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Recent advances in nanotechnologies for cancer diagnosis and treatment have received
considerable attention worldwide. Nanoparticles are being used to create nanodrugs and
probes to diagnose and treat a variety of diseases, including cancer. Nanomedicines have
unique advantages, such as increased surface-to-volume ratios, which enable them to
interact with, absorb, and deliver small biomolecules to a very specific target, thereby
improving the effectiveness of both probes and drugs. Nanoprobe biotechnology also
plays an important role in the discovery of novel cancer biomarkers, and nanoprobes have
become an important part of early clinical diagnosis of cancer. Various organic and
inorganic nanomaterials have been developed as biomolecular carriers for the detection of
disease biomarkers. Thus, we designed this review to evaluate the advances in
nanoprobe technology in tumor diagnosis.
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INTRODUCTION

Cancer is currently one of the leading causes of death worldwide, with the number of cancer patients
expected to increase over the next 50 years as demographic changes, such as population aging and
growth, strongly influence cancer incidence and trends across different regions. Assuming that the
latest incidence trends of major cancer types continue, the combined incidence of all cancers would
double by 2070 (1). Cancer is often fatal, with early diagnosis generally acting as the deciding factor
in therapeutic response. Thus, novel cancer prevention strategies and diagnostic tools must be
developed to effectively reduce the number of future cancer cases and save more cancer patients.

Cancer is characterized by abnormal cell differentiation and proliferation, uncontrolled growth,
invasion, and metastasis, and its occurrence is a complex multi-factor and multi-step process (2).
Earlier cancer detection improves survival rate; however, about 50% of cancers are already in
Abbreviations: ACQ, Aggregation-caused quenching; NPC, nasopharyngeal carcinoma; PA, Photoacoustic; PET, Positron
emission tomography; SPION, Superparamagnetic iron oxide
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advanced stages of pathogenesis at their time of diagnosis (3–5).
Early detection of cancer or precancerous lesions allows early
intervention attempting to slow or prevent cancer progression
and mortality. In addition to a better understanding of risk
susceptibility for certain cancers, the biology and trajectory
of precancerous and early cancer lesions must be assessed in
order to identify secondary diseases that may require
intervention. These efforts are best accelerated by early
detection research translated into sensitive and specific early
detection technologies (6). This need is supported by the
observations following the COVID-19 pandemic, which has
had a significant impact on cancer patients across the globe.
Pandemic responses have resulted in delayed diagnosis and
disruptions in treatment and follow-up care, increasing overall
infection rates and premature deaths (7–9). This has highlighted
the need to reduce the delays in cancer diagnosis associated
with traditional diagnostic models and to address the inaccuracy
and disruptions in diagnosis caused by COVID-19 (10).
In this review, we aim to explore the application of tumor
nanotechnology in tumor diagnosis.
NANOMATERIALS AND CANCER
DIAGNOSIS

Nanomedicine is an emerging science often applied in cancer
therapy, as it is characterized by tumor-specific drug
delivery, conferring a significant therapeutic advantage over
traditional interventions (11–15). The integration of imaging
and nanoprobes for cancer diagnosis and treatment may
facilitate better responses and reduced side effects in
normal tissues (14, 16, 17). This means that nano-biosensors are
likely to be critical to the development of novel cancer therapies
and diagnostics, as they can be used to detect cancer biomarkers,
map cancer cells, and monitor metastasis in response to different
substrates and conditions (18, 19). Thus, the cancer diagnosis
and treatment landscape has expanded considerably over the
last decade, propelled by advances in novel therapies and
improved diagnostics (14, 16, 17, 20). This recent success in
nanomedicine research has also paved the way for accurate
diagnosis through the interaction of nanoprobes with specific
biological systems (21, 22).
NANOPROBE TECHNOLOGY

