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Abstract. Transverse tubule (TT) membranes isolated 
from chicken skeletal muscle possess a very active 
magnesium-stimulated ATPase (Mg-ATPase) activity. 
The Mg-ATPase has been tentatively identified as a 
102-kD concanavalin A (Con A)-binding glycoprotein 
comprising 80% of the integral membrane protein 
(Okamoto, V. R., 1985, Arch. Biochem. Biophys., 
237:43-54). To firmly identify the Mg-ATPase as the 
102-kD TT component and to characterize the struc- 
tural relationship between this protein and the closely 
related sarcoplasmic reticulum (SR) Ca-ATPase, poly- 
clonal antibodies were raised against the purified SR 
Ca-ATPase and the TT 102-kD glycoprotein, and the 
immunological relationship between the two ATPases 
was studied by means of Western immunoblots and 
enzyme-linked immunosorbent assays (ELISA). 
Anti-chicken and anti-rabbit SR Ca-ATPase antibodies 
were not able to distinguish between the TT 102-kD 
glycoprotein and the SR Ca-ATPase. The SR Ca- 
ATPase and the putative 102-kD TT Mg-ATPase also 
possess common structural elements, as indicated by 

amino acid compositional and peptide mapping anal- 
yses. The two 102-kD proteins exhibit similar amino 
acid compositions, especially with regard to the popu- 
lation of charged amino acid residues. Furthermore, 
one-dimensional peptide maps of the two proteins, and 
immunoblots thereof, show striking similarities indi- 
cating that the two proteins share many common epi- 
topes and peptide domains. Polyclonal antibodies 
raised against the purified TT 102-kD glycoprotein 
were localized by indirect immunofluorescence exclu- 
sively in the TT-rich I bands of the muscle cell. The 
antibodies substantially inhibit the Mg-ATPase activity 
of isolated TT vesicles, and Con A pretreatment could 
prevent antibody inhibition of TT Mg-ATPase activity. 
Further, the binding of antibodies to intact TT vesicles 
could be reduced by prior treatment with Con A. We 
conclude that the TT 102-kD glycoprotein is the TT 
Mg-ATPase and that a high degree of structural ho- 
mology exists between this protein and the SR Ca- 
ATPase. 

T 
HE transverse tubular (TT) t membranes of striated 
muscle cells are invaginations of the cell surface that 
make periodic contacts with elements of the sarcoplas- 

mic reticulum (SR) membranes. Because of this unique 
structural arrangement, TT membranes are thought to par- 
ticipate in several important processes that take place during 
muscle contraction, including conducting the action poten- 
tial from the sarcolemma (SL) to the interior of the cell and 
triggering calcium release from the SR (28). 

Transverse tubule vesicles have been isolated from rabbit 
(14, 19, 36), rat (2), and chicken (26, 34, 37, 43) skeletal mus- 
cle. Identification of isolated chicken skeletal TT vesicles 
was carried out by using stereological methods that com- 
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pared the freeze-fracture protein particle distributions of the 
isolated TT vesicles (680 particles/~tm ~) with the distribu- 
tion of particles in the intact T-tubules (690/!im2), the SR 
(6020/!xm2), and the SL (1630/~tm 2) membranes (41). To 
fully separate SR and TT vesicles, it was necessary to pass 
heterogeneous microsomal suspensions containing both SR 
and TT vesicles through two consecutive multistep sucrose 
gradients and an oxalate-loading step (37). The TT mem- 
branes were separated from the SR vesicles with the expecta- 
tion that SR, and not TT, membranes were capable of form- 
ing intravesicular calcium-oxalate deposits subsequent to 
calcium uptake. Through this functional density shift proce- 
dure, >99 % of the contaminating SR vesicles were removed 
from the TT fractions (37). Highly purified TT vesicles of 
chicken skeletal muscle prepared in this way were character- 
ized by their unique freeze-fracture morphology (41), lipid 
content (43), and distribution of enzymatic activities (37). 

While earlier reports indicated that TT membranes pos- 
sessed significant calcium-stimulated ATPase (Ca-ATPase) 
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activity with catalytic properties similar to those of the SR 
Ca-ATPase (6, 19, 26, 36), more recent studies indicate that 
highly purified TT fractions that are substantially devoid of 
SR contamination (based on stereological and other criteria) 
do not contain any ATPase activity that is stimulated by cal- 
cium in the micromolar range (14, 16, 34, 37), suggesting that 
the TT preparations described prior to 1983 were likely to 
be contaminated by SR. Further, two-dimensional isoelectric 
focusing gels confirmed that no significant 102-kD Ca-ATPase 
protein (pI 6.6-6.2) was present in TT fractions correlating 
with the absence of high affinity Ca-ATPase activity (34). 

The most prominent enzymatic activity associated with 
the highly purified TT vesicles is a magnesium-stimulated 
ATPase (Mg-ATPase)(EC 3.6.1.3), which displays enzymatic 
activities as high as 5-10 Ixmol/min per mg in the vesiculated 
form (26, 34, 37) and 17 lunol/min per mg in the partially 
purified form (34). Very low values of Mg-ATPase activity 
are found in highly purified SR membranes (12, 37) and are 
found at levels 10-fold lower in crude SL fractions (37). The 
TT Mg-ATPase has unique catalytic properties in that is in- 
sensitive to vanadate and FITC at levels that substantially in- 
hibit Ca-ATPase and Na,K-ATPase activities (32). The Mg- 
ATPase also displays an unusual temperature dependence 
and pH optimum (37) and is significantly stimulated (five- to 
eightfold) by Con A at 37°C (31, 38). 

In preparations of TT vesicles isolated from chicken skele- 
tal muscle, a Con A- and wheat germ agglutinin-binding gly- 
coprotein of •102 kD was tentatively identified as the Mg- 
ATPase (34). This was based on the concomitant enrichment 
of both the 102-kD protein and the Mg-ATPase activity after 
partial extraction of the TT vesicles with Triton X-100. While 
possessing the same relative molecular mass in one-dimen- 
sional gels as the well-characterized SR Ca-ATPase, the TT 
102-kD glycoprotein displayed a more acidic isoelectric 
point when resolved on two-dimensional gels, most likely as 
a result of its carbohydrate content. 

In this study, we have used immunological evidence to 
definitively identify the TT 102-kD glycoprotein as the Mg- 
ATPase. We have also used immunological analyses as well 
as amino acid compositional and peptide mapping analyses 
to probe the structure of the TT Mg-ATPase, and we have 
found that the two ATPases possess substantial structural ele- 
ments in common. 

