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Abstract

Age-related macular degeneration (AMD) is the principal cause of blindness in developed countries, and its prevalence will increase to
288 million people in 2040. Therefore, automated grading and prediction methods can be highly beneficial for recognizing susceptible
subjects to late-AMD and enabling clinicians to start preventive actions for them. Clinically, AMD severity is quantified by Color
Fundus Photographs (CFP) of the retina, and many machine-learning-based methods are proposed for grading AMD severity. However,
few models were developed to predict the longitudinal progression status, i.e. predicting future late-AMD risk based on the current
CFP, which is more clinically interesting. In this paper, we propose a new deep-learning-based classification model (LONGL-Net) that
can simultaneously grade the current CFP and predict the longitudinal outcome, i.e. whether the subject will be in late-AMD in the
future time-point. We design a new temporal-correlation-structure-guided Generative Adversarial Network model that learns the
interrelations of temporal changes in CFPs in consecutive time-points and provides interpretability for the classifier’s decisions by
forecasting AMD symptoms in the future CFPs. We used about 30,000 CFP images from 4,628 participants in the Age-Related Eye
Disease Study. Our classifier showed average 0.905 (95% CI: 0.886–0.922) AUC and 0.762 (95% CI: 0.733–0.792) accuracy on the 3-class
classification problem of simultaneously grading current time-point’s AMD condition and predicting late AMD progression of subjects
in the future time-point. We further validated our model on the UK Biobank dataset, where our model showed average 0.905 accuracy
and 0.797 sensitivity in grading 300 CFP images.
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Significance Statement:

We develop a framework for automated grading and future prediction for age-related macular degeneration (AMD) severity based
on current visit’s Color Fundus Photograph (CFP). We aim to answer 2 main questions in clinical practice regarding AMD severity
that are “what is the current condition of a subject?” and “how will their condition change until their next visit?” simultaneously
in our classification model. We also develop a Generative Adversarial Network model capable of predicting next visits’ CFPs based
on the one for the current visit, which can provide interpretability for the classifier’s predictions. Our framework can get readily
used for other diseases as well, provided that they have several stages and their main diagnostic modality be image data.

Introduction
Age-related macular degeneration (AMD) is a neurodegenerative
irreversible disease that leads to gradual vision loss due to dys-
function of the central retina and its supporting elements (1, 2).
AMD is the leading cause of blindness in developed countries and
is responsible for 9% of visual loss in the world. (3, 4) Both en-
vironmental and genetic factors have been shown to affect the
AMD progression (5–12), and 288 million people are estimated to
develop AMD globally in 2040 (13), which will impose a large

burden on eye service providers. It is both time-consuming and
expensive for image specialists or physicians to grade images for
the diagnostic purpose. Therefore, developing automated grading
and predictive models for facilitating AMD diagnosis has great po-
tential in clinic practice, particularly in the low-resource areas.

AMD severity grading is primarily done by examining color fun-
dus photographs (CFP) by ophthalmologists. A total of 3 stages
are defined for AMD: early, intermediate, and late (advanced).
Early and intermediated AMD includes the presence of drusen of
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varying size and most patients are asymptomatic. Severe visual
loss happens in the late AMD stage that appears in 2 forms: (1)
choroidal neovascularization (NV or “Wet” AMD), in which leaky
blood vessels growth harms the outer retina and photoreceptor
cells that leads to visual loss (14, 15). (2) Geographic atrophy (GA
or “dry” AMD) includes the loss of retinal pigment epithelium
(RPE) and photoreceptors, and hence, decrease in sensitivity of the
retina to light stimuli (16, 17). Late AMD may develop as one or a
combination of these 2 late forms.

Deep-learning (DL)-based methods have achieved promising
results in medical research, and they have been leveraged in a
wide range of modalities such as AMD severity grading, Alzheimer
disease degeneration prediction using neuroimaging data, longi-
tudinal studies with MRI scans for behavioral predictions, can-
cer outcome prediction, diagnosis of neurological emergencies,
drug discovery, cell type identification, and so on (18–26). Their
success in automatic medical image classification and segmen-
tation tasks mainly relies on 2 aspects: (1) Convolutional Neural
Network (CNN) architectures for feature extraction. In traditional
machine-learning algorithms, the input features to the classifier
were usually determined by domain experts such as clinicians or
by heuristic methods. In contrast to traditional machine-learning
algorithms that the input features to the classifier are usually de-
termined by domain experts (e.g. clinicians) or heuristic methods,
CNN includes a stack of convolution layers as its feature extractor
followed by a classifier where the weights of the convolution lay-
ers and the classifier are “learned” during training by adjusting the
weights to minimizing a loss function. In other words, CNN learns
useful features for its classification task from the training data,
and it is not forced to use some predetermined handmade fea-
tures for classification. (2) Availability of large-scale datasets pro-
vided by long-term studies such as Age-Related Eye Disease Study
(AREDS) and UK Biobank (UKB) image datasets (16, 27–29). These
datasets with accurate clinical labels enable CNN to achieve high
accuracy after extensive training.