Fluorescent Probes
Optical tumor detection is becoming more and more common in
biomedical research, but its limitations, including light
penetration depth and signal attenuation in tissues, need to be
overcome (23). Therefore, different optical imaging methods
using nanoprobe technology have been developed for
application in the fields of fluorescence, phosphorescence, and
photoacoustic (PA) imaging. These methods are more sensitive
than traditional techniques, providing higher resolution images
and making it easier to get information pointing to anoxic areas.
Frontiers in Oncology | www.frontiersin.org 2
Fluorescent probes are most common in optical sensors.
Fluorescent probes bound to selected nanocarriers can
produce dense hydrophobic aggregates following self-assembly
in aqueous solutions. The probes can be activated by stimulus-
specific “off-on” activation, improving the signal-to-noise
ratio within the region of interest, resulting in extremely
high sensitivity and increased resolution. Many of these
probes are used to evaluate multiple tissues and subcellular
structures (24).

Aggregation-caused quenching (ACQ) refers to the strong
coupling reactions between ground state fluorophores that form
a stable non-influenza fluorescence complex with a unique
absorption spectrum (25), which is a typical activatable design.
Yang et al. (26) took advantage of this simplicity to develop a
scalable hypoxic-responsive human serum albumin-triggered
nanosystem, consisting of human serum albumin, the near-
infrared imaging photosensitizer chlore6, an oxaliplatin
precursor, and a hypoxic-sensitive linker, azobenzene 4,4
‘dicarboxylic acid. When exposed to a hypoxic tumor
microenvironment, the nanosystem is cleaved by nitrogen
reductase, breaking up the ultra-small human serum albumin
aggregates and restoring chlore6 fluorescence, facilitating clear
hypoxic imaging (27). Although the ACQ probe is simple to use,
the quenching state of the dye largely depends on the assembly
state of the nanocarrier. Thus, the status of the ACQs in any
given carrier may be influenced by a variety of in vivo factors,
including protein binding and enzyme degradation, which may
lead to decreased selectivity and specificity for tumors.

In addition to general activatable designs, imaging strategies
targeting tumor biomarkers via in situ luminescence can also be
used to effectively image tumors in vivo. For example, the HIF-
1a-induced transmembrane protein CAIX, which is a biomarker
for hypoxic environments, is widely expressed on the surface
of hypoxic cells (28). Huang et al. (29) evaluated the application
of a CAIX-specific IRDye 800CW probe (CAIX-800)
for hypoxia detection in a mouse model of orthotopic
nasopharyngeal carcinoma (NPC). Their data revealed that a
combination of this dye and fluorescence molecular tomography
or computed tomography could be used to accurately locate
early-stage NPC tumors, with detection as early as 2 weeks.
Lymph node metastases from advanced NPC (6 weeks) were
then observed using multispectral PA imaging. Taken together,
the results of this study show that molecular conjugation
combining appropriate targeting groups and near-infrared dyes
can facilitate the selective imaging of specific anoxic analytes
in vivo.

In addition, anaerobe integration in nanocarriers can also
facilitate tumor targeting, as these microbes can only survive in
anoxic environments; thus, their inclusion would force
aggregation to the hypoxic areas of the tumor. In addition,
bacterial migration to hypoxic tumors can also be facilitated by
external stimulation. F. Chen et al. (30) attached lipid
nanoparticles loaded with indocyanine green to bacterial
surfaces to target and ablate hypoxic tumors through
photothermal therapy. Fluorescent probes based on nanocarriers
are used more and more frequently in tumor diagnosis.
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Phosphorescent Probes
Following photoexcitation, an excited electron passes through the
excited triplet state between the systems, inducing a spin
transition, which returns a singlet to the ground state and emits
photons in the form of phosphorescence. Phosphorescence
can then be converted to pO2 by calibrating the probe using the
Sterne-Volmer equation. Several research groups have gone on to
develop phosphorescence probes for various applications,
including direct pO2 measurement (31, 32). Phosphorescent
probes have the advantages of high spatial resolution and direct
and reversible pO2 quantitative analysis. Yoshihara et al. (33)
reported that Ru (II) complexes could be coupled with oligodeoxy
nucleotides containing pyrene and nitroimidazole ligands, and
that the hydrophilicity of the modified metal complex molecules
could facilitate the induction of nanoaggregates, which could then
be used to support qualitative analysis of tumor burden. In
addition, Liu et al. (34) recently combined complementary
imaging technology with nanoparticles to achieve high-quality,
reliable, and quantitative hypoxia detection in several different
cancer models. In this study, the research team encapsulated
benzene-substituted Pd (II) porphyrin (PdTPTBP) into dSPE-
PEG 2K phospholipid micelles (Pd-) in MX, to produce
a phosphorescent nanoprobe, which could then be applied
as a time-resolved lifetime imaging system. By combining the
wide field of view of luminescent lifetime imaging with O2-
sensitive nanoprobes, this group were able to quantify O2