Materials and Methods 

Chemicals 
Most chemicals were reagent grade and were obtained from Sigma Chemi- 
cal Co. (St. Louis, MO), Merck A. G. (Darmstadt, Germany), or Carlo 
Erba (Milano, Italy). p-Nitrophenylphosphate, alkaline phosphatase, and 
avidin-allkaline phosphatase were purchased from Boehringer Mannheim 
GmbH (Manneheim, Germany). Con A-biotin was purchased from Poly- 
sciences, Inc. (Warrington, PA). Ampholines were obtained from LKB In- 
struments Inc. (Bromma, Sweden). Nitrocellulose paper was purchased 
from Bio-Rad Laboratories (Richmond, CA). The cationic dye Stains All, 
(1-ethyl-2-[3-(l-ethylnaphtho[1,2d]-thiazolin-2-ylidene)-2-methyl-prope- 
nyl]-naphtho-[t,2d] thiazolium bromide), Nitro Blue Tetrazolium, and 5-bro- 
mo-4-chloro-3-indolyl phosphate were obtained from Sigma Chemical Co. 

Preparative Procedures 
Mixed microsomal fractions and purified TT were prepared from the breast 
muscle of 5-8-wk-old chickens, according to Sabbadini and Okamoto (37) 
and Okamoto et al. (34). Briefly, 150 g of breast muscle were homogenized 
in 3 vol of 10% sucrose, 10 mM morpholino propane sulfonic acid (MOPS), 

pH 6.8, 0.1 mM EDTA, 0.1 mM phenylmethylsulfonyl fluoride (PMSF) for 
20 s every 5 min for 1 h, keeping the pH constant at 7.0 by adding 10% 
NaOH. The homogenate was centrifuged at 15,000 g for 20 min. The filtered 
supernatant was centrifuged at 40,000 g for 90 min. The pellets were 
resuspended in 0.6 M KCI, 10 mM MOPS, pH 6.8, incubated for 40 min 
and then centrifuged at 15,000 g for 20 min. The final supernatant was cen- 
trifuged at 40,000 g for 90 min, and the pelleted mixed microsomes were 
resuspended in 30% sucrose, 10 mM MOPS, pH 6.8. 

The SR and TT vesicles were separated by two tandem density shifts by 
incubation of the mixed microsomal fraction with 20 mM MOPS, pH 6.8, 
2 mM CaCI2, 2 mM EGTA, 5 mM K-oxalate, 80 mM KC1, 5 mM MgC1, 
and 5 mM ATP for 5 min at 37°C. The mixture was layered on a 25% su- 
crose cushion containing 10 mM MOPS, pH 6.8, and then centrifuged in 
a rotor (SW 40; Beckman Instruments, Palo Alto, CA) at 150,000 g for 60 
min. Oxalate-loaded SR appeared in the pellet, and the TT vesicles ap- 
peared at the buffer-25% sucrose interface. The TT vesicles were washed 
in 25 mM imidazole, pH 7.0, and pelleted by centrifugation at 150,000 g for 
1 h. The final TT pellets and the oxalate-loaded SR pellets were resuspended 
in 20 mM MOPS, pH 7.0. Protein concentration was determined by the 
method of Lowry et al. (22) with bovine serum albumin as a standard. 

ATPase Assay 
ATPase activity was determined with a coupled-enzyme spectrophotometric 
ADP-release assay (48) by measuring the oxidation of NADH at 340 nm 
in a medium containing 25 mM imidazole, 0.3 mg/ml NADH, 5 mM 
MgCI2, 0.2 mM EGTA, 450 ~tM phosphoenolpyruvate (PEP), 1 mM ATP, 
and 3-5 I~g of protein, as previously described (37). Basal magnesium- 
stimulated ATPase was measured at 25°C and pH 7.3. Extra Ca-ATPase was 
measured at 37°C and pH 7.0, after adding 0.2 mM CaCI2 and 4 IxM 
A23187. 

Gel Electrophoresis and Peptide Mapping 
One-dimensional 10% SDS PAGE was carried out according to Laemmli 
(18). Two-dimensional gel electrophoresis was carded out according to 
O'Farrell (33) with isoelectric focusing in the first dimension in the presence 
of 1% Ampholine (LKB Instruments Inc.) (0.8%, pH 5-7; 0.2%, pH 3-10). 
The pH range of the first dimension tube gel was usually 4.5-7.0. The second 
dimension slab gel (0.5-mm thick) was a standard Laemmli 10% SDS 
PAGE. 

One-dimensional peptide maps of the SR Ca-ATPase and the TT 102-kD 
protein (isolated from preparative 10% polyacrylamide slab gels) were per- 
formed according to Cleveland et al. (8) after partial digestion with Staphy- 
lococcus aureus V8 protease or with chymotrypsin. The two 102-kD pro- 
teins were isolated by dissection from 10% preparative slab gels, and the 
protease-treated fragments were resolved on 15-20 % polyacrylamide linear 
gradient slab gels. 

Gels were stained with Coomassie Blue or with the silver nitrate method 
of Merril et al. (30). The staining with the carbocyanine dye Stains All was 
carded out as described by Campbell et al. (7). Densitometric scans of the 
slab gels were carried out under conditions identical to those reported by 
Volpe et al. (46). Apparent relative molecular masses were calculated from 
a graph of relative mobilities versus log relative molecular mass of standard 
proteins (bovine serum albumin, 68 kD; pyruvate kinase, 57 kD; lactate de- 
hydrogenase, 36 kD; carbonic anhydrase, 29 kD). 

Amino Acid Analysis 
Amino acid compositions of the purified SR Ca-ATPase and TT Mg-ATPase 
proteins were determined after hydrolyzing the proteins in 6 N HCI for 24 h 
in sealed evacuated tubes at 110 ° followed by analysis in an amino acid ana- 
lyzer (Carlo Erba). 

Preparation of Antisera and Purification of Antibodies 
Antiserum to the chicken SR Ca-ATPase was raised in adult rabbits by giv- 
ing four weekly intramuscular injections of cholate-purified Ca-ATPase (1 
mg per injection) emulsified with an equal volume of Freund's complete ad- 
juvant. The cholate treatment (46) was performed on calcium-oxalate- 
purified SR vesicles prepared as previously described (37). After 45 d, a 
booster injection was given, and the animal was bled. Preimmune serum 
was obtained from the animal before the start of immunization. 

Antiserum to chicken TT 102-kD glycoprotein was raised after the same 
immunization schedule but using 100 I.tg per injection. The 102-kD TT gly- 
coprotein was purified by electrophoretic elution. Specifically, preparative 
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10% SDS PAGE slabs of TT membrane proteins were incubated in 0.6 M 
KCI to visualize the 102-kD protein bands, which were then dissected from 
the gels and soaked in 40 mM Tris-acetate, pH 8.3, 1 mM EDTA, and 0.1% 
SDS for 30 min. The slices were then placed in the concentration well of 
an electrophoretic sample concentrator (Isco, Inc., Lincoln, NE). After 
adding the buffer to the tank (40 mM Tris-acetate, pH 8.3, 1 mM EDTA, 
0.1% SDS) and the sample cup (4 mM Tris-acetate, pH 8.3, 1 mM EDTA, 
0.1% SDS), the electrophoretic elution was carded out overnight at constant 
power (1 W). The purity of the eluted protein was evaluated as described 
in Results. IgG fractions were obtained from both antisera as described pre- 
viously (3). The batches of antibodies used in the present study were from 
single bleedings. 