In recent years, several papers have proposed DL methods us-
ing color fundus images for prediction. Some have focused on de-
veloping a model that determines the AMD status (w/o late AMD),
AMD severity score, probability of GA, or probability of neovascu-
lar AMD development at each time-point (visit) based on its fun-
dus images (17, 18, 30–33). These methods can provide an accu-
rate grading tool. Nevertheless, they are not capable of predicting
progression to advanced AMD, which is more clinically desirable
because it enables clinicians to start preventive actions such as
prescribing AREDS nutritional supplements to make the progres-
sion of vulnerable subjects to late AMD slow, considering that late
AMD is currently incurable and irreversible. The recent 2 studies
(15, 34) have used fundus images w/o AMD-associated indepen-
dent genetic variants of the subjects to predict whether the AMD
progression time for them will be longer than a predetermined
duration or not (2–7 years in (15) and 1–5 years in (34)). Bridge
et al. (35), inspired by advances in sequence modeling architec-
tures (36, 37), have developed a model which uses a sequence
of longitudinal images to predict the AMD risk of the subject in
the future. The main challenge for using sequence models, es-
pecially Recurrent Neural Networks (RNN) such as Long Short-
Term Memory (LSTM) (37) and Gated Recurrent Units (GRU) (36),
in longitudinal studies for future prediction is that these models
assume that their input is in a time-series format where the gaps
between their successive inputs in different sample sequences are
equal such as in sentences. However, it is common in longitudinal
datasets to have heterogeneity in the gaps between consecutive
visits of participants and the patterns of visit times of different

participants, which makes the longitudinal datasets different
from the time-series data. Bridge et al. (35) have proposed interval
scaling to alleviate this problem. Nonetheless, their method needs
at least 2 or 3 previous time-point images to predict the condition
in future time-points with high performance that is not feasible
for the first-time visiting subjects.

In this paper, we propose a new DL-based model, LONGL-Net,
to tackle the challenges of both the paradigms described above
and unify their strengths. At first, we train a classification model
to simultaneously predict (1) current time-point’s AMD condition
(binary diagnosis: advanced or not advanced) as well as (2) the
subject’s disease condition (advanced or not advanced) in the fu-
ture (given an inquired time-point; e.g. 3 years later) based on the
fundus image at the current time. These 2 questions are the most
important clinical questions during the patient’s visit after col-
lecting the fundus image. To address these 2 prediction tasks, we
develop a new temporal-correlation-structure guided Generative
Adversarial Network (GAN) model capable of learning the corre-
lation and pattern of AMD progression between the prospectively
collected images at each study intervals having distinct AMD tra-
jectories in the training data. This model can examine the cur-
rent time-point’s fundus image and perform longitudinal predic-
tions for the future time-points’ fundus images based on it. The
predicted images can provide visualization interpretability for the
classification model’s decision for ophthalmologists by predicting
how important signs of AMD such as drusen size or pigmentary
abnormalities severity of the subjects will be in the future time-
points. We should note that the difference between our model and
the one proposed in (15) is twofold: (1) Our model learns the tem-
poral interrelations between the images at baseline and future
time-point, and utilizes these knowledge to enhance the longitu-
dinal outcome prediction. As a result, our model can predict the
fundus image at future time-point ((15) cannot do that) to sup-
port the decisions and make them interpretable. (2) Our model’s
prediction contains more clinical outcomes as it predicts the AMD
status of both the current time-point and the future one (i.e. the
longitudinal outcome). In other words, the problem that we ad-
dress is simultaneously grading the current time-point’s image
and predicting the future status, which is different from (15) that
only performs the latter. Our experiments demonstrate the effec-
tiveness of the classifier and GAN model both quantitatively and
qualitatively.

Methods
To predict a subject’s AMD condition in the future time-point, we
propose a classification model that takes the current time-point’s
fundus image as input and generates outputs: (1) current time-
point’s AMD severity condition as well as (2) a predicted AMD
condition for the given future time-point. We design a new GAN
model, which learns the interrelations of temporal changes be-
tween the images at successive time-points, and by doing so, it
will be competent to predict the future time-point’s eye fundus
image. This generated image can get examined by a physician to
prescribe necessary preventive actions and make the model inter-
pretable for ophthalmologists. We elaborate details of our model
in the following subsections.

Problem formulation
We denote the time gap between 2 visits (current time-point and
the future one) in a pair in the unit of 6 months with T. For
example, T = 4 means 2 years gap, and we assume that T is
chosen beforehand. For the ith participant, we represent the pair
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for time-points t j and t j+1 with Xi j = (xi, t j
, xi, t j+1

), where xi, t j
is

the first time-point’s fundus image and xi, t j+1
is the future one’s

image taken after T ∗ 6 months. We show the label of the pair
(xi, t j

, xi, t j+1
) with yi, j, and define 3 classes: (1) yi, j = 0 when nei-

ther xi, t j
nor xi, t j+1

is progressed to advanced AMD. (2) yi, j = 1
if xi, t j

has not progressed to advanced AMD but xi, t j+1
has pro-

gressed, and (3) yi, j = 2 if both xi, t j
and xi, t j+1

have progressed
to advanced AMD. As advanced AMD is currently irreversible and
untreatable, (xi, t j

, xi, t j+1
) : (Adv, not Adv) is not possible yet. The

goal is to use the first time-point available in each pair (xi, t j
) to

(1) predict the label yi, j, which according to the encoding system
that we used, determines AMD condition of the current time-point
and predicts the future time-point’s severity, and (2) estimate how
the fundus image of the future time-point xi, t j+1

will look like by
generating x′

i, t j+1
and training the model in such a way to make

x′
i, t j+1

and xi, t j+1
as close as possible.

Late AMD progression prediction
We train a model to not only classify the current time-point’s AMD
disease condition, but also predict the one for the future time-
point. By doing so, we can avoid the challenge of sequence mod-
els to handle time-series data with uneven gaps, because let us
assume there is a subject with available visit times {1, 4, 5, 8}. In
this case, the sequence model should handle a heterogeneous se-
quence with the gaps (3, 1, 3), but in our approach, we can train
a model to predict the condition of 4 time-points (2 years) later
readily by using the pairs {(1, 5), (4, 8)}.

We train the classification model using the “Weighted Cross
Entropy” loss function so that the model takes the imbalance of
the dataset into account by penalizing wrong predictions that the
model performs in the minority classes more than the ones in ma-
jority classes. We use the histogram of the training set to calculate
the class weights as follows:

Training Set Histogram : h = [h1, h2, . . . , hC] ,

h′ =
[

1
h1

, 1
h2

, . . . , 1
hC

]
= [

h′
1, h′

2, . . . , h′
C

]
,

w = 1∑N
j=1 h′

j

[h′
1, h′

2, . . . , h′
C] = [w1, w2, . . . , wC] .

where
C∑

j = 1
hj = 1 and C is the number of classes.

Finally, our classification loss function will be:

Lclass = −
N∑

i = 1

Ni∑
j = 1

(
C∑

k = 1

yi, j,kwklog
(
p i, j,k

)
),

where N is the number of training subjects, Ni is the number of
pairs available for the subject Xi, and C is the number of classes
which is 3 in our experiments. yi, j, k is the ′k′th element of the one-
hot encoding vector for the label yi, j for the pair (xi, t j

, xi, t j+1
), and

pi, j, k is the predicted probability of the model for the ′k′th class
for the input pair (xi, t j

, xi, t j+1
) of the subject Xi.

Predicting future time-point’s fundus image
DL models are called “black-box” models because the reason be-
hind their predictions is not transparent. We use a GAN model
to predict the future time-point’s fundus image based on the cur-
rent one. This prediction can be more useful in clinical settings
than saliency maps that highlight parts of the input image that
had the most influence on the classifier’s decision, because al-
though these methods may provide “where” the network has fo-
cused on, they cannot explain “how” these regions will be in the
future time-point. Moreover, a model with the ability to predict the

future time-point’s image enables us to estimate how the fundus
image will be in the time-points farther than just one step by re-
peatedly inputting its prediction in it several times.

Temporal correlation structure guided GAN
GAN (38) are the models that are capable of implicitly learning
the training data distribution and generating new “realistic look-
ing” data from the learned distribution. Originally, GAN models
were designed in a fashion that 2 players called “generator” and
“discriminator” compete with each other in a minimax game (38),
where the discriminator “D” distinguishes whether its input is a
“real” data or a “fake” one generated by the generator “G”, and the
generator attempts to produce realistic-looking samples from an
input noise to fool the discriminator. The objective function used
for training these 2 networks is as follows:

min
G

max
D

Ey∼p(y) [log (D (y))] + Ez∼q(z)[log (1 − D (G (z))] .

In this objective, p(y) is the unknown real training data distri-
bution that the generator attempts to learn, and q(z) is the input
noise distribution that is usually chosen to be Gaussian. “D” is the
discriminator function that outputs the probability of its input be-
ing “real,” and “G” is the generator function that maps the input
sampled noise into a fake sample. Intuitively, the discriminator
aims to output value “1” for the real inputs and “0” for the sam-
ples generated by the generator, thereby maximizing the objective.
On the other hand, the generator attempts to fool the discrimina-
tor to make its output value close to “1” for the generated sam-
ple, thereby minimizing the second term, and consequently, the
whole objective above. Ideally, as the training continues, the play-
ers reach Nash Equilibrium that the generator learns the real data
distribution, and the discriminator cannot distinguish between
the real and generated inputs.

We frame this problem as predicting the fundus image for a fu-
ture time-point with a predetermined distance to the current one,
using the current fundus image as described in section (problem
formulation) There are several characteristics in our problem that
the model should consider: (1) as the time distance between the
current time-point and the future one is not very large, we can
reasonably assume that the general structure of an eye such as
the location of the optic disc and major blood vessels in these im-
ages should not differ significantly, and only minor details such as
drusen size may temporally change. Therefore, we seek that the
generator takes the current time-point’s fundus image of a sub-
ject and generate a sample “conditioned” on it, i.e. consider the
input structure in the generation process. (2) In the training, we
are not only interested in encouraging the generator to produce a
realistic predicted image based on the first (current) time-point in-
put, but also there is a target image (second (future) time-point’s
fundus image in a training pair) that has certain semantic con-
nections (e.g. AMD features such as larger drusen size) to the in-
put image that we desire our generated image be as close to it as
possible concerning semantics. Therefore, we modify the original
GAN training procedure to make it suitable for our case. First, the
input image is passed to the generator to make generation condi-
tional, and to make it stochastic to cover different modes of the
output distribution, dropout (39) is used in the generator archi-
tecture (40) instead of inputting noise to the generator. Second,
both the first (current) time-point’s image and the generated im-
age are passed to the discriminator as a pair so that it can consider
whether they have required structural connections. For example,
it can recognize that the generated image is not true “pair im-
age” for the first time-point’s image, i.e. they are not from the joint
distribution of the first and second time-point images p(xtj , xtj+1 )
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if the optic disc being on the right side of one of them and left of
the other. Also, we use a patch-level discriminator for computa-
tional efficiency as suggested in the literature (40, 41). Finally, L1
reconstruction loss between the generated and target images is
added to the objective as it encourages preserving low-frequency
information (40) between the input and output of the generator.
Therefore, our GAN model’s training objective is as following:

min
G

max
D

E(
xt j

, xt j+1

)
∼p

(
xt j

, xt j+1

)
[
log

(
D

(
xtj , xtj+1

))]

+ E
xt j

∼p
(
xt j

)[log
(
1 − D

(
xtj , G

(
xtj

))]

+ λr[E(
xt j

, xt j+1

)
∼p

(
xt j

, xt j+1

)‖xtj+1 − G
(
xtj

)
‖1].

p(xtj , xtj+1 ) is the joint distribution of the first and second time-
point images in the training dataset, and xtj ∼ p(xtj ) is the
marginal distribution of the first time-point images. λr is a hyper-
parameter balancing the generation loss and the reconstruction
loss to be tuned. The training procedure as well as the architec-
tures of the proposed classification and GAN models are depicted
in Fig. 1.

Ethics
All the color fundus images and clinical phenotypes from
the AREDS dataset are available in dbGaP (accession num-
ber phs000001.v3.p1). The UKB dataset were obtained from the
UK Biobank Access Management System (application number
43252).

Experiments
In this section, we describe our experimental settings and the re-
sults of our classification and GAN models.

Data descriptions
We used 2 independent datasets in our experiments: The Na-
tional Eye Institute (NEI) AREDS (27) and the UKB (29). We used
the AREDS dataset for model training, validation, and testing
and treated the UKB dataset as an independent validation cohort
study to further test our framework.

AREDS
The National Eye Institute (NEI) AREDS (phs000001.v3.p1 in db-
GaP) is a large-scale, long-term prospective clinical trial of AMD
and age-related cataract. A total of 187,996 color fundus images
of 4,628 subjects and corresponding eye-level phenotypes are cov-
ered in AREDS. In total, 1 subject could have up to 13 years of
follow-up visits since the baseline. The stereoscopic fundus im-
ages were taken from 30◦ Zeiss cameras with different stereo-
scopic fields (28). In this work, we only focused on Field 2 (30◦

imaging field centered at the fovea), which centered 1/8–1/4 disk
diameter above the center of the macula. We selected Field 2
since this angle focuses on the most important region related
to AMD (macula) and holds the largest sample size in AREDS.
Meanwhile, for most eyes given any visit, both left-side and right-
side fundus of the stereoscopic pair images are available for
each eye.

We randomly picked all left-side images of the stereoscopic
pair of all eyes to avoid redundant information and boost train-
ing speed. The overall image quality of fundus images in AREDS
is acceptable for the following grading and research. Only 0.6% of
images of 48,998 eyes were ungradable through the first 10 years
of AREDS (28). The number of images used for training, validation,

and testing of different experiments is shown in Table S1 (Supple-
mentary Material S1).

UKB
The UKB is a population-scale database comprising genetic and
health information of more than half a million participants in the
UK (29). A total of 175,546 fundus images of 85,728 subjects from
2 visits (initial visit 2006–2010 and first repeat visit 2012–2013) are
available in the UKB database. Corresponding phenotypes were
collected by questionnaires, but with large missing values. There
are only 1,695 images with definite AMD from questionnaires. Un-
der the guidance of an image specialist, we manually extracted
300 images (200 of controls and 100 with advanced AMD) regard-
ing acceptable image quality and available phenotypes as an in-
dependent test set for our experiments.

Data partitioning
We randomly divide 4,628 participants in the AREDS study into
train, validation, and test partitions with the ratio 90% (4,166), 5%
(232), and 5% (230), such that all images for each participant lie in
one of the partitions. This prevents the possibility of information
leakage between 2 different partitions when images of one partic-
ipant being present in both. We use the mentioned partitioning in
all of our experiments below, and the study ID of participants in
each partition can be found in our GitHub repository1. We tune
the model hyperparameters using the validation set and report
the performance metrics on the test set.

Data preprocessing
We followed the same preprocessing protocol in (18), i.e. each color
fundus image is cropped to a square which encompasses the mac-
ula region, and then, the square image was resized to 224 × 224
pixels. We did not perform other data augmentations such as mir-
roring, flipping, or rotation used in (32) because our assumption
for the GAN model is that the structure of the images such as
the position of the optic disc and its relative position to major
blood vessels between the current time-point and the future one
does not change significantly, but such augmentations can change
these structural parameters dramatically, which can mislead the
generation process. Some of the original images and their trans-
formed versions can be found in Figures S1–S8 (Supplementary
Material S2).

Experimental settings
We implement all of our models using PyTorch (42) and train them
with an NVIDIA TITAN Xp GPU with 12GB memory. We use Adam
optimizer (43) in training both the classifier and GAN model.

Classification model
We train and evaluate the classification model with the pairs with
2, 3, and 4 years gap between the first and second time-points. In
contrast with previous works (15, 17, 32–35) that use Inception V3
(44), we use ResNet-18 (45) architecture pretrained on ImageNet
(46) as our CNN classifier considering that ResNet architectures
are state of the art models for image recognition (45). In each ex-
periment, we perform hyperparameter tuning as follows: for each
hyperparameter setting, at first, we train the ResNet-18 model
with pretrained weights on ImageNet for 20 epochs and evaluate
the model every 50 iterations on the validation set. Finally, we save
the checkpoint with the lowest validation loss as the best model

1https://github.com/Alii-Ganjj/LongitudinalAMDNet

https://github.com/Alii-Ganjj/LongitudinalAMDNet
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Fig. 1. Training procedure and architectures of the classifier and the temporal correlation structure guided GAN model. Given a training input pair, the
generator model (U-Net architecture in the middle with shape “⊃”) predicts the fundus image of the second (future) time-point based on the first
(current) time-point’s image. The L1-norm of the difference of the predicted image and the second time-point (the difference image is magnified for
better visualization) in the pair will form the reconstruction loss (LRecons ). In addition, the first time-point’s image and the predicted image get
concatenated and passed to the discriminator that evaluates whether the generated image has reasonable structural properties, considering the first
time-point’s fundus image. Patch-wise discrimination is depicted where the scores on several distinct patches contribute to the final GAN model’s loss
function. Finally, the classifier is trained by the weighted cross-entropy loss function (LClass ) using the pair’s first time-point’s image and its 3-class
encoded label.

of this setting. Among the saved checkpoints for different hyper-
parameter settings, we select the one with the highest validation
AUC as our model. Finally, we calculate the 95% confidence inter-
val for its performance on the validation and test set using the
bootstrap method.

We use the 12-level AMD severity-scale labels available in the
AREDS dataset for the first and second time-points to define the
labels yi, j for each pair. If the AMD severity scale of an eye is
within the range from 0 to 9, it is considered as “not progressed
to advance AMD,” and if the score is from 10 to 12, the eye is con-
sidered as “progressed to advance AMD.” Table 1 summarizes the

statistics of the dataset in each setting. As can be seen, the original
dataset is extremely imbalanced that most of its available pairs lie
in the class yi, j = 0, indicating that both the first time-point and
the next one have not progressed to advanced AMD. The reason is
that most of the eyes of the subjects in the AREDS study were not
in advanced AMD condition at the baseline and did not progress
until the end of the study (15).

High imbalance in the dataset will make training the classifier
challenging, because if the classifier predicts all the samples be-
longing to the class with major samples (yi, j = 0) and neglect mi-
nority classes (yi, j = 1), it can still achieve high accuracy and low
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Table 1. Original dataset statistics. The numbers in the parenthesis in the columns 4–6 indicate the histogram of each row.

T (time gap in units of
6 months)

Pairs of visits used (if
available)

Number of pairs
available

Number of pairs
yi, j = 0

Number of pairs
yi, j = 1

Number of pairs
yi, j = 2

4 (2 years) {(0, 4), . . ., (22, 26)} 50,320 42,205 (83.9%) 1,683 (3.3%) 6,432 (12.8%)
6 (3 years) {(0, 6), . . ., (19, 26)} 42,862 35,706 (83.3%) 1,999 (4.6%) 5,157 (12.1%)
8 (4 years) {(0, 8), . . ., (18, 26)} 36,185 29,835 (82.5%) 2,180 (6%) 4,170 (11.5%)

Fig. 2. The procedure of predicting the second time-point’s AMD condition using the GAN model and the classifier sequentially. The GAN model
predicts the second time-point’s image, and the classifier predicts a label ′y′ which will be decoded as Not Adv AMD or Adv AMD in the second
time-point.

loss value even if we use the weighted cross-entropy loss function.
Therefore, we down-sample the available pairs for each subject
with the following procedure:

For each eye:

1. If a participant has no pairs with yi, j = 0, we use all of their
pairs with yi, j 	= 0.

2. If a participant has no pairs with yi, j 	= 0, we randomly
choose one pair with yi, j = 0.

3. If a participant has n > 0 pairs with yi, j 	= 0 and m > 0 pairs
with yi, j = 0:

4. If n < m, we use all n nonzero pairs as well as randomly se-
lected n pairs with yi, j = 0.

5. If n ≥ m, we use all n nonzero pairs as well as all m pairs with
the label zero.

After applying the procedure above, the number of pairs for
each setting (in total and each of train/validation/test partitions)
is shown in Table S1 (Supplementary Material S1). We utilize
Scikit-learn (47) implementation of the generalization of AUC
score for multiclass classification problems introduced by Hand
and Till (48) and calculate the confidence intervals using 2000
bootstrap samples. For each of the partitions, if we denote the size
of it with “N,” we sample “N” samples with replacement from it for
each bootstrap iteration.

Temporal correlation structure guided GAN
model
Similar to the classification model, we train the GAN model for 2,
3, and 4 years future prediction. U-Net 256 architecture (49) and
70 × 70 patch discriminator (40, 41) are used as our generator and
discriminator, respectively. The batch-size is set to 1 to prevent
the generated samples from getting correlated as a result of the
combination of their statistics in the batch normalization layers
(50). The network is trained for 200 epochs. Adam optimizer’s pa-
rameters are set to (learning rate : 0.0002, β1 : 0.5, β2 : 0.999). The
learning rate is constant for the first 100 epochs and then is lin-
early decayed to 0 for the next 100 epochs. More details about the
GAN model architecture are available in Supplementary S3.

To evaluate the GAN model, at first, we train a model for
each gap value and show some longitudinal predictions made by
them to assess the visual quality of the generated images. Gener-
ally, there is no principled approach to quantitively evaluate the

quality of the generated images (40). Here, we explore 4 experi-
mental settings to get some sense of how good the generated im-
ages are. The high-level idea is inserting the GAN-generated im-
ages into a classifier and checking the prediction performance of
their sequential combination compared to other baselines.

Qualitative evaluation
Our GAN model can be clinically acceptable if it can correctly pre-
dict the changes in AMD characteristics such as drusen size or
pigmentary abnormalities, and we explore these characteristics in
predicted images as a qualitative evaluation of generated images.
We leverage the images for subjects whom we have their {baseline
4th, 6th, and 8th} time-point images and use the baseline one to
make a longitudinal prediction for the others and compare them
with their ground truth images in terms of AMD-related features.
Predicting the transition from not advanced to advanced AMD is
the most difficult case for the model because (1) each GAN model
does not have access to any label or information about the next
time-point’s condition during generation. They are trained using
the time-points with a certain gap (2, 3, or 4 years) and deployed
for generation using only the baseline test image. (2) The dataset
is imbalanced, such that most of the pairs are both in not ad-
vanced AMD or both are in advanced and the progressing pairs
are the minority, and the GAN model learns more about the first
2 categories. Hence, we examine the GAN model’s predictions for
a “transitioning” subject here.

Quantitative evaluation
We design 4 experiments and compare their results to check the
quantitative performance of our GAN model as follows. In all
cases, the goal is to predict whether the second (future) time-point
in a given pair is in advanced AMD condition or not.

Predicting second time-point’s AMD condition
using the GAN model and 3-class classifier
sequentially
Figure 2 illustrates our first experiment’s scheme. We leverage the
GAN model to predict the second time-point’s fundus image based
on the first one in a pair. Then, we ask our trained classification
model to perform a prediction about the AMD condition of the
generated image. As described in section (problem formulation),
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Fig. 3. The procedure of predicting the second time-point’s AMD condition using the GAN model and a binary classifier. The GAN model’s prediction is
used by the binary classifier to predict second time-point’s label.

the classifier predicts 1 of 3 possible classes y ε {0, 1, 2}, where
y ε {0, 1} represents the cases that the input image is not in ad-
vanced AMD condition. Therefore, we map the predicted labels of
the classifier to binary ones in terms of its prediction for the gen-
erated image’s AMD condition, i.e. y ε {0, 1} gets mapped to “0”
because in these cases, the input image is predicted to not be in
advanced AMD and y = 2 to “1” vice versa.

We name this model ‘GAN + 3C-Classier’ in our comparisons.
For the classifiers, we use the trained checkpoints of the models
described in the section (Classification Model).