localization in tumors and thus identify hotspots for likely
tumor formation.

PA Probes
PA tomography may be another potential approach for
addressing the limitations of modern imaging associated with
maximum tissue penetration depth. This system works by
converting excited light energy to heat/sound energy,
facilitating a significant increase in penetration depth while
maintaining near-microscopic spatial resolution. PA signals are
generated by photon absorption, which causes rapid
thermoelastic expansion and sound wave propagation. These
pressure waves can be detected by transducers, and PA images
can then be produced. These images are characterized by
improved tissue penetration depth (35). A recent study (36)
used endogenous PA imaging to detect tumor hypoxia in a
multicancer model, providing anatomical and functional
information on hypoxia. Knox et al. (37) developed a hyper-1-
based hypoxic response probe for radiographic PA imaging,
which utilized the aza-Bodipy platform and a dialkyl aniline
substitutive group, facilitating further oxidation of the system to
produce the single n-oxide probe RHP-1. Probe evaluations
revealed a two-fold increase in PA 820 nm/PA 770 nm
emissions when these sensors were placed under hypoxic
conditions. Furthermore, in vivo PA imaging revealed that the
hypoxic regions of the tumor could be mapped for 3D
reconstruction when using a RHP-1 probe. Recently, M. Chen
et al. (38) applied the bioreducible N-oxide hypoxia-sensitive
probe Hyper-650 with enhanced molar absorption to high
resolution PA microscopy. This system facilitated the
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simultaneous and constant monitoring of vascular sO2 and
tissue oxygenation, following its combination with endogenous
contrast agents. These images revealed that the identified tumor
hypoxia center signals were consistent with those identified using
traditional sO2 imaging, supporting their clinical value.

Tumor Imaging Based on Dendritic Cells
The tumor microenvironment is characterized by gradual changes
in both spatial and temporal heterogeneity, which can be used to
explore its diagnostic application in tumors. Fluorescent imaging
probes responsive to various conditions, including hypoxia, pH, and
protease expression, may be used to evaluate and diagnose specific
tumor conditions (39–42). In precision medicine, molecular
imaging is primarily used to identify cancer-specific targets,
design therapeutic methods, and monitor drug administration
responses. DCs, for example, are the most adept antigen-
presenting cells, transmitting information to the cells in the
adaptive immune system (27, 28). Accurate antigen delivery and
effective activation of immune pathways are key to the development
of DC anticancer vaccines and successful immunotherapy.
However, DC viability, function, and their ability to migrate in
vivo remain unknown. Superparamagnetic iron oxide (SPION) is an
excellentMRI contrast agent that can be easily absorbed by DCs and
tracked using MRI. Thus, MRI using SPIONs can provide more
anatomical information and more detailed visualization than other
methods, but at lower sensitivity (43, 44). To overcome this
limitation Y.C. Chen et al. (45) pioneered the development of a
novel dual-mode nanoprobe, SPIONIR797, for tracking DC
migration in vivo and detection via a non-invasive combined
method. Thus, leveