

their performance. The feature generation workflow is shown in

Supplementary Figure S7. The manually-crafted features are:

Compositional and statistical properties of nucleotides and poly-

nucleotide sequences.

Fig. 4. (A) Performance comparison of DeepGSR using 1D-CNN and 2D-CNN for the recognition of PAS and TIS signals in human genomic DNA. (B)

Human_AATAAA_DeepGSR and Human_ATG_DeepGSR were used to test genomes of other organisms (cross-organism tests). For human data only, PAS_all

represents all variants except AATAAA þ only the testing portion of AATAAA (25%) that was not included in the training. (C) The results on PAS data using

Human_pooled-PAS_DeepGSR for predicting PAS in other organisms. (D) The results for PAS and TIS data using DeepGSR organism specific models

Table 2. Classification error reduction on the problem of PAS rec-

ognition on human

Published

models

Published

error rate (%)

Reduction of the relative

error rate (%)

DeepGSR 13.06 N/A

DPS 16.49 20.80

HMM-SVM 18.59 29.75

Omni-polyA 14.02 6.85

Average – 19.13

Note: Comparison between the state-of-the-art methods and DeepGSR on

the problem of PAS (AATAAA) recognition on the human genome.
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• Score generated by position probability matrix (PPM) of mono/

di/tri nucleotides.
• Electron-ion interaction potential (EIIP) of nucleotides

(Veljkovi�c and Slavi�c, 1972).
• Scores generated by position weight matrices (PWM) with and

without linear weight function (Equation 5), which assigns dif-

ferent weights to nucleotide positions based on their closeness to

the signal under study, i.e., the closer the position the larger the

weight.
• GC and AT skew (Lobry, 1996).
• Thermodynamic, structural, and base stacking dinucleotide

properties.
• Palindrome sequences.

weight ¼ 2� positionþ 1 (5)

Each of these features was calculated from four different regions

in the sequence to find the sequence region achieving the best classi-

fication performance using such feature. These sequence regions are:

(i) the whole sequence, (ii) upstream relative to the GSR, (iii) down-

stream relative to the GSR, and (iv) from windows (overlapped) of

different sizes: 10, 20 and 30 base pairs. Supplementary Figure S8

shows the accuracy of an ANN derived by using each of these fea-

tures individually. Then, we assessed the performance using differ-

ent feature combinations and selected the top three best performing

features and feature combinations. Supplementary Figure S9 shows

the accuracy results for these feature combinations. In order to de-

rive a robust model for this comparison, we selected the best per-

forming combination of features and used stacked auto-encoders as

an aid to choosing the suitable number of hidden nodes in each layer

of a deep ANN.

The results from this comparison (Supplementary Fig. S10) show

that the tuned deep ANN derived by using the best performing set of

manually-crafted features for PAS human data (AATAAA variant)

achieved a maximum accuracy of 81.73%, while DeepGSR achieved

86.94% (representing a reduction of the relative error rate of

28.51%). These results demonstrate that the DL approach is both

more reliable and simpler, as features are automatically extracted

from the data.

4 Conclusions

In this study, we present DeepGSR, a comprehensive framework

based on a DL approach, more specifically CNN, for the recognition

of different types of GSR within eukaryotic DNA sequences. The

main contribution of this study is the development of a DL structure

with optimized hyperparameters. This same structure can be then

retrained for different types of GSRs without the need for any fur-

ther structural optimization. Therefore, DeepGSR provides a fairly

general structure for sequence-based recognition of different GSRs,

i.e., splice sites, stop codon, etc. On the considered types of GSR,

DeepGSR outperformed the state-of-the-art results.

We reported the performance of DeepGSR on the recognition

problem of PAS and TIS signals for four different organisms, name-

ly, human, mouse, bovine and fruit fly. We focused on the recogni-

tion of PAS and TIS as they are key GSR for understanding certain

diseases. For instance, PAS and its surrounding regions may harbor

mutations that cause or contribute to different diseases, i.e., thalas-

saemia, metachromatic leukodystrophy, IPEX and Fabry’s disease

(Elkon et al., 2013). On the other hand, TIS defines the start of the

coding sequence of protein-coding genes. The dysregulation of the

translation initiation process may cause various diseases, such as

cancer and metabolic disorders (Zhang et al., 2017) while a muta-

tion in TIS may cause inherited disease (Wolf et al., 2011). Thus, ac-

curate determination of such signals in genomic DNA may facilitate

studies of such conditions.

We conducted both genome-wide and cross-organism model

testing to study the conservation of the GSR across species and the

robustness of the DeepGSR model. According to the results with

both the TIS and PAS data, the correlation between human, mouse,

and bovine appears strong, suggesting high conservation of these sig-

nals in mammals, but less than in genomes of more distant eukar-

yotes (fruit fly). Results also indicate that the 50UTR, or the start of

the gene, appears to be more conserved than the 30UTR. These

observations stem from the very good cross-organisms results of TIS

compared to PAS.

Although we applied DeepGSR for the recognition of PAS and

TIS, the same approach may be applied for the recognition of splice

sites, polyadenylation cleavage sites or stop codons.
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