Predicting the next time-point’s AMD condition
using the GAN model and binary classifier
As another experiment, first, we train a binary classifier that pre-
dicts whether its input is in the advanced AMD condition or not.
Then, similar to the previous part, we use the sequential connec-
tion of the GAN model and the binary classifier to predict the AMD
condition of the second time-point using the first time-point’s im-
age. The procedure is shown in Fig. 3.

We use the same data partitioning—in terms of study
subjects—that we used for our multiclass classifiers to train the
binary classifier. The only difference is that we utilize both sam-
ples and their binary labels in the pairs for training. The trained
binary classifier’s performance is 0.9708 AUC and 0.9488 accuracy
on the validation set, and 0.976 as well as 0.949 on the test set. We
call this model ‘GAN + B-Classifier.’

Predicting next time-point’s AMD condition
using our trained multiclass classifier
As some baselines to compare the performance of the models in
the sections (Predicting Second Time Point’s AMD Condition Using
the GAN Model and 3-class Classifier Sequentially) and (Predicting
the Next Time Point’s AMD Condition Using the GAN Model and Bi-
nary Classifier) with, we check the performance of our multiclass
classifier to predict the second time-point’s AMD condition in 2
settings: (1) Using the first time-point’s image: in our coding sys-
tem for the labels of the multiclass classifier, y ε {1, 2} indicates
that the second time-point will be in advanced AMD. Therefore,
we decode the predicted labels of the classifier to “not Adv” when
the predicted label is zero and “Adv” otherwise. We show this case
with “3C-Classifier, First Time point.” (2) Using the second time-
point’s image: the second time-point in the pair is the input of the
classifier. Now, the input is the image that we are going to pre-
dict its label. Therefore, if the classifier output label is y ε {0, 1}, it
means that the prediction is for the second time-point is “not Adv”
and “Adv” otherwise. We represent this case with “3C-Classifier,
Second Time Point.”

Validations of the model using independent UKB
dataset
To examine the generalizability of our model, we evaluate it on
the independent UKB dataset. In general, the quality of the fundus
images in UKB is inferior to the ones in AREDS, and a part of the
dataset is completely ungradable because of severe issues with
images. Further, the main difference between AREDS and UKB is
in the labeling scheme where AREDS labels are provided by im-
age reading center (28), but the labels in UKB are gathered by col-
lecting the participants’ answers to questionnaires regarding their
AMD condition. In AREDS, a 12-level severity score of AMD condi-
tion of the subjects is available. However, the labels in UKB are
the self-reported status of the subjects to the questions asking
whether a doctor has diagnosed them with AMD (yes/no).

Due to the differences between the datasets, it is not feasible
to directly evaluate the performance of our classifier in the same
manner as before, i.e. checking its predictions about the current
AMD state of a subject and its condition in the next time-point.
At first, the dataset contains records of 3 visits (indexed with 0, 1,
and 2) of the participants, and the age of subjects at the first visit
(visit 0) is available, but the age of only a limited part of subjects
is available at visits 1 and 2, which is essential for our model to
determine the gap between visit pairs. Secondly, the labels in the
UKB dataset can only indicate whether a subject has been diag-
nosed with AMD, but they do not reveal whether the subject has
progressed to advanced AMD or not, and the subjects with AMD
can be in the early or intermediate stages of the disease. There-
fore, we evaluate our model on the task of only grading the first
time-point images, i.e. labeling whether the input image is in ad-
vanced AMD condition or not (binary classification).

Although the labels for “adv”/’not adv’ AMD condition is not
available, an image specialist helped us to pick 100 images with
severe drusen size and pigmentary abnormality condition as an
approximate advanced AMD test set and 200 images with the la-
bel “not diagnosed with AMD” from the dataset as a control set.
All the selected images are chosen such that at least the macula
region of the image is visible and not defected due to imaging pro-
cedure issues. The name of images for both advanced AMD and
the control group are listed in Supplementary (Images from UK
Biobank Used in Our Experiments), (Supplementary Material S6).

Results
Late AMD progression prediction
Table 2 demonstrates the prediction accuracy, AUC, and confusion
matrix of our classifier for different time-gap values. All models
show high AUC (∼90%) and accuracy (∼75%), which is desirable in
unbalanced problems where AUC is a more reliable metric than
accuracy. From confusion matrices, we can calculate that all mod-
els can grade current time-point images that are not in advanced
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Table 2. Performance of the classifier for different time gaps. The numbers in parenthesis indicate 95% confidence intervals which have
been calculated by the bootstrap method. The best hyperparameter settings for each model are described in Table S2 (Supplementary
Material S4).

T (time gap in units of
6 months) Validation accuracy Validation AUC Test accuracy Test AUC

4 (2 years) 0.752 (0.7238, 0.779) 0.8832 (0.8629, 0.9026) 0.7715 (0.7455, 0.7975) 0.896 (0.875, 0.9146)

4, Confusion matrix [
327 114 7
24 62 10
10 55 278

] [
329 100 10
16 58 10
12 54 295

]

6 (3 years) 0.7356 (0.7062, 0.765) 0.9059 (0.888, 0.9213) 0.7465 (0.7143, 0.7773) 0.8988 (0.8795, 0.9176)

6, Confusion matrix [
290 125 10
19 78 20
4 38 233

] [
274 103 9
15 74 19
3 48 232

]

8 (4 years) 0.7724 (0.7416, 0.8032) 0.9199 (0.905, 0.9337) 0.7688 (0.7382, 0.8008) 0.9209 (0.9050, 0.9353)

8, Confusion matrix [
283 93 10
25 96 16
3 20 198

] [
257 91 14
14 82 21
2 24 213

]

AMD (class “0” and “1”) with an accuracy better than 90%, and also,
the ones that are in advanced AMD now (the class “2”) with more
than 80% accuracy. Furthermore, all models have about 70% ac-
curacy in correctly predicting the cases that are not in advanced
AMD now but will progress to it in the next time-point (class “1”)
that are the most challenging cases because they are the minority
class in the dataset, and the classifier can observe fewer examples
from them compared to other classes during training. High perfor-
mance of all models suggests the capability of CNN to accurately
perform diagnosis for the current time-point as well as predict
AMD condition of the next one.

