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Abstract: Parasitic protozoa are major threats to human health affecting millions of people around the world. Control of 
these infections by the host immune system relies on a myriad of immunological mechanisms that includes both humoral 
and cellular immunity. CD8+ T cells contribute to the control of these parasitic infections in both animals and humans. 
Here, we will focus on the CD8+ T cell response against a subset of these protozoa: Plasmodium, Toxoplasma gondii, 
Leishmania and Trypanosoma cruzi, with an emphasis on experimental rodent systems. It is evident a complex interaction 
occurs between CD8+ T cells and the invading protozoa. A detailed understanding of how CD8+ T cells mediate protection 
should provide the basis for the development of effective vaccines that prevent and control infections by these parasites. 

Keywords: CD8+ T cell, immunity, Leishmania, malaria, Plasmodium, protozoa, Toxoplasma, Trypanosoma. 

INTRODUCTION 

 The parasitic protozoa, Plasmodium spps., Toxoplasma 
gondii, Leishmania spps. and Trypanosoma cruzi are 
medically important pathogens around the world, causing 
significant disease in humans. Resistance and control of 
infections by these parasites relies on a competent immune 
system with multiple immunological mechanisms contri-
buting. Plasmodium spps., Toxoplasma gondii, Leishmania 
spps. and Trypanosoma cruzi are intracellular parasites in 
both humans and mice. As a consequence of the intracellular 
infection these parasites are susceptible to immune mediated 
control by CD8+ T cells, which target intracellular patho-
gens. Indeed, there is strong evidence that CD8+ T cell 
responses are an important component of the host defense 
mechanism against these parasites. However, the degree of 
protection afforded by CD8+ T cells against these pathogens 
depends on the parasite, and may also differ among species 
of a given protozoa. Despite the induction of a robust 
immune response, these protozoa can delay or prevent 
immune clearance, thus, allowing the establishment of 
chronic infection in the host. Here we will review the 
contribution of CD8+ T cells during Plasmodium, T. gondii, 
Leishmania and T. cruzi infections. A more thorough 
understanding of CD8+ T cell responses against these 
intracellular parasites may be applicable to other intracellular 
parasites. Furthermore, there are no licensed vaccines that 
target these parasites through the induction of protective 
CD8+ T cells. Therefore, there is a need for continued 
research on understanding CD8+ T cell responses against 
these parasitic infections. 

