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High chemoselectivity in the phenol synthesis
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Efforts to trap early intermediates of the gold-catalyzed phenol synthesis failed. Neither inter- nor intramolecularly offered vinyl

groups, ketones or alcohols were able to intercept the gold carbenoid species. This indicates that the competing steps of the gold-

catalyzed phenol synthesis are much faster than the steps of the interception reaction. In the latter the barrier of activation is higher.

At the same time this explains the high tolerance of this very efficient and general reaction towards functional groups.

Introduction

As documented in numerous reviews [1-10], over the last
eleven years homogeneous gold catalysis has emerged from
early examples [11,12] which documented its potential for
organic synthesis of even complex molecules to an established
tool in preparative organic chemistry [13,14]. One of these early
examples is the gold-catalyzed phenol synthesis [12] in which
the furan-ynes 1 used as substrates represent the first ene—yne-
type compounds ever used in gold catalysis. While many
investigations in the field focused on methodology, mecha-
nistic research was much less widespread [2,3,15]. The gold-
catalyzed ene—yne cycloisomerization reactions are, mechanisti-
cally, very complex reactions [16-18], and the furan—yne cycloi-

somerization is no exception. For the latter reaction arene

oxides D [19] and oxepines C [20] could be detected as inter-
mediates, and these could even be trapped by Diels—Alder reac-
tions. In addition, labelling studies were carried out and the
electronic influence of substituents was investigated [21].
Computational studies as well as side-products produced in the
reaction pointed towards intermediates A and B (Scheme 1)
[22-25]. Moreover, interesting new pathways were opened
when ynamides and alkynyl ether substrates were employed:
Here A is also a possible intermediate along these pathways
[25].

Since direct experimental evidence existed only for C and D,

we intended to intercept the postulated carbenoid intermediates
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Scheme 1: Mechanism of the furan—yne reaction.

A or B. Apart from intermolecular trapping [26-33], intramolec-
ular trapping of such carbenoids has also been reported [34].
One option would be to offer a competing carbonyl group, to
produce a carbonyl ylide, which could then undergo a 1,3-
dipolar cycloaddition [35]. The second option would be a clas-
sical cyclopropanation of an olefin. A third option would be
trapping of intermediate A with an intramolecular hydroxy
nucleophile [36]. Here we report our observations when trying
to apply these principles to intermediates of type A or B.

Results and Discussion

Intermolecular olefinic trapping reagents

We started with the simplest experiments, namely the intermol-
ecular trapping of the gold carbenoid intermediates. When 3
was reacted in the presence of an activated olefin, such as
norbornene or styrene, phenol 4 was formed exclusively in
essentially quantitative yield, no other products could be
detected (Scheme 2).
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Scheme 3: Efforts for intermolecular trapping with ketones failed.
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Scheme 2: Efforts for intermolecular trapping with olefins failed.

Experiments with a competing carbonyl group (competing with
the carbonyl group in intermediate B) were also unsuccessful.
Ketone 5 [37], prepared by the addition of methyllithium to
commercially available hex-5-enoic acid, was used as an
external carbonyl group. Reaction with both tosylamide 3 and
ether 6 always delivered the phenolic products 4 or 7, respect-
ively (Scheme 3). The same result was obtained when PtCl,
was used as the catalyst for the conversion of 3.

Intramolecular olefinic trapping reagents

The next step was to offer the styrene unit in an intramolecular
manner. Substrate 8 could potentially undergo three different
modes of reaction (Scheme 4). After the initial step, the inter-
mediate E would be produced (analogous to A). Cyclopropana-
tion of the styrene subunit by the cyclopropyl carbenoid would
deliver 9. If E rearranged to the vinylcarbenoid F, the two
competing reactions would be the formation of the phenol 10
and cyclopropanation to form 11.

The synthesis of 8 was possible by a short route (Scheme 5).
Starting from the commercially available 2-bromostyrene (12),
a halogen—metal exchange and subsequent formylation
according to a procedure of Fukumoto et al. [38] gave 13. Add-
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Scheme 4: Potential products of an intramolecular trapping experiment with substrate 8.
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Scheme 5: Synthesis of the substrate 8.

ition of ethynylmagnesium bromide to 13 led to 14, which
reacted with furan 15 [40] under Mitsunobu conditions [39] to
afford 8. While the yields were good for the first two steps of
the reaction sequence, the yield of the last step was only 32%.

With AuClj the phenol 10 was formed exclusively (Scheme 6).
The structure was unambiguously confirmed by X-ray crystal
structure analysis (Figure 1). It shows an interesting hydrogen
bond-like interaction of the phenolic hydroxy group and the
alkene unit. After changing the solvent from acetonitrile to
CDCl3, and the gold(I) catalyst to [Mes3PAu]NTf, [41], only
10 was again observed. Thus, neither of the two oxidation states
of the gold catalyst gave any product derived from the inter-
cepted intermediate (the solvent was changed to CDClj since

the activity of gold(I) is significantly reduced by MeCN).

\ \
O NTs 5 mol % AuCls NTs
= .
CD4CN, 5 h O;'
4
8 10 (75%)

Scheme 6: With substrate 8 the product of the phenol synthesis was
exclusively obtained.

Figure 1: Solid-state molecular structure of 10.

Intramolecular ketone as potential trapping
reagent

Next we decided to use a carbonyl group as the competing unit.
The intermediate G, formed from substrate 16, would offer the
option of competition of the phenol synthesis (Scheme 7,
pathway a) to yield 18, and reaction with the second carbonyl
group (Scheme 7, pathway b). The latter would form intermedi-
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Scheme 7: Potential products of an intramolecular trapping experiment with substrate 16.

ate H, which could then either afford product 17 via intramolec-
ular 1,3-dipolar cycloaddition with the olefin, or could form the
diene 19 by proton migration.

The synthesis of 16 was only possible by a 9-step sequence
(Scheme 8). The starting point was a Claisen condensation of
ester 20 and zerz-butyl acetate (21) in the presence of lithium
hexamethyldisilazide as the base. Ketoester 22 was obtained in
56% yield, however, the two-fold addition of 21 could not be
suppressed completely and 14% of the corresponding tertiary
alcohol 30 was also obtained. Reduction of the ketone 22 with
sodium borohydride and protection of the alcohol 23 with tert-
butyldimethylsilylchloride delivered 24 in excellent yield.
Reduction of the ester group with diisobutylaluminiumhydride
gave aldehyde 25. The addition of lithiated trimethylsilylacety-
lene provided the propargylic alcohol 26 and reaction with 15
under Mitsunobu conditions yielded 27. Deprotection of the
alkyne 27 and the silyl ether 28, followed by the oxidation of
the resulting alcohol 29 finally led to 16. It was not possible to
remove both silyl groups simultaneously with TBAF, longer
reaction times which would be necessary for the deprotection of
the hydroxy group led to decomposition of the substrate. At
0 °C and with a very short reaction time, the alkyne was depro-
tected selectively. Selective deprotection of the alcohol was
then possible with a mixture of acetic acid/water/THF. Another

route, in which the alcohol function was deprotected first, then

oxidized, followed by removal of the trimethylsilyl group from
the alkyne also failed. Thus treatment of 27 with acetic acid in
aqueous THF gave the desired alcohol 31in quantitative yield.
However, whilst Ley oxidation [42] on the small-scale deliv-
ered ketone 32 in yields of up to 80%, on a larger scale the yield
of 32 dropped dramatically to 28% and was accompanied by
two side-products, 33 and 5. The latter are formed by an elimi-
nation reaction of the amide in 32. Furthermore, it was not

possible to deprotect ketone 32 due to rapid decomposition.

One of the diastereoisomers of 28 was identified as the anti-pro-
duct 28a by an X-ray crystal structure analysis (Figure 2).

The conversion of 16 with 5 mol % AuCl; proceeded fast and
gave exclusively phenol 18. No other products could be
detected (Scheme 9).

The two gold(Ill) complexes 34 [43] and 35 [37] as well as the
dinuclear gold(I) complex 36 [44] gave the same result
(Figure 3). When the catalyst was changed to platinum(II) chlo-
ride in acetone, a complex mixture of inseparable products was

obtained.
Since the two diastereoisomers 28a and 28b with the propar-

gylic stereocenters were separable, we investigated the gold-

catalyzed conversion of the pure isomers. From the NMR
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Scheme 8: Synthesis of the substrate 16
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Figure 2: Solid-state molecular structure of 28a
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Figure 3: Catalysts 34, 35 and 36.

spectra taken during the conversion (Figure 4), it could be
clearly seen that no epimerization of the propargylic position
occurred. In addition to the selective transformation to the
phenols 37a and 37b as the main reaction products, partial
removal of the TBS group was observed (38, Figure 5).

Intramolecular alcohol as potential trapping

reagent

For the interception of intermediate A we also considered the
option of an intramolecular hydroxy nucleophile, compound 39
(Scheme 10) would represent this type of substrate. The inter-

mediate I would be an analogue of A. Instead of the phenol syn-

s
O NTs
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L

Figure 5: Structure of the desilylation product 38.

thesis to yield 40, an intramolecular nucleophilic attack at the
activated three-membered ring could form intermediate J,
which, after protodeauration, would provide ketal 41.

The synthesis of 39 was readily accomplished by the addition of
lithiated sylvan 42 to the PMB-protected aldehyde 43
(Scheme 11) [45]. The resulting furfuryl alcohol 44 was then
propargylated to give 45. The deprotection was however, prob-
lematic. Treatment of the latter with cerium ammonium nitrate
led to decomposition. Only with DDQ was the desired alcohol

39 obtained in moderate yield.

NTs
OTBS

37a

37b

Figure 4: "H NMR spectra of the separated diasterecisomers of the substrates for catalysis 28 (left) and of the products 37 (right, the small signals

are due to the deprotected compounds 38).
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Scheme 12: With substrate 39 and 45 exclusively the product of the
phenol synthesis is obtained.
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Scheme 10: Potential products of an intramolecular trapping experi-
ment with substrate 39. i i .
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