Immunological Techniques 

One-step noncompetitive enzyme-linked immunosorbent assays (ELISAs) 
were carried out as described previously (3). Intact vesiculated membranes 
were dispersed in 0.1 M Na2CO3, pH 9.6, and then 0.2-ml aliquots were 
adsorbed to microtiter wells by incubating for 1 h at 37°C. After washing 
with 0.9% NaCI and 0.05% Tween-20, 0.2-ml aliquots of antibodies (dis- 
solved in PBS at various concentrations) were added and incubated for 1 h 
at 37°C. After washing away excess, unbound antibody, anti-IgG conjugated 
to alkaline phosphatase (1:1000 dilution in PBS) was then added and in- 
cubated for 1 h at 37°C. The alkaline phosphatase activity associated with 
the antigen immobilized on the microtiter wells was measured after incubat- 
ing the wells with p-nitrophenylphosphate (1.65 mg/ml) in 50 mM NazCO3, 
pH 9.8, 1 mM MgC12 for 30 min at 37°C and subsequently measuring the 
absorbance at 400 run after the reaction had been stopped with 50 ~tl of 2 
N NaOH. A two-step competitive ELISA was carded out as described by 
Damiani et al. (9). Briefly, anti-chicken SR Ca-ATPase antibodies were 
diluted to 10 ~tg/ml in PBS buffer and were then incubated overnight with 
an equal volume of membranes diluted to various protein concentrations 
with PBS. Aliquots (0.2 ml) of the mixture were then transferred to microti- 
ter wells previously precoated with 5 p.g/ml of purified SR membranes. All 
subsequent steps were as described for the one-step noncompetitive ELISA. 
Western immunoblots of slab gels were carried out under the general condi- 
tions of Towbin et al. (45), as described in detail by Biral et al. (5). 

Indirect Immunofluorescence 

Thick (1 mm) strips of breast muscle were dissected from freshly killed 
chickens and then fixed by immersion in PBS with 3% formaldehyde for 
1 h at room temperature. The strips were tied to wooden sticks during fixa- 
tion in order to maintain the myofibrils in an uncontracted state. The fixative 
was removed from the tissue by three 30-min rinses of PBS with 0.01% gly- 
cine, and then the tissue was stored at 4°C. Before ultracryotomy, the tissue 
was trimmed into 0.5-ram cubes. After infusing the muscle cubes with 2.3 
M sucrose for 30 min, the cubes were placed on aluminum stubs, frozen 
in liquid nitrogen, and mounted on a Sorvall MT2B microtome with a Sot- 
vail FS 1000 cryoattachment (RMC Corp., Tucson, AZ). l-2-I.tm frozen 
sections were cut at -60°C,  picked up with drops of 2.3-M sucrose, and 
placed on glass slides. The sections were rinsed in PBS to remove the su- 
crose and then labeled for simultaneous localization of the TT Mg-ATPase 
and myosin. 

As a control for the position of the A band, myosin was labeled with a 
mouse anti-chicken monoclonal antibody (MF20), kindly given by Dr. 
Donald Fischman of Cornell University, New York. 100 l.d of the undiluted 
(5 lag/ml) hybridoma culture medium were applied to the sections, and then 
the excess antibody was washed off with twe 5-rain rinses of PBS. 80-100 
~tl of fluorescein-conjugated goat anti-mouse IgG (15-20 gg/ml) were ap- 
plied for 10 min and then rinsed as before. 

The 102-kD TT Mg-ATPase was labeled with the rabbit anti-chicken IgG 
described above. The rabbit anti-chicken Mg-ATPase antibody was applied 
to sections at concentrations ranging from 50 to 200 ~tg/ml, and the excess 
antibody was washed off with PBS. The following successive labels were 
then applied for 10 rain each: goat anti-rabbit IgG, biotin-conjugated swine 
anti-goat IgG, and then avidin-Texas red (all immunolabeling reagents were 
obtained from Boehringer Mannheim Biochemicals, Indianapolis, IN). The 
biotin conjugate was used at 0.1 tag/ml, and the others were used at 15-20 
~g/ml. Volumes of 80-100 Ixl were needed to cover the sections. Each label- 
ing step was followed by two 5-min rinses in PBS. After all labeling reagents 
had been applied, the sections were then rinsed in distilled water, mounted 
in 90% glycerol, and stored at 4°C. The slides were viewed on a Zeiss Pho- 
tomicroscope III equipped for epifluorescence and photographed on Kodak 
Tri-X Pan 400 ASA film. Controls using rabbit IgG preimmune serum were 
performed and showed no labeling in the I or A bands of the myofibrils. 

Con A Binding to SR and TT Proteins 

We evaluated the binding of Con A to both native TT vesicles and to solubi- 
lized TT proteins resolved on Laemmli gels. SR and TT proteins were 
resolved by SDS PAGE and then transferred to nitrocellulose sheets by elec- 
troblotting. After washing with 0.9% NaCI, 0.1% Tween 20 for 60 min at 
37°C, the sheets were incubated for 5 h at 370C with Con A-biotin (1 lag/ml) 
diluted in PBS. After washing again four times for 5 min, the sheets were 
incubated for 90 min at 37°C with avidin conjugated to alkaline phosphatase 
and diluted in PBS (1:3,000). The sheets were then incubated at room tem- 
perature in the dark with 0.1 M Tris-HCl, pH 9.5, 0.1 M NaC1, 5 mM 
MgCI2 containing Nitro Blue Tetrazolium (0.33 mg/ml) and 5-bromo-4- 
chloro-3-indolyt phosphate (0.17 mg/ml) according to the methods of Leafy 
et al. (21). Color development was terminated after 60 rain by washing the 
sheets with distilled water. 

Con A binding to native TT vesicles was carried out as follows: Con 
A-biotin was diluted in PBS and was incubated for 60 rain at 37°C in micro- 
titer wells previously coated with 5 Ixg/ml TT vesicles. Unbound Con 
A-biotin was removed by washing three times with 0.9% NaCI and 0.05% 
Tween 20. The immobilized vesicles were incubated for 60 min at 37"C with 
avidin conjugated to alkaline phosphatase (1:3,000 diluted in PBS) and then 
washed as above. The alkaline phosphatase activity associated with the TT 
vesicles immobilized on the microtiter wells was determined as described 
above for one-step noncompetitive ELISA. 

Results 

Evaluation of Membrane Purity 
Several criteria were used to assess the purity of the SR and 
TT membrane proteins used for subsequent immunological 
and comparative structural studies. Fig. 1 shows the SDS 
PAGE profiles of chicken SR and TT proteins. Similar to the 
rabbit SR (28, 39, 44) the Ca-ATPase was the predominant 
chicken SR protein (Fig. 1, lane 1 ) averaging 77.3 + 7.7% 
(n = 4) of total protein, based on densitometric scans of 
Coomassie Blue-stained gels. These preparations displayed 
a very low basal Mg-ATPase activity (0.41 + 0.06 lxmol/ 
min per mg, n = 5) compared with the extra, Ca-ATPase ac- 

Figure 1. One-dimensional 
10% SDS PAGE of SR and TT 
m e m b r a n e s  was carr ied out  as 
descr ibed by L a e m m l i  (18). 
The  slabs were s tained with 
Coomass i e  Blue. Approxi-  
mately  20 Ixg o f  protein were 
loaded on each  lane. Lane  
1, chicken ca lc ium-oxa la te -  
loaded SR; lane 2, chicken 
TT. 
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tivity of 3.53 + 0.39 Ixmol/min per mg (n = 4) measured 
in the presence of the calcium ionophore A23187 at 37°C. 

Chicken TT vesicles possess a more complex protein com- 
position with a prominent protein at "~Mr 102,000 (Fig. 1, 
lane 2), a protein which averaged f~23.1 + 3.9% of the to- 
tal protein (n = 4). The Mg-ATPase activity found in TT 
fraction was 2.43 + 0.26 I~mol/min per mg (n = 8) under 
optimal conditions of pH 7.3 and 25°C (37). No Ca-ATPase 
activity was observed in any of the TT fractions used in this 
study; in fact, a characteristically slight inhibition of the Mg- 
ATPase activity was consistently observed after calcium and 
A23187 addition (data not shown). The 102-kD TT peptide 

has been tentatively identified as a glycoprotein responsible 
for the Mg-ATPase activity (34). 

In a previous study, Okamoto et al. (34) demonstrated that 
even though they possess similar relative molecular masses 
in Laemmli gels, the SR Ca-ATPase and the TT 102-kD puta- 
tive Mg-ATPase proteins could easily be differentiated by 
their distinctly different isoelectric points. To be certain that 
no detectable Ca-ATPase protein was present in our native 
TT preparation, we analyzed the content of 102-kD protein 
in two-dimensional gels overloaded with TT protein (Fig. 2). 
As previously shown (34), solubilized TT vesicles (Fig. 2 a) 
had only one protein in the 102-kD range possessing a char- 

Figure 2. Two-dimensional 
gel electrophoresis of TT (a) 
and SR (b) membrane protein 
according to the method of 
O'Farrell (33). The first dimen- 
sion isoelectrofocusing gels 
were performed in the pres- 
ence of 1% Ampholines in the 
pH range 4.5-7.0. The slabs 
were stained with Coomas- 
sie Blue. About 50 ~tg of TT 
and 15 Ixg of SR protein were 
loaded per gel. Arrow and ar- 
rowhead indicate the SR Ca- 
ATPase (pI 6.3), and the TT 
Mg-ATPase (pI 5.3), respec- 
tively. 
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acteristic pI of 5.3 (see arrow). On the other hand, the SR 
Ca-ATPase exhibited a more alkaline pI of 6.3, and there was 
no evidence of a contaminating protein with the same relative 
molecular mass in the pI range characteristic of the TT 102- 
kD protein (Fig. 2 b). In control experiments using Coomas- 
sie Blue stained SDS PAGE slabs of SR protein where the 
102-kD Ca-ATPase represented 80 % of the total membrane 
protein, 400 ng of 102-kD protein could clearly be detected 
in the electrophoretic conditions used for the two-dimen- 
sional gels. In gels such as Fig. 2 a that were overloaded with 
>50 ttg of protein, we would have been capable of detecting 
at least a 3.4 % SR Ca-ATPase contamination in TT prepara- 
tions in which the 102-kD component represents 23 % of total 
protein (see above). 

To further evaluate the extent of SR contamination in our 
TT fractions, we investigated the possible presence of an- 
other characteristic SR protein, calsequestrin, in gels of 
electrophoreticaUy resolved TT proteins. Stains All has been 
extensively used in the identification of caisequestrin in 
skeletal and cardiac muscle SR (see reference 24 for a recent 
review). Stains All treatment of slab gels demonstrated that 
chicken skeletal muscle SR has a metachromatically stained 
glycoprotein of 55 kD (see arrow, Fig. 3, lane 1) that we have 
identified as calsequestrin (10). The Stains All pattern of TT 
proteins resolved by slab gel electrophoresis was routinely 
examined, and it was found that none of the TT proteins in 
the 55-kD range exhibited metachromatic staining properties 
characteristic of calsequestrin (Fig. 3, lane 2). In control ex- 
periments using purified calsequestrin, as little as 100 ng cal- 
sequestrin was clearly identifiable by metachromatic stain- 
ing. Considering that the calsequestrin content of SR is 
'~10% (data not shown), then we could have been able to de- 
tect the presence of 3.3 % SR contamination in a gel loaded 
with 30 ttg of protein. Further, anti-calsequestrin antibodies 
did not react to any 55-kD component in Western immuno- 
blots of electrophoretically resolved TT vesicle proteins 
(data not shown), and Con A did not bind to any species in 
the 55-kD region (see below). From the absence of Ca- 
ATPase activity, the absence of SR Ca-ATPase and calse- 
questrin proteins in two-dimensional gels and Stains All- 

treated Laemmli gels, and from the lack of caisequestrin in 
immunoblots of TT membrane protein, we conclude that the 
level of contamination of SR proteins was below the limit of 
detection of the several techniques used. 

Immunological Relationship between the 
SR  Ca-ATPase and the Putative T T  Mg-ATPase 

We developed monospecific polyclonal antibodies against 
the purified chicken SR Ca-ATPase and against the putative 
TT Mg-ATPase (see Materials and Methods) in order to test 
the cross-reactivity of the two 102-kD proteins against each 
antibody. 

Western immunoblots were performed on SR and TT pro- 
teins resolved by SDS PAGE and subjected to indirect im- 
munoenzymic staining with anti-chicken SR Ca-ATPase 
antibody (Fig. 4 a) using alkaline-phosphatase conjugated 
to rabbit anti-chicken IgG. As expected, these antibodies 
reacted specifically with the Ca-ATPase band of SR Laemmli 
gels (lane 2). Importantly, the TT 102-kD protein cross- 
reacted with the anti-Ca-ATPase antibody (lane 1). The 
binding of anti-chicken SR Ca-ATPase antibody to the SR 
Ca-ATPase did not inhibit the Ca-ATPase activity, as re- 
ported previously by others (11, 44). The extent of antibody 

Figure 3. Stains All staining of 
SR and TT proteins resolved 
in a 12 % Laemmli gel as de- 
scribed by Campbell et al. (7). 
Approximately 30 lxg of SR 
(lane 1 ) and TT (lane 2) pro- 
tein were loaded on each lane. 
The SR, but not the TT, mem- 
brane shows the presence of 
the 55-kD calsequestrin that 
characteristically stains rneta- 
chromatically with the dye 
(arrow). 