Model’s decision interpretation using saliency
maps
To obtain intuitions about how the model has reached its decision,
we visualize saliency maps of the input images that highlight the
regions of the fundus images that had the most influence on the
classifier’s outcome. Generally, physicians grade the AMD score of
a fundus image based on the properties of their macula region.
Therefore, the decisions of the classifier will be more convincing
if we observe that it has focused on these areas as well. Figure 4
illustrates 3 pairs (each row represents a pair) in the test set from
3 possible classes, i.e. the first time-point (left image) and the sec-
ond one (right image) have AMD conditions (not adv, not adv), (not
adv, adv), and (adv, adv), respectively. The images in the middle ex-
hibit the saliency maps over the first time-points’ fundus images.
We can observe that the points in the macula had the most im-
pact on the classifier’s decision, which is aligned with the clinical
approach for grading fundus images.

Using age phenotype in addition to fundus
images
As the name of AMD suggests, age is an important factor con-
tributing to AMD. Therefore, we explored whether giving the age
information explicitly to the network will boost the results or not.
To do so, we concatenated the age value to the output of the
global average pooling layer of the ResNet classifier, and the re-
sulting vector is passed to the fully connected classifier. The whole
scheme is shown in Figure S14 (Supplementary Material S8). We
did not find a significant difference in the accuracy and AUC val-
ues (less than 1% in all cases) of the classifier on the validation
and test sets, which has been also reported in (15). We conjecture
that the reason may be that the effect of aging is comprehensible

for the classifier from the fundus images, and inputting age infor-
mation does not provide additional information for the model.

Predicting next time-point’s fundus image
Qualitative results
Figures 5 and 6 demonstrate our GAN model’s longitudinal pre-
diction (first rows) for each eye of a subject in the test set whose
both eyes have progressed from not advanced AMD in the base-
line to advanced AMD during the study. As can be seen in the
ground truth images in the figures (second rows), both eyes expe-
rienced enlarging drusen in the macula region from left to right,
which has attributed to larger AMD severity scores. We can ob-
serve that our model’s predictions have the following properties:
(1) first and foremost, in Fig. 5, the drusen size of the predic-
tions grow in consecutive time-points (yellow areas in the mid-
dle). In Fig. 6, the larger drusen along with some pigmentary ab-
normalities (black parts) in the macula are predicted. In both
cases, the predictions are compatible with the ground truth im-
ages’ trajectory from the clinical perspective that cares about
the drusen size and the macular region. (2) Secondly, we can ob-
serve in Fig. 6 that the left side of the baseline fundus image
(the first row, left image) in the dataset is lost, but interestingly,
the GAN model can generate some realistic-looking “more com-
plete” image based on the baseline in its prediction for the 4th
time-point, which indicates that the model has learned the un-
derlying distribution of the consecutive time-point images prop-
erly. We provide more examples of our longitudinal predictions for
the other AMD progression cases (not advanced to not advanced,
and both being advanced) in Figures S9–S13 (Supplementary
Material S5).

Quantitative comparison
Table 3 summarizes the results for the 4 cases described for quan-
titative evaluation of the GAN model. As can be seen, the se-
quential models for (GAN model → multiclass classifier) have
about 70% accuracy, and the ones for (GAN model → binary
classifier) perform better (∼75%). The reason may be that mul-
ticlass classifier is trained to predict both the first time-point’s
condition and the second one’s, and the number of its training
examples for the task of “binary classification of a single time-
point” is lower than the binary classifier. In addition, the multi-
class classifier using the first time-point performs slightly worse
than the one which uses the second time-point. This is expectable
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Fig. 4. Each row from left to right: first time-point’s image, saliency map of it, and second time-point’s image. All images are chosen from the test set.
The first time-points’ images’ names are “52,340_04_F2_LE_LS,” “52,759_06_F2_RE_LS,” and “3923_08_LE_F2_LS,” respectively. As can be seen in the
saliency maps, the classifier has focused on the macula region and its properties such as drusen size and pigmentary abnormalities, which is aligned
with the clinical process of AMD diagnosis.

Fig. 5. Longitudinal prediction for the left eye of a subject who has progressed to advanced AMD. Top row from left to right: baseline, prediction at 4th,
6th, and 8th time-points (2, 3, and 4 years, respectively) after baseline. Bottom row from left to right: baseline, ground truth (GT) images for the 4th,
6th, and 8th time-points after baseline. The images in each column are the prediction and their corresponding ground truth. The AMD severity scale of
each ground truth image is shown in the bottom line. The name of the baseline image in the AREDS dataset is “51,662_QUA_F2_LE_LS.jpg.”
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Fig. 6. Longitudinal prediction for the right eye of a subject who has progressed to advanced AMD. Top row from left to right: baseline, prediction at
4th, 6th, and 8th time-points after baseline. Bottom row from left to right: baseline, ground truth (GT) images for the 4th, 6th, and 8th time-points after
baseline. The images in each column are the prediction and their corresponding ground truth. The AMD severity scale of each ground truth image is
shown in the bottom line. The name of the baseline image in the AREDS dataset is “51,662_QUA_F2_RE_LS.jpg.”

Table 3. Comparison of the GAN model’s performance with the baselines.

Model
T (time gap in units of

6 months)
Validation
accuracy Test accuracy

GAN + 3C-Classifier 4 (2 years) 0.743 0.7127
6 (3 years) 0.7491 0.7181
8 (4 years) 0.6707 0.6671

GAN + B-Classifier 4 (2 years) 0.7554 0.7342
6 (3 years) 0.7503 0.7529
8 (4 years) 0.7376 0.766

3C-Classifier, first time-point 4 (2 years) 0.8253 0.8439
6 (3 years) 0.8066 0.8327
8 (4 years) 0.8206 0.8315

3C-Classifier, second
time-point

4 (2 years) 0.8873 0.8733

6 (3 years) 0.8715 0.8636
8 (4 years) 0.8407 0.8315

because the goal is to predic the second time-point’s label, and do-
ing so is easier using the second time-point’s image than using the
first one.