GENERATION OF PLASMODIUM-SPECIFIC CD8+ T 
CELL RESPONSES 

 Plasmodium infections in humans and rodents begin 
when an infected female Anopheles mosquito injects saliva  
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containing Plasmodium sporozoites into the dermis during a 
blood meal. After deposition of sporozoites into the skin, the 
parasites enter host blood vessels where they travel to the 
liver and establish infection in hepatocytes. In the case of 
both humans and rodents, the initial liver stage of infection is 
relatively short lived [1, 2], resulting in little if any 
opportunity for the host to mount CD8+ T cell responses that 
are capable of eliminating infected hepatocytes during the 
initial infection. However, using the rodent model of malaria 
it has been shown that memory CD8+ T cells recognize 
parasite-infected hepatocytes upon re-exposure to the 
parasite, and are capable of preventing the parasite from 
progressing into the erythrocytic stage of infection [3, 4]. 
 Following inoculation of sporozoites, priming of CD8+ T 
cells may occur at two different anatomical locations, skin 
draining lymph nodes (DLNs) and the liver [5-7]. It was long 
assumed that activation of sporozoite-specific CD8+ T cells 
occurred in the liver. This idea was challenged when Zavala 
and colleagues, demonstrated that lymph nodes draining the 
infection site play a fundamental role in priming liver stage-
specific CD8+ T cells. The authors observed a marked 
decrease in the number of activated circumsporozoite protein 
(CSP)-specific CD8+ T cells in the liver of mice treated with 
FTY720, which blocks T cell egress from lymph nodes [8], 
prior to injection of sporozoites, or following the removal of 
the skin DLN at the site of sporozoite inoculation [7]. These 
results demonstrated the importance of lymph nodes in 
mounting CD8+ T cell responses against Plasmodium. 
Furthermore, CD8+ T cell priming in skin DLNs is sufficient 
for the induction of protective immunity against sporozoite 
challenge [6]. 
 A small fraction of sporozoites at the site of inoculation 
have been shown to mature into infectious merozoites [9], 
however it has also been shown that these skin exo- 
erythrocytic infections are not capable of initiating blood 
stage infections [10]. Alternatively, sporozoites can leave the 
infection site by entering either the blood or lymphatic 
circulation [11, 12]. Approximately 15–20% of the inoculum 
ends up in the skin DLN [6, 12]. Those sporozoites that 
reach the DLN represent a critical portion of the inoculum 
that primes CD8+ T cells. This is supported by the 
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observation that 48 hours after inoculation of sporozoites, by 
either bites of irradiated infected mosquitoes or via intra- 
dermal inoculation, CSP-specific CD8+ T cells producing 
IFN-γ were only detected in the skin DLN [7]. Although 
analysis of sporozoite-specific CD4+ T cells, which can 
contribute towards control of liver stage parasites [13, 14], 
has not been determined, it is likely they are also induced in 
the skin DLN. 
 Once sporozoites enter lymph nodes, dendritic cells 
(DCs) phagocytose the parasites, and then process and 
present parasite antigens via cross-presentation [5, 7, 15, 16]. 
CD11c+DCs play a key role in the activation of Plasmodium-
specific CD8+ T cells [7, 16], as in vivo depletion of these 
cells abolished the induction of parasite-specific CD8+ T 
cells [16]. However, the specific DC population responsible 
for the induction of parasite-specific CD8+ T cells is not 
known. There are multiple subsets of DCs in the dermis (e.g. 
resident dermal CD103+ and CD11b+ DC subsets, Langer-
hans cells or inflammatory monocyte-derived DCs) that are 
capable of cross-presenting viral antigens [17], and thus may 
be relevant in the activation of Plasmodium-specific CD8+ T 
cells. It is also possible that priming of parasite-specific 
CD8+ T cells requires a collaborative effort between skin 
migratory DCs and lymphoid-resident DCs [12, 18]. Thus, 
activation of Plasmodium-specific CD8+ T cells in skin 
DLNs might not rely on a single DC subset, but on the 
interaction of several DC populations. 
 As mentioned above, priming of Plasmodium-specific 
CD8+ T cells may also occur in the liver. Liver resident 
CD8α+CD11c+ DCs activate CD8+ T cells after immuni-
zation with irradiated sporozoites [5], and both liver 
sinusoidal endothelial cells and Kupffer cells are capable of 
processing and presenting antigens to naïve CD8+ T cells 
[19]. However, CD8+ T cells primed by liver antigen-
presenting cells exhibit lower levels of activation (i.e., 
diminished expression of the activation markers CD44 and 
CD25) [19]. Finally, prolonged antigen presentation, 
following immunization with irradiated sporozoites, is also 
important in the optimal induction of sporozoite-specific 
CD8+ T cell responses [20]. Collectively, efficient generation 
of Plasmodium-specific effector CD8+ T cells, in rodent 
malaria, seems to be shaped by at least 3 factors (i) number 
of sporozoites inoculated into the host [21, 22], (ii) priming 
of CD8+ T cells in skin DLNs [7] and (iii) prolonged antigen 
presentation [20]. However, there are still many unknowns, 
including why natural infections and vaccines tested to date 
fail to induce protective liver stage-specific CD8+ T cell 
responses. 

REGULATION OF PLASMODIUM-INDUCED CD8+ T 
CELL ACTIVATION 

 The precise mechanism by which naïve Plasmodium-
specific CD8+ T cells become activated is not clear, but clues 
are emerging. For example, it has been shown that NK cells, 
probably via IL-12, are necessary for optimal priming as 
depletion of NK cells significantly reduced CD8+ T cell 
priming [23]. CD4+ T cells also participate in generating 
liver stage-specific CD8+ T cells. Zavala and colleagues 
showed that in the absence of CD4+ T cells, CD8+ T cell 
responses are impaired as a consequence of undergoing 
premature contraction [24, 25]. Following sporozoite 

infection CD4+ T cells were shown to secrete IL-4, a cyto-
kine with strong in vivo and in vitro anti-apoptotic effects on 
activated and resting CD8+ T cells [26], which signals 
directly to parasite-specific CD8+ T cells to help maintain a 
memory CD8+ T cell population [24]. Of note, these studies 
were conducted in BALB/c mice, which favor production of 
IL-4 and consequently Th2 biased responses. Thus, it will be 
important to determine whether the contribution of IL-4 to 
expansion of sporozoite-specific CD8+ T cells is universal 
(e.g., is it also important in C57BL/6 mice which favor pro-
duction of IFN-γ and Th1 biased responses?) or a conse-
quence of using BALB/c mice. In contrast to these signals 
that favor robust liver stage-specific CD8+ T cells, there are 
also negative signals that function to dampen CD8+ T cell 
responses. For example, activated CD8+ T cells can nega-
tively regulate the subsequent activation of additional naïve 
CD8+ T cells via competition for antigen on antigen-presen-
ting cells [27, 28]. Furthermore, skin CD4+ regulatory T cells 
(Tregs) have been suggested to decrease expression of MHC 
class II and CD86 on skin DCs, which may impair activation 
of liver stage-specific CD8+ T cells [29]. Much of what we 
know about the precise mechanisms involved in the 
induction of liver stage-specific CD8+ T cells has been exp-
lored in the context of irradiated sporozoites. Thus, it is 
imperative we gain a better understanding of how liver 
stage-specific CD8+ T cells are generated following infection 
with live sporozoites via their natural route of infection and 
why Plasmodium-infected humans fail to induce protective 
CD8+ T cell responses in spite of repeated infections. 

MECHANISMS OF CD8+ T CELL MEDIATED 
PROTECTION DURING THE LIVER STAGE 

 Once sporozoites enter the liver they glide along 
sinusoids where they ultimately invade and infect the liver 
parenchyma through an elegant process that has been 
reviewed elsewhere [30]. The liver stage of the Plasmodium 
life cycle is marked by an exponential expansion of parasite 
numbers and differentiation into merozoites that infect red 
blood cells when released from hepatocytes. It is estimated 
that one sporozoite can give rise to about 40,000 merozoites 
[31]. The liver stage of the life cycle is also relatively short, 
lasting about 2 days in mice [1], and about one-week in 
humans [2]. Thus, liver stage-specific CD8+ T cells must 
overcome substantial hurdles (i.e., the relatively few infected 
hepatocytes, the short duration of the liver stage, and the 
necessity to eliminate every infected hepatocyte) if they are 
to prevent the parasite from progressing from the 
asymptomatic liver stage to the symptomatic blood stage. 
Given the short duration of the liver stage, Plasmodium-
specific CD8+ T cells primed during the initial exposure, 
which require one to two weeks for optimal expansion [32], 
likely contribute very little to liver stage immunity. 
However, liver stage-specific memory CD8+ T cells can play 
a critical role at controlling Plasmodium infected hepato-
cytes during a secondary infection [3, 33, 34]. 
 Circulating memory CD8+ T cells can be broadly defined 
as either effector memory T cells (CD62Llo/CD27lo/IL-2lo) or 
central memory T cells (CD62Lhi/CD27hi/IL-2hi) [33]. 
Consistent with enhanced protection mediated by effector 
memory T cells following infection with Listeria monocyto-
genes and lymphocytic choriomeningitis virus [35, 36], 
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effector memory T cells also provide increased protection 
against Plasmodium infected hepatocytes compared to 
central memory T cells [37-39]. Nevertheless, central 
memory CD8+ T cells correlate with sustained protection 
against malaria in mice [34], which is likely explained by the 
long-term stability of central memory CD8+ T cell numbers 
[40]. 
 CD8+ T cells are endowed with multiple effector 
pathways, which include direct and indirect mechanisms, to 
eliminate target cells. In the case of liver stage-specific CD8+ 
T cells both are involved in controlling the parasite infection. 
Direct effector pathways used by Plasmodium liver stage-
specific CD8+ T cells include the release of perforin and 
granzymes [27, 41], whereas indirect effector mechanisms 
include the production of IFN-γ and TNF [5, 42-44]. 
 Among CD8+ T cell effector mechanisms, IFN-γ is 
important for controlling infected hepatocytes [5, 42-44]. 
The exact mechanism by which IFN-γ exerts its protective 
effect against Plasmodium is not fully known, but probably 
involves multiple mechanisms. IFN-γ causes increased 
expression of MHC class I, which enhances the recognition 
of antigens by memory CD8+ T cells [45]. Similarly, IFN-γ 
facilitates the conversion of the proteasome to the immune 
proteasome, which increases production of peptides that 
occupy MHC class I molecules [46, 47]. Another mechanism 
by which IFN-γ suppresses parasite development is through 
direct impairment of parasite differentiation in hepatocytes 
[48]. IFN-γ, from Plasmodium-specific CD8+ T cells, has 
also been suggested to increase expression of inducible nitric 
oxide synthetase, which results in increased production of 
nitric oxide that confers protection against Plasmodium [49], 
however the mechanism by which nitric oxide inhibits the 
development of liver stage parasites is not known. 
 Although production of IFN-γ may be the most critical 
mechanism by which CD8+ T cells eliminate infected 
hepatocytes, TNF also participates in Plasmodium control 
during the liver stage. For instance, in vitro administration of 
TNF prevents the development of human and rodent malaria 
pre-erythrocytic stages, but the mechanism of action of TNF 
against the parasite is unclear [4, 50]. However, an earlier 
study suggested TNF inhibits P. yoelii liver stages in vitro 
via synthesis of IL-6 [51], which shows anti-parasite activity 
potentially mediated by oxidative burst [52]. It was also 
shown that in vivo neutralization of TNF, via treatment with 
anti-TNF monoclonal antibodies, substantially reduced 
protection against either P. berghei or P. yoelii sporozoite 
challenge in a CD8+ T cell-dependent model [53]. 
 There is also evidence to support a role for CD8+ T cells 
mediating pre-erythrocytic protection via direct cell contact. 
Following vaccination of mice with P. yoelii genetically 
attenuated parasites (GAPs) protection against subsequent P. 
yoelii sporozoite challenge is perforin-dependent [54]. The 
absence of perforin in memory CD8+ T cells also results in a 
50% decrease in protection against P. yoelii sporozoite 
challenge in a prime-boost model that generates only P. 
yoelii CSP-specific CD8+ T cells [53]. However, the 
requirement for perforin in CD8+ T cell mediated protection 
in this model is species specific, as perforin-deficiency had 
no effect on protection against P. berghei sporozoite 
challenge [53]. Species-specific requirements for CD8+ T 
cell effector molecules was also noted in mice vaccinated 

with radiation-attenuated sporozoites (RAS) [13]. These data 
are also consistent with the observation that the numerical 
threshold of CSP-specific CD8+ T cells required for 
protection against sporozoite challenge is dependent on both 
Plasmodium species and the genetic background of the host 
[13, 39]. 
 It is well established that Plasmodium-specific CD8+ T 
cells are able to prevent progression of Plasmodium 
infections from the pre-erythrocytic stage to the erythrocytic 
stage, however how such events occur needs to be 
elucidated. Cockburn and colleagues, provide useful clues 
using key developments in several technologies that allowed 
them to visualize Plasmodium-specific CD8+ T cells 
interacting with Plasmodium infected hepatocytes in mice in 
real time in vivo. Upon recognition of infected cells, 
Plasmodium-specific CD8+ T cells form large clusters 
around infected hepatocytes [55]. The formation of these 
cellular clusters may facilitate CD8+ T cells to eliminate 
parasites from the liver. The development of these 
technologies may contribute important findings as to how 
CD8+ T cells identify and eliminate infected hepatocytes. 

APPROACHES TO GENERATE PROTECTIVE CD8+ 
T CELLS 

 Given the protective capacity of Plasmodium liver stage-
specific CD8+ T cells in rodents substantial research has 
been directed towards developing CD8+ T cell based 
vaccines. Currently, there are four approaches to generate 
Plasmodium-specific CD8+ T cells, which can provide 
complete or partial protection against Plasmodium 
sporozoite challenge. These techniques include the use of 
RAS, GAP, wild-type sporozoites with chemoprophylaxis 
(CPS) and viral vectors (VV) that express Plasmodium 
antigens. Attenuation of Plasmodium by either radiation or 
targeted gene deletion results in viable sporozoites that infect 
hepatocytes and subsequently arrest within the liver without 
progressing into the blood stage. Consequently, the host is 
exposed to the full complement of sporozoite antigens. 
Likewise, vaccination with wild-type sporozoites with CPS 
not only exposes the host to all sporozoite antigens, but also 
to antigens expressed during the liver and blood stage. This 
allows the host to mount a diverse immune response 
including CD8+ T cells, CD4+ T cells, and antibodies. In 
contrast, VV induce an immune response to a small subset of 
parasite antigens. Of note, a diverse immune response 
including CD8+ and CD4+ T cells and antibodies directed 
against both pre-erythrocytic and erythrocytic antigens will 
likely be necessary in the development of an efficacious 
vaccine against Plasmodium. 

Radiation-Attenuated Sporozoites 

 RAS have been used to induce sterilizing liver stage 
specific immunity not only in rodents [56] but also in 
humans [57]. RAS involve the application of radiation 
(gamma or X ray) to sporozoites, which leads to random 
DNA damage and impairs subsequent gene transcription 
[58]. Radiation-induced DNA damage does not alter the 
capacity of the parasite to infect hepatocytes, however the 
life cycle is arrested at early stages [59-61]. The level of 
protection by RAS is not influenced by the source of 
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radiation, but the dose of radiation is critical [3, 59, 62]. 
Large doses of radiation may kill sporozoites and limit their 
ability to infect hepatocytes and induce protective immunity, 
while low radiation doses allow the parasite to complete the 
liver stage and progress into the blood stage. RAS induced 
protection is CD8+ T cell-dependent [13, 53] and correlates 
with effector memory CD8+ T cells [33]. Of note, use of 
RAS also induces sporozoite-specific antibodies that 
potentially contribute to protection, as well as CD4+ T cells 
that have been shown in some cases to provide protective 
immunity in mice [13, 63-65]. 
 In spite of the technical hurdles associated with large-scale 
implementation of RAS vaccination, Hoffman and colleagues 
have made significant strides to make the RAS approach a 
practical vaccine procedure [66]. So far in fact, only the RAS 
approach [57] and a vaccine that uses immunogenic fragments 
of Plasmodium falciparum CSP known as the RTS,S vaccine 
[67, 68] have shown promise as human vaccines. RTS,S has 
reached large-scale phase III testing, however results have been 
disappointing and suggest the vaccine affords only limited 
protection (~16-40%) against severe disease while no protection 
against infection or mortality [69-71]. One hopes the RAS 
vaccination approach will prove to be more efficacious than 
RTS,S when fully tested. 

Genetically Attenuated Parasites 

 Over the last decade advances in Plasmodium genetics 
have resulted in the generation of parasites lacking genes 
necessary for completion of the liver stage [61]. Subsequent 
infection with sporozoites from these GAPs are as 
immunogenic as RAS, with protective immunity dependent 
on CD8+ T cells [54]. However, like RAS vaccination it is 
possible CD4+ T cells and antibodies also contribute to GAP 
induced protective immunity. 
 The specific gene or combination of genes deleted 
determines the point at which the parasite arrests during liver 
stage development [72]. Currently, ten genes (P36p/P36, UIS3, 
UIS4, E1α, E3, SAP1/SLARP, FABI, FABB/F, FABZ, and 
PKG) have been deleted to manipulate the life cycle of the 
parasite [61]. Deletion of P36p results in normal sporozoite 
motility and hepatocyte invasion, but causes early arrest of the 
parasite in the liver due to impaired formation of the 
parasitophorus vacuole (PV) [73, 74]. When sporozoite and 
liver-stage asparagine-rich protein (SLARP) in P. berghei, or its 
P. yoelii ortholog sporozoite asparagine-rich protein 1 (SAP1) 
are deleted, sporozoites can still invade hepatocytes and form 
the PV, but they do not progress further in the liver stage [75, 
76]. Deletion of UIS3 and UIS4 arrests the differentiation from 
trophozoite into schizonts [77, 78]. In contrast to P36p and 
SAP1, deletion of genes associated with the fatty acid 
metabolism (E1α, E3, FABI, FABB/F, FABZ, and PKG) 
exhibit normal development until the final differentiation and 
release of merozoites [79-81]. 
 Vaccination with GAPs that arrest early in the liver stage 
can induce protective immunity, but GAPs that arrest later 
during the liver stage are more effective [82]. One 
explanation for this difference is the increased antigen 
repertoire the host is exposed to in late arresting GAPs 
compared to early arresting GAPs [61]. This was shown by 
Butler and colleagues, who demonstrated superior protective 

immunity in mice vaccinated with late arresting GAPs, 
compared to either early arresting GAPs or RAS, was the 
result of a larger and broader CD8+ T cell response in late 
arresting GAP vaccinated mice compared to early arresting 
GAP or RAS vaccinated mice [83]. This observation is 
consistent with prior reports that demonstrate the magnitude 
of Plasmodium specific CD8+ T cells is important in 
providing protection against sporozoite challenge [39, 84]. 
Furthermore, late arresting GAPs generate a host immune 
response that exhibits cross-stage specificity targeting both 
the liver and blood stages [83]. 

Wild Type Sporozoites with Chemoprophylaxis 

 The use of wild type sporozoites with CPS to stimulate 
the immune system is based on the administration of viable 
sporozoites in conjunction with anti-parasitic drugs to induce 
host immune responses while controlling the perpetuation of 
the parasite. So far several drugs have been used, which 
target the parasite at either the late liver or blood stages. 
Pyrimethamine, centanamycin and primaquine prevent 
nuclear division of liver schizont stages [85]. Azithromycin 
and clindamycin exert delayed action by directly inhibiting 
apicoplast maturation of liver schizont stages while 
chloroquine affects the blood stage of the parasite life cycle 
[86-88]. Consequently, chloroquine provides the latest arrest 
of the parasite life cycle of all the strategies mentioned above 
[86, 87], which increases the number of parasite antigens the 
host is exposed to. Furthermore, chloroquine mediated CPS 
and late arresting GAP immunization strategies may also 
afford enhanced protection as a consequence of increased 
parasite biomass. 
 Vaccination with viable sporozoites under CPS is very 
similar to either RAS or GAP vaccination. However, 
protective immunity in humans was induced following expo-
sure to just 10 bites from infected mosquitoes [89] while 
protective immunity elicited by RAS in humans required the 
bites of >1000 infected mosquitoes [90, 91]. Whether this 
differential outcome is associated with exposure to blood 
stage antigens following sporozoite infection and CPS 
compared to RAS is not known, but these results clearly 
highlight the potency of this approach over RAS. Although 
vaccination of viable sporozoites under CPS induces CD4+ T 
cell and antibody responses, protection in humans correlates 
with liver stage-specific CD8+ T cells [42]. 

Subunit Vaccines 

 Viral vectors have been extensively evaluated as malaria 
vaccine candidates based on their ability to encode 
Plasmodium antigens and induce subsequent CD8+ T cell 
responses [92]. Examples of viral vector platforms for 
inducing Plasmodium-specific CD8+ T cell responses 
include replication-deficient adenoviruses (e.g., human, 
simian, and chimpanzee serotypes) and replication-deficient 
orthopoxviruses (e.g., modified vaccinia virus Ankara 
(MVA) and fowl pox 9 virus) [93, 94]. In addition, 
alphavirus, flavivirus, and morbillivirus may represent 
platforms to generate Plasmodium-specific CD8+ T cell 
responses [94]. In comparison with the other techniques used 
for induction of Plasmodium-specific CD8+ T cell responses, 
viral vectors overcome many manufacturing complications 
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related with mosquito and/or sporozoite based formulations 
[95]. Another advantage of viral vectors is their ability to 
carry multiple transgenes and immune-stimulatory mole-
cules, such as TLR agonists [96]. They also afford the ability 
to introduce cross-stage antigens to induce both liver and 
blood stage immune responses. 
 One of the main limitations of viral vectors is pre-
existing immunity to the viral vector itself, which can 
dampen the host immune response to the transgene [97, 98]. 
Furthermore, as a consequence of the host immune system 
responding to the viral vector, it is essential that subsequent 
booster immunizations be done with different viral vectors 
engineered to carry the same Plasmodium transgene. Of the 
viral vectors evaluated as candidate malaria vaccines, 
poxviruses have been the most extensively studied in the 
clinic, however they have provided only modest protection 
against sporozoite challenge in humans [99, 100]. Conse-
quently, chimpanzee adenoviruses have been targeted based 
on their ability to both prime robust CD8+ T cell responses 
and avoid pre-existing vector immunity [101]. 

ROLE OF CD8+ T CELLS DURING THE BLOOD 
STAGE OF PLASMODIUM 

 Experimental models have demonstrated CD8+ T cells are 
important in the immune response against liver stage parasites. 
In contrast, they contribute little to protective immunity during 
the blood stage [102, 103] and are potentially pathogenic [104-
106]. The limited role of CD8+ T cells during the blood stage 
Plasmodium infection is explained by the lack of MHC class I 
on the surface of infected red blood cells [107]. Although blood 
stage-specific CD8+ T cells contribute little to protective 
immunity they are efficiently primed during infection in a 
process that involves cross-presentation mediated by CD8α+ 

DCs [108]. In contrast, it has been reported that IL-10 impairs 
the ability of DCs to fully prime CD8+ T cells during malaria, 
resulting in decreased proliferation and cytokine production 
[109]. Regardless of their induction, there is strong support for 
blood stage-specific CD8+ T cells contributing to Plasmodium-
induced pathology during experimental cerebral malaria in mice 
[104, 110-113]. There appears to be at least two mechanisms by 
which this occurs. First, CD8+ T cells, through an unknown 
mechanism involving IFN-γ, contribute to parasite accumulat-
ion in the brain [114]. Second, following recognition of antigen, 
Plasmodium-specific CD8+ T cells release perforin and 
granzyme B, which leads to experimental cerebral malaria [112, 
115]. Curiously, CD8+ T cells do not recognize parasite infected 
RBCs, thus it’s not clear what cells stimulate the CD8+ T cells 
to release perforin and granzyme B. One possibility is that 
vascular endothelial cells acquire antigen from infected RBCs 
during cytoadherance, which is then recognized by CD8+ T 
cells. Of note, it is unknown if CD8+ T cells contribute to 
cerebral malaria in humans. 

CD8+ T CELL MEDIATED IMMUNITY AGAINST 
TOXOPLASMA GONDII 

 Toxoplasma gondii is the causative agent of toxoplas-
mosis, its an apicomplexan parasite that infects a wide range 
of vertebrates including humans [116, 117]. This parasite is 
transmitted between animals by ingestion of oocysts found in 
feline feces or tissue cysts in infected vertebrates [118]. 

Once in the intermediate host, the parasite undergoes asexual 
replication and disseminates throughout the body, including 
the brain, where it establishes intracellular infections and the 
formation of cysts [118]. Control of T. gondii requires the 
synergic interaction of multiple soluble (i.e. IL-12, IFN-γ) 
and cellular components (natural killer cells, DCs, macro-
phages, and CD4+ and CD8+ T cells) of the host immune 
system [119]. 
 Depletion of CD8+ T cells, but not CD4+ T cells, using 
monoclonal antibodies accelerates the mortality of mice 
chronically infected with T. gondii [120-122], which provides 
support for the role of CD8+ T cells in controlling the parasite 
during the chronic phase of the infection. CD8+ T cell mediated 
control of T. gondii is dependent upon the production of 
IFN-γ [123, 124] and perforin [125-127]. One mechanism by 
which IFN-γ contributes to the control of T. gondii is by 
stimulating monocytes, macrophages and non-hematopoietic 
cells to produce nitric oxide [128, 129], however the precise 
mechanism by which these molecules afford protection is not 
known. Both IL-2 and CXCL10 also contribute to CD8+ T cell 
control of T. gondii. IL-2, which is produced by CD8+ T cells, 
increases IFN-γ production during the secondary response to T. 
gondii through an autocrine feedback loop [124], while 
CXCL10 was demonstrated to maintain effector CD8+ T cells in 
the brain and regulate migration speed towards T. gondii 
infected cells [130]. 