Figure 4. Immunological cross-reactivity of SR and TT proteins 
with anti-chicken SR Ca-ATPase antibody. (a) Western immuno- 
blot of TT (lane 1) and SR (lane 2) proteins resolved by 10% slab 
gel electrophoresis was carried out under the general conditions of 
Towbin et al. (45) as modified by Biral et al. (5). Membrane pro- 
teins were resolved in a 10% Laemmli gel and then transferred to 
a nitrocellulose sheet. The sheet was incubated with anti-chicken 
SR Ca-ATPase antibody (5 I.tg/ml) and then with alkaline phospha- 
tase conjugated to rabbit anti-chicken IgG for immunoenzymic 
staining. Approximately 2.5 ttg of SR and 12 ~tg of TT protein were 
loaded on each lane. (b) Two-step competitive ELISA was carried 
out as described by Damiani et al. (9). In the first step, a solution 
of anti-chicken SR Ca-ATPase antibody (20 ltg/ml) was prein- 
cubated overnight with an equal volume of either SR or TT vesicles 
at the concentrations of 102-kD protein indicated on the abscissa. 
The second step was performed by incubating aliquots (0.2 ml) of 
the antigen-antibody solutions in microtiter wells coated with intact 
chicken SR vesicles (5 ttg/ml). The 102-kD protein content of SR 
and "IT was estimated by densitometry of Coomassie Blue-stained 
gels. Each point is the average value of duplicate determination. 
(Solid circle) SR Ca-ATPase; (open circle) TT 102-kD protein. 
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cross-reactivity between the SR Ca-ATPase and the putative 
102-kD TT Mg-ATPase was further evaluated by the two-step 
competitive ELISA (4, 9, 39, 47) in which we quantified the 
binding of anti-chicken SR Ca-ATPase antibodies to microti- 
ter wells precoated with intact SR vesicles after preincuba- 
tion with TT vesicles (Fig. 4 b, see Materials and Methods 
for details). The amount of 102-kD TT protein required for 
50 % inhibition of antibody binding to the adsorbed SR vesi- 
cles was virtually identical to the amount of SR 102-kD Ca- 
ATPase protein required for the same level of inhibition. 
These results indicated that, quantitatively, the anti Ca- 
ATPase antibody could not distinguish between the two 102- 
kD proteins. In fact, in order for the above results to be inter- 
preted on the basis of contaminating SR Ca-ATPase, the level 
of contamination would have to be far in excess of the 3 % 
estimated as the highest possible level of contamination. 

We also tested our chicken SR and TT membranes for 
cross-reactivity to antibodies developed against the SR Ca- 
ATPase of rabbit fast-twitch muscle, whose specificity has 
been previously characterized (3, 4, 9, 39, 40, 47). As shown 
by the Western immunoblot in Fig. 5, the anti-rabbit SR Ca- 
ATPase antibody reacted with the chicken SR 102-kD Ca- 
ATPase (lane 2) and with the TT 102-kD protein (lane 4). 
In agreement with the finding that both the SDS-denatured 
SR Ca-ATPase and the TT Mg-ATPase were cross-reactive 
in Western immunoblots, intact TT vesicles isolated from 
rabbit (Fig. 6 a) as well as chicken (Fig. 6 b) skeletal muscle 
exhibited very high levels of cross-reactivity with anti-rabbit 
SR Ca-ATPase antibody in the one-step ELISA. 

Polyclonal antibodies were also raised against the electro- 
eluted putative TT Mg-ATPase purified from TT prepa- 
rations that were devoid of SR contamination (i.e., no 
Ca-ATPase activity and lack of evidence of SR proteins in 
one- or two-dimensional slab gel electrophoresis, see 
above). Two-dimensional slab gels of the eluted Mg-ATPase 
displayed only one protein in the 102-kD region (data not 

Figure 5. Immunoblot of SR 
and TT proteins using anti- 
rabbit SR Ca-ATPase anti- 
body. The immunoenzymic 
staining was carried out as in 
Fig. 4 a, with anti-rabbit SR 
Ca-ATPase antibody (1(3 txg/ 
ml). Approximately 20 Ixg of 
protein were loaded on each 
lane. Lane 1, Coomassie Blue- 
stained chicken SR; lane 2, 
immunoblot of SR; lane 3, 
Coomassie Blue-stained chick- 
en TT; lane 4, immunoblot of 
TT. 
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Figure 6. Immunological cross-reactivity of rabbit and chicken SR 
and TT vesicles with anti-rabbit SR Ca-ATPase antibody. One-step 
ELISAs of rabbit (a) and chicken (b) SR (solid circle, open circle) 
and TT (solid square, open square) vesicles were carded out in mi- 
crotiter wells coated with SR or TT vesicles at a protein concentra- 
tion of 5 ~tg/ml (SR) and of 10 Ixg/ml (TT), respectively. The bind- 
ing of anti-rabbit SR Ca-ATPase antibody (ABS) to microtiter wells 
precoated with either SR or TT vesicles was used at the concentra- 
tions indicated on the abscissa. 

shown), confirming the results shown in Fig. 2, which indi- 
cated that only the more acidic TT Mg-ATPase was present 
in the TT fraction. Western immunoblots were performed on 
electrophoretically resolved T r  proteins stained with anti- 
chicken TT 102-kD protein antibody. This antibody reacted 
only to the TT 102-kD protein (Fig. 7 a). The specificity of 
the anti-chicken TT 102-kD protein antibody was further 
demonstrated by the ELISA shown in Fig. 7 b. These data 
show that the antibody was capable of binding to intact TT 
vesicles and, importantly, that the antibody could not cross- 
react with vesiculated SR membranes. 

This finding was supported by indirect immunofluores- 
cence micrographs of cryostat-sectioned muscle, which 
showed that anti-chicken TT 102-kD protein antibodies 
could be localized only in the I bands (where the T tubules 
are found) and not in the SR-rich A band region (Fig. 8). 
Further, anti-Mg-ATPase antibody staining above back- 
ground levels was not observed on the SL. 

The specificity of the antibody was further demonstrated 
by the data shown in Fig. 7 c, which indicated that the Mg- 
ATPase activity of vesiculated TT membranes could be sig- 
hificantly (>55%) inhibited by anti-chicken TT 102-kD 
protein antibodies. Although inhibition of ATPase activity 
beyond 55 % was seen when higher antibody concentrations 
were used, higher ratios of antibody to protein (>25 pg anti- 
body/Itg microsomal protein) were not routinely used due to 
concerns that paradoxical postzonal effects might occur in 
this range. The TT Mg-ATPase activity was not inhibited by 
control rabbit IgG or by the PBS used in the antibody solu- 
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Figure 7. Characterization of 
anti-chicken TT 102-kD pro- 
tein antibody. (a) Immunoblot 
of TT protein using anti--chick- 
en TT 102-kD protein anti- 
body (20 ~tg/ml) as described 
in Fig. 4 a. Approximately 
30 ~tg of TF protein were used. 
(b) One-step ELISA of SR 
(solid circle) and TT (open 
circle) vesicles was carried 
out in microtiter wells coated 
with antigen at a protein con- 
centration of 5 o.g/ml, using 
anti-chicken TT 102-kD pro- 
tein antibody at the concentra- 
tions indicated on the abscis- 
sa. (c) Inhibition of the TT 
Mg-ATPase activity by anti- 
chicken TT 102-kD antibody. 
Approximately 8 I.tg of TT 
protein were preincubated 
with anti-chicken TT 102-kD 
protein antibodies for 10 min 

at 37°C. The vesicles were then diluted 40-fold into the ATPase medium (1 ml), and the rate of ATP hydrolysis was measured at 25°C, 
pH 7.0. The values are expressed as percentages of the Mg-ATPase activities of control samples preincubated with preimmune IgG or PBS 
under the same conditions. 

tion, indicating that the observed antibody inhibition of Mg- 
ATPase activity was specific. 