Overall, the models containing GAN models have about 70%
accuracy that indicates that the GAN models are learning some-
thing meaningful between the consecutive time-points which will
be useful for prediction by the classifier.

Validation results on UKB dataset
In the label encoding scheme described in the methods section, la-
bels “0” and “1” predicted by the classifier indicates that the input
image is not in advanced AMD condition and “2” means they are
progressed to advanced AMD, and we convert the predicted labels
accordingly to a binary label. Table S3 (Supplementary Material
S7) summarizes the accuracy and confusion matrix of the models
for 2(A), 3(B), and 4(C) year gaps in the grading current time-point’s
image task. We can observe that all models achieve high accuracy
on the validation task (∼86%, 92%, and 92%, respectively). Models
B and C have high sensitivity as well (86% and 90%), but model A
shows relatively lower sensitivity (63%), which suggests that we
should rely on models B and C if we are interested in grading the
current time-point images.

Discussion
We proposed a unified framework using advanced DL methods
for grading the current time-point’s image as well as predicting
the future AMD image and condition given a future time-point.
By doing so, we aimed to have a one-stop solution that overcomes
the limitation of previous methods. Some methods suffer from not
providing AMD condition in the future, and some need at least
2 or 3 not advanced AMD prior time-points’ images (which are
often not available at practical clinical setting) to perform a good
prediction about the future, but our model only needs the current
time-point image.

In addition, we proposed a temporal correlation structure
guided GAN model, which can learn the dynamics and interrela-
tions of the temporal transition between consecutive time-points
properly and perform longitudinal prediction for the next time-
points’ images, thereby providing interpretability for the classi-
fier’s decision in the clinical setting where a specialist can get
more intuition about the major symptoms of the subject in the
next time-points based on the predicted images. Through exten-
sive experiments, we evaluated the performance of our trained
GAN model, where for qualitative results we case studied a sub-
ject who gradually progressed to advanced AMD, and the model
could successfully predict enlargement of drusen as well as the
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progressive appearance of pigmentary abnormalities in the eyes
of the subject. For quantitative results, we showed that the se-
quential connected model consisting of the GAN model and the
classifier can achieve about 70% accuracy in predicting the sec-
ond time-point’s AMD condition based on the first one’s in the
pairs which demonstrate that the GAN model can successfully
learn the process of conversion between successive time-points’
images.

As our problem formulation unifies both grading current time-
point’s CFP and predicting AMD status of the future time-point, a
direct performance comparison between our model and the pre-
vious prediction models such as (15) is not possible. Therefore, we
compare our model’s performance with DeepSeeNet (33), which
is a grading model. In brief, DeepSeeNet trains 3 modules to grade
drusen size, pigmentary abnormalities, and whether the input
image is in late AMD or not, and it combines the predictions of
these 3 models to predict AMD simplified severity score. Here, we
explore our model’s performance on the task of grading its in-
put image in comparison with the DeepSeeNet model’s late AMD
prediction module. The input to our model is the first time-point
available in each pair, and according to our label coding, y ε {0, 1}
indicates that the first time-point is not in advanced AMD and vice
versa. Therefore, we combine these 2 classes in the confusion ma-
trix of our model’s predictions in Table 2 to obtain a binarized con-
fusion matrix in Table S4 (Supplementary Material S9). As can be
seen in Table 4 in DeepSeeNet paper (33), their late AMD grading
model has an overall accuracy of 0.967, which is higher than the
one for our models. (0.902, 0.898, and 0.915) However, our mod-
els show significantly higher values for sensitivity (0.817, 0.819,
and 0.891) compared to 0.627 while maintaining close specificity
performance (0.962, 0.943, and 0.926) compared to 0.987, which is
more useful in practice because false positives are less detrimen-
tal than false negatives in medical research.

Our proposed method has some limitations. At first, we mainly
focused on the AREDS dataset, the only large-scale longitudinal
AMD study available, in our training and evaluations in which
most of the subjects have not been in advanced AMD at the base-
line and have not progressed to late AMD during the study. This
brings about the class imbalance in the training of a classifier
which may bias the classifier toward the majority classes. Even
though we leveraged the UKB dataset to validate the classifier, fur-
ther evaluations on other cohorts may be beneficial. Moreover, in
this study, we only considered fundus images similar to ophthal-
mologists for AMD grading, but it has been shown that AMD is
associated with genetics, and further incorporating genetics infor-
mation can improve the prediction performance. In addition, we
did not explicitly consider the possible correlation between the
AMD condition of the right and left eyes of a subject in our pre-
dictions.

A challenge in our GAN model is the fact that the fundus im-
ages in the consecutive time-points in the AREDS dataset are not
registered, which can mislead the GAN model’s training in that it
may result in large values for the reconstruction loss, although the
predicted image is similar to the ground truth. Also, in some pairs,
the major blood vessels or optic disc may be less visible in one of
the images compared to the other one due to lightning conditions
of the imaging environment or problems in the image acquisition
devices, which can similarly lead to suboptimal network training.

In conclusion, our study indicated that automatic grading
and prediction methods for AMD disease can achieve reasonable
performance. In our future work, we plan to develop a multi-
modal learning approach to leverage both fundus images and ge-
netic information of the subjects to predict their AMD severity.

Besides, leveraging registration methods to register consecutive
time-points’ fundus images can greatly benefit the training pro-
cedure of the GAN model, which can result in image predictions
by the GAN model with higher quality and more accurate details.
Our method will likely facilitate the diagnosis and prediction of
AMD and other retinal diseases toward precision medicine.
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