ROLE OF CD8+ T CELLS DURING LEISHMANIA 
INFECTION 

 Leishmaniasis is caused by various species of Leishma-
nia (L. major, L. donovani, L. braziliensis, L. infantum, etc.), 
and is transmitted by 30 different sand fly species [131]. 
Clinical manifestations range from self-healing cutaneous 
lesions to deadly visceral disease. The contribution of CD8+ 
T cells in mediating protection against experimental 
cutaneous Leishmanias has been controversial. Early 
evidence suggested CD8+ T cells contributed to protective 
immunity [132]. However, subsequent studies identified 
CD4+ Th1 cells as the primary cells involved in controlling 
infection [133]. These contradictions were later resolved 
when it was shown that following low dose infection CD8+ T 
cell produced IFN-γ was necessary for the development of 
Th1-polarized CD4+ T cells, while after high dose infection 
CD8+ T cells were not required for the generation of a 
protective Th1 response [134]. In addition to their role in 
cutaneous Leishmaniasis, CD8+ T cells also provide protect-
ion against visceral Leishmaniasis. During visceral Leishma-
niasis CD8+ T cells aid in the development of granulomas in 
the liver of infected mice [135], and the reduction of parasite 
burden in the spleen [136]. Moreover, CD8+ T cells have 
been shown to contribute to protective immunity during 
secondary Leishmania infections in mice [137]. The insights 
learned from experimental Leishmaniasis appear to hold up 
in humans, where CD8+ T cells also correlate with protective 
immunity (reviewed by Stagar and Rafati [138]). 

ROLE OF CD8+ T CELLS DURING TRYPANOSOMA 
CRUZI INFECTION 

 T. cruzi is the causative parasite of Chagas disease, a 
zoonotic chronic inflammatory disease transmitted by 
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haematophagous triatomine insects [139]. CD8+ T cells 
contribute to control of the parasite during acute and chronic 
stages of the disease [140-142]. A role for CD8+ T cells in 
the control of acute T. cruzi infection was shown through the 
use of β2-m-deficient mice, which lack MHC class I 
expression on the cell surface, as these mice succumb to 
acute infection [143]. Additionally, CD8+ T cells are 
required for control of chronic T. cruzi infection as depletion 
of CD8+ T cells during chronic infection resulted in 
exacerbation of inflammation within the heart, the site of 
chronic infection, and an increase in parasite burden [144]. 
Moreover, recent work has identified a number of CD8+ T 
cell epitopes within the T. cruzi genome, including an 
immune dominant epitope located in the trans-sialidase gene 
[145-148]. Identification of these epitopes may facilitate 
additional studies to evaluate the contribution of CD8+ T 
cells to protective immunity against T. cruzi and may also 
guide sub-unit based vaccines against this parasitic infection. 
 In spite of the induction of T. cruzi-specific CD8+ T cells 
there are several notable abnormalities associated with this 
response, which may contribute to impaired clearance of the 
parasite and progression to a chronic infection. For example, 
expansion of CD8+ T cells is delayed and remains relatively 
low in numbers during the first week of infection [148-150], 
which likely contributes to dissemination and an increase in 
the parasite burden throughout the host. Effector and 
memory CD8+ T cells accumulate at the site of infection 
[151], however effector functions of CD8+ T cells are 
attenuated and the CD8+ T cells eventually become 
exhausted [151-154]. Given the impact of T. cruzi on human 
health there is still much to be learned about the host 
immune response, including CD8+ T cells, to this parasite. 

CONCLUSION 

 CD8+ T cells contribute to protective immunity against 
multiple intracellular parasitic infections. In recent years we 
have learned a great deal about how CD8+ T cells are 
primed, expand into effector and memory populations, and 
contribute to protective immunity against Plasmodium spps. 
and T. gondii. However, the contribution of CD8+ T cells in 
host immune responses to Leishmania and T. cruzi are not as 
well defined. A greater understanding of the requirements 
for CD8+ T cells to mediate protective immunity against 
these parasitic infections, especially in humans, is needed in 
order to develop effective vaccines against these pathogens. 
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