In a previous study (34), we demonstrated that the TT 
102-kD protein (used here as the immunogen) was a glyco- 
protein representing 80% of the integral membrane protein 
of  TT. This was based on the labeling of  the 102-kD protein 
with ~25I-wheat germ agglutinin and t2sI-Con A in autoradio- 
grams of SDS PAGE-resolved proteins. The data in Fig. 9 
a confirmed that the 102-kD protein is the major Con 
A-binding glycoprotein of  TT membranes. In addition, no 

contaminating 55-kD calsequestrin (which also reacts with 
Con A, reference 10) was present in our TT fractions, sup- 
porting other evidence (see above) indicating that the native 
TT fractions were not contaminated by SR vesicles. This re- 
sult raises the possibility that the binding of Con A to native 
TT vesicles previously absorbed to microtiter wells (Fig. 9 
b) was due to Con A binding to glycosylated regions of the 
TT Mg-ATPase that were likely to be exposed on the surfaces 
of  the TT vesicles. We have previously reported that Con A 
substantially stimulated the Mg-ATPase activity of  chicken 

Figure 8. Indirect immunoflu- 
orescence localization of anti- 
Mg-ATPase antibody. Com- 
posite mierographs of phase 
contrast and fluorescence im- 
ages of frozen chicken breast 
muscle sections (1.0 t~m). Mi- 
crograpbs of identical regions 
of a tissue section were cut 
in half, and adjacent halves 
of different micrographs were 
mounted in register with each 
half using the nucleus (n) and 
other structural features as 
landmarks. Top half of each 
composite is the fluorescence 
image, the bottom half is the 
phase image. (a) Texas red-la- 
beled anti-TF Mg-ATPase IgG. 
Thin arrows denote Z lines of 

the I bands. Note the punctate nature of the label and its registry with the I bands of the phase-contrast image. Thick arrows show the 
location of the cell surface and the absence of Mg-ATPase localization on the SL. The prominent fluorescence exhibited by the nucleus 
in a is only a consequence of cross-reactivity to the second antibody, since the nucleus was the only structural feature seen in controls where 
the first antibody was omitted. (b) Fluorescein-labeled antimyosin (monoelonal antibody MF20). Characteristics of the antimyosin antibody 
have been described in reference 1. Thin arrows denote the central region of the A bands that react with the antibody. Note that the A 
band labeling is shifted one-half sarcomere relative to the antigenic sites reactive with the anti-Mg-ATPase. Bar, 10 Ixm. 
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Figure 9. Binding of Con A to 
TT. (a) TT proteins were re- 
solved by electrophoresis and 
then transferred to a nitrocel- 
lulose sheet. The sheet was 
incubated with Con A biotin 
(1.0 Ixg/ml) followed by avi- 
din-alkaline phosphatase to 
identify Con A-binding gly- 
coproteins. Approximately 5 
I~g of protein was loaded on 
the gel. (b) Binding of bio- 
tinylated Con A to TT mem- 
branes was carried out in mi- 
crotiter wells coated with TT 
vesicles at a protein concen- 
tration of 5 ~g/ml. Con A bio- 
tin was used at the concentra- 
tions indicated on the abscissa, 
followed by staining with 
avidin-alkaline phosphatase 
at 1:2000 dilution. (c) Effect 

of Con A on anti-chicken TT 102-kD protein antibody binding to TT membranes. Microtiter wells were coated with TT vesicles at a protein 
concentration of 5 [tg/ml, and antibody binding was assessed in the range of concentrations indicated on the abscissa. The dotted line 
represents an experiment in which microtiter wells were incubated with Con A (10 p.g/ml) for 30 min at 37°C followed by 1 mM a-methyl- 
mannoside for 30 min at 37°C before introduction of anti-Mg-ATPase antibody. Controls were incubated in the same conditions with PBS 
instead of anti-Mg-ATPase antibody. 

TT (31, 38). The data in Table I demonstrate that Con A 
could stimulate (twofold at 25°C) the Mg-ATPase activity of 
native TT vesicles. Therefore, it is possible that Con A acti- 
vation of enzymatic activity was exerted through binding of 
the lectin to the exposed glycosylated regions of the TT Mg- 
ATPase. 

Because it is known that the carbohydrate moieties of pro- 
teins can greatly influence their immunogenicity, some of the 
anti-chicken TT 102-kD protein antibodies were probably 
elicited by glycosylated epitopes. This possibility was sup- 
ported in an experiment shown in Fig. 9, which demonstrated 
that the adding of Con A to microtiter wells preadsorbed 
with TT membranes resulted in a 50% reduction of maximal 
antibody binding to the TT (Fig. 9 c). In addition, Table I 
shows that the inhibitory effect of anti-chicken TT 102-kD 
protein antibody on the Mg-ATPase activity could be re- 
moved by preincubating TT vesicles with Con A, and, 
reciprocally, the ATPase stimulating effect of Con A could 
be prevented by preincubating the TT vesicles with anti- 
chicken TT 102-kD protein antibody. 

Amino Acid Composition and One-dimensional 
Peptide Mapping of the SR Ca-ATPase and the Putative 
TT Mg-ATPase 

Peptide maps and subsequent immunoblots of the peptide 
fragments were used to probe common structural elements 
between the two ATPase proteins. Partial digestion of the SR 
Ca-ATPase and the TT Mg-ATPase were performed accord- 
ing to the procedures of Cleveland et al. (8) using the proteo- 
lytic enzymes S. aureus V8 and chymotrypsin. As Fig. 10 
shows, the two proteins possessed peptide fragmentation pat- 
terns that were very similar, regardless of the protease used. 
Western immunoblots of the peptide maps stained with anti- 
chicken SR Ca-ATPase demonstrated that the antigenic de- 
terminants responsible for the immunological cross-reac- 
tivity of the two proteins were distributed among the same 
proteolytic fragments (data not shown). In other data not 
shown, limited (2-5 min) tryptic fragmentation patterns of 
the SR Ca-ATPase and the TT Mg-ATPase were also identi- 
cal and reverse-phase HPLC of V8 fragmentation patterns 

Table L Effects of Concanavalin A and Anti-Chicken 17"102-kD Protein Antibody on the Mg-ATPase Activity 
of Transverse Tubules 

Order of addition 
Mg-ATPase Percent of 

First Second activity control 

ltmol/h per mg 

None 188 100 
Con A 359 191 
Anti-TT Mg-ATPase 83 44 
Anti-TT Mg-ATPase Con A 132 70 
Con A Anti-TT Mg-ATPase 372 198 

4 p,g of TT membranes were incubated for 10 min at 37°C with the listed additions. 50 Ixg of anti-chicken TT 102-kD antibody and 20 p,g of Con A were used 
where indicated. The samples were 50-fold diluted in the Mg-ATPase activity medium, and the Mg-ATPase activity was measured as described in Materials and 
Methods. 
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Figure 10. One-dimensional peptide mapping was performed by the 
procedure of Cleveland et al. (8) by using the 102-kD protein bands 
excised from 10 % polyacrylamide preparative slab gels. Digestions 
were carried out with 5 p.g of either S. aureus V8 protease (lanes 
1 and 2), or chymotrypsin (lanes 3 and 4), and the protein frag- 
ments were resolved in a 15-20% polyacrylamide linear gradient 
gel and then subsequently stained with silver nitrate. Approxi- 
mately 10 ktg of protein were loaded on each lane. Half of each slab 
was stained with silver nitrate. Lanes I and 3, SR Ca-ATPase; lanes 
2 and 3, TT 102-kD Mg-ATPase protein. Arrows indicate the posi- 
tion of each protease. 

showed that the two ATPases share many common peptide 
fragments. 

Amino acid composition analysis was carried out on the 
SR Ca-ATPase and TT Mg-ATPase proteins electrophoreti- 
cally purified from chicken skeletal muscle. As shown in Ta- 
ble II, the amino acid compositions of the two ATPases were 
quite similar, especially with regard to their contents of 
charged residues. Aspartate and glutamate accounted for 19.6 
and 23.9% of the total residues for chicken Ca-ATPase and 
Mg-ATPase, respectively, while the contents of basic amino 
acids were 12.2 and 14.7%. The Ca-ATPase contained 33.8% 
total charged amino acids while the Mg-ATPase contained 
38.6 %. These values were comparable to the values reported 
by others (23, 27, 29) for purified rabbit SR Ca-ATPase, but 

Table II. Amino Acid Composition 

Chicken skeletal muscle Rabbit skeletal muscle 

Mg-ATPase* Ca-ATPase* Ca-ATPase~: 

Lys 8.7 7.3 5.8 
His 1.7 2.5 1.5 
Arg 4.3 4.4 4.8 
Asp 11.2 9.8 9.7 
Ser 6.3 3.6 5.5 
Thr 4.8 6.1 5.5 
Glu 12.7 9.8 12.2 
Pro 4.8 4.9 5.1 
Gly 11.7 14.7 8.5 
Ala 9.7 9.5 9.8 
Half  Cys nd§ 1.3 1.4 
Val 7.6 10.6 7.6 
Met 1.0 1.1 1.4 
Ile 5.3 5.4 5.6 
Leu 8.7 8~2 9~8 
Tyr  nd§ 2.2 2.2 
Phe 5.3 5.2 3.9 

Total charged 38.6 33.8 34.0 

* Values are percent total amino acids and 
(see Materials and Methods for details). 
:~ Reference 27. 
§ nd, not detected. 

are averages of two experiments 

were quite different from the 45.4% value of total charged 
residues reported previously (10) for the peripheral SR mem- 
brane protein, calsequestrin. 

Discussion 

The aim of this study was to identify the protein responsible 
for the TT Mg-ATPase activity of chicken skeletal muscle, 
and, further, to explore the structural relationship between 
the TT 102-kD protein and the closely related 102-kD SR Ca- 
ATPase. The results reported here definitively identify the 
102-kD glycoprotein of TT membranes as the Mg-ATPase. 
The most significant evidence for this is the finding that poly- 
clonai antibodies developed against the purified 102-kD TT 
glycoprotein not only substantially inhibit the Mg-ATPase 
activity of TT vesicles but also react with the 102-kD im- 
munogen as seen in immunoblots. Further, the anti-chicken 
TT 102-kD protein antibodies are able to prevent the charac- 
teristic Con A stimulation of the TT Mg-ATPase activity. 
Con A selectively binds to the 102-kD protein of TT (34, and 
results reported here); and, conversely, Con A prevents the 
inhibitory effect of the anti-chicken TT 102-kD protein on 
the Mg-ATPase activity, apparently by preventing the bind- 
ing of antibodies to the TT 102-kD protein. 

We also provide evidence that the TT Mg-ATPase and the 
SR Ca-ATPase can be distinguished by their distinct pI prop- 
erties and by their antigenic differences. The TT 102-kD gly- 
coprotein has a more acidic isoelectric point than the SR 
Ca-ATPase when resolved on two-dimensional isoelectric 
focusing gels, probably as a result of the carbohydrate con- 
tent of the TT protein. In addition, antibodies developed 
against the purified 102-kD TT glycoprotein do not recog- 
nize intact SR vesicles in the ELISA. These data are consis- 
tent with our indirect immunofluorescence data, which lo- 
calize anti-chicken 102-kD protein antibodies exclusively in 
the I band regions of chicken skeletal muscle where the T 
tubules are located and not in the SR-rich A band regions. 
In addition, anti-chicken TT Mg-ATPase antibody does not 
inhibit the Ca-ATPase activity of SR vesicles (data not 
shown). 

The levels of possible cross-contamination in the SR and 
TT fractions were assessed to ensure that the two 102-kD 
proteins used here as antigens are distinct entities. Conven- 
tional electrophoretic techniques set the level of SR Ca- 
ATPase contamination in the TT fraction at <3.4 %. How- 
ever, the lack of a 55-kD calsequestrin protein band reacting 
after Stains All treatment, the lack of Con A binding in that 
region, and the inability of anti-calsequestrin antibodies to 
identify chicken calsequestrin in Western immunoblots of 
resolved TT membrane proteins suggest an even lower value 
for SR contamination. The Western immunoblot method is 
capable of detecting picogram quantities of SR proteins, and 
the Stains All method is sensitive in the 100-ng range (sig- 
nificantly less than 1% of the total protein in a typical gel). 
These findings agree with freeze-fracture stereological data, 
which reveal less than 1% SR contamination in native TT 
fractions that are subjected to two multistep sucrose gra- 
dients and calcium-oxalate loading steps (37). Also, we are 
unable to detect the presence of Ca-ATPase activity in the TT 
fraction. All of the above data support the position that the 
limit of SR Ca-ATPase contamination in the 102-kD region 
of the TT Mg-ATPase could be '~1% at most. 
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Our data also rule out the possibility that the 102-kD TT 
glycoprotein is a calcium-independent form of the SR Ca- 
ATPase that has been artifactually inactivated or modified 
during membrane preparation. We have shown that the 102- 
kD Mg-ATPase is localized exclusively in the TT-rich I band 
region of the muscle cell and can be isolated in a membrane 
vesicle fraction that can be physically separated from SR, 
a fraction that has both distinctly different morphological 
characteristics than SR (e.g., low density of 9-nm protein 
particles, see reference 41) and a distinctly different lipid 
composition than SR (especially with regard to cholesterol 
levels that are threefold higher than in SL vesicles and 
fivefold higher than in SR, see reference 43). In order for the 
102-kD TT protein to represent an artifactual calcium- 
independent form of the SR Ca-ATPase, one would most cer- 
tainly not expect it to be glycosylated or to possess such 
unique catalytic properties as the prominent ability to be 
stimulated by Con A, the inability to be inhibited by FITC 
and vanadate, and a lack ofp-nitrophenylphosphatase activ- 
ity (32). 

It is unlikely that the TT 102-kD glycoprotein band is sub- 
stantially contaminated by the alpha subunit of the Na,K- 
ATPase, since anti-TT 102-kD antibodies do not cross-react 
with purified Na,K-ATPase in Western immunoblots; fur- 
ther, the Na,K-ATPase does not possess a prominent Con 
A-reactive glycoprotein in the 102-kD range. Of interest, the 
anti-chicken TT 102-kD antibodies do not cross-react in the 
ELISA with beef heart submitochondrial particles (data not 
shown), and the TT Mg-ATPase is not inhibited significantly 
by oligomycin and azide (37). 

We conclude that the 102-kD glycoprotein band is at least 
99% homogeneous and that the band does not contain ap- 
preciable contamination from the SR Ca-ATPase, the Na,K- 
ATPase subunits, or ATPases from other sources. Thus, the 
TT Mg-ATPase could be a new member of the class of the 
extramitochondrial cation-ATPases, including the SR Ca- 
ATPase, the plasma membrane Na,K-ATPase, and the K,H- 
ATPase of the gastric mucosa. These ATPases share struc- 
tural properties such as the presence of a polypeptide of 
~100 kD (17) and a high degree of structural homology (13, 
25, 42). A possible relationship to ATPases in lysosomes, 
clathrin-coated vesicles, and secretory granules also exists. 

We demonstrate that a high degree of structural homology 
exists between the 102-kD SR Ca-ATPase and the 102-kD TT 
Mg-ATPase. This conclusion is based on the following. (a) 
Polyclonal antibodies developed against the SR Ca-ATPases 
of chicken and rabbit cross-react with the 102-kD TT Mg- 
ATPase protein band in Western immunoblots. (b) The anti- 
SR Ca-ATPase antibodies cross-react against antigenic de- 
terminants exposed to the surfaces of the intact TT vesicles 
and cannot distinguish SR from TT membranes in the 
ELISA. (c) The two ATPases display very similar amino acid 
compositions and peptide fragmentation patterns, and they 
share many common immunoreactive peptide fragments on 
immunoblots. The inability of the anti-chicken TT Mg- 
ATPase antibody to recognize the SR Ca-ATPase in the 
membrane-bound form of the ELISA immunoassay is not 
surprising considering that the antibodies are likely to react 
with carbohydrate moieties of the Mg-ATPase protein that 
are not present in the SR Ca-ATPase. 

Our finding that the two ATPases share many structural 
domains is not surprising in view of recent reports demon- 

strating that a significant degree of structural homology ex- 
ists between the SR Ca-ATPase and other cation-transport 
ATPases. For example, Hesse et al. (13) reported amino acid 
sequence homology between three fragments of the SR Ca- 
ATPase and the KdpB potassium transport protein of Esche- 
richia coli. One of the homologies was found in the region 
of the phosphorylated aspartate residue of the Ca-ATPase. 
Further, the amino acid sequence constructed from cDNA 
fragments of rabbit SR Ca-ATPase (25) shows several re- 
gions of homology with the sequence obtained from the 
cloned Na,K-ATPase alpha subunit (42). In addition, mono- 
clonal antibodies produced against the SR Ca-ATPase cross- 
react with common epitopes on several calcium-binding 
proteins and common epitopes on the 102-kD Ca-ATPases 
obtained from a wide variety of tissues besides muscle (49). 

However, not all cation-transport ATPases and calcium- 
binding proteins share cross-reactive epitopes. For example, 
antibodies raised against a putative lysosomal proton pump 
protein cross-react to the K,H-ATPase of gastric mucosa, but 
not to the SR Ca-ATPase or the Na,K-ATPase (35). Also, our 
anti-rabbit SR Ca-ATPase antibody does not cross-react in 
the Western immunoblot with the Na,K-ATPase isolated 
from rabbit kidney (data not shown). DeFoor et al. (11) 
provided immunological evidence that cardiac and skeletal 
SR Ca-ATPases could be distinguished, and we have shown 
that the SR Ca-ATPase of fast-twitch and slow-twitch fibers 
is immunologically distinct in both rabbit (9, 39) and hu- 
man skeletal muscle (40). Because, in the present study, we 
have demonstrated that antibodies raised against the SR 
Ca-ATPase purified from either rabbit or chicken skeletal 
muscle are both highly cross-reactive to the chicken TT Mg- 
ATPase and that the anti Ca-ATPase antibodies cannot distin- 
guish between the chicken Ca- and Mg-ATPases in the 
ELISA, the SR Ca-ATPase may be more structurally related 
to the TT Mg-ATPase than it is to the Ca-ATPases of other 
species or of different fiber types within the same species. 

The physiological role of the SR Ca-ATPase is well estab- 
lished in its support of ATP-energized calcium transport dur- 
ing muscle relaxation. The mechanism by which calcium is 
released from storage sites within the SR lumen has not as 
yet been elucidated, but it is presumed to be dependent upon 
the intimate association between the SR and the TT mem- 
brane system. Thus, structural and functional details of the 
TT membranes may be prerequisite to understanding excita- 
tion-contraction coupling mechanisms. Structural homolo- 
gies between ATPases may indicate, for example, that the 
two proteins have similar transport functions, as was sug- 
gested for the proton pumping ATPases of gastric mucosa 
and lysosomes (35). 

The most prominent enzymatic activity associated with 
isolated TT membranes is the Mg-ATPase, which can cleave 
ATP at a rate approaching 17 ~tmol/min per mg in the par- 
tially purified form (34). It is not known what role, if any, 
the TT Mg-ATPase plays in excitation-contraction coupling; 
however, it is quite interesting not only that the Mg-ATPase 
is structurally related to the Ca-ATPase, but that the Mg- 
ATPase displays such significantly different catalytic proper- 
ties compared with the Ca-ATPase. Although the TT Mg- 
ATPase is glycosylated, has a more acidic isoelectric point 
(34), and is embedded in a substantially different lipid envi- 
ronment compared with the SR Ca-ATPase (15, 20, 43), it is 
possible that the Mg-ATPase and the SR Ca-ATPase are 
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products of the same gene or gene family, and that, as a result 
of selective co- or posttranslational processing, the Mg- 
ATPase is routed into the T tubules rather than into the SR 
membrane during membrane assembly. Further, as a result 
of the glycosylation itself, or because of the different lipid 
environment in which it resides, the Mg-ATPase may exhibit 
completely different catalytic properties. However, in the ab- 
sence of amino acid sequence information, our data are 
equally consistent with the possibility that the two ATPases 
are different gene products that merely enjoy a high degree 
of structural homology. Similarities in amino acid compo- 
sition between the two ATPases should not be taken by it- 
self as indicative of common structural elements. However, 
because the amino acid composition data is complemented 
by similarities in peptide maps and immunological cross- 
reactivity when anti-Ca-ATPase antibodies are used, it is 
likely that the two ATPases enjoy considerable structural ho- 
mology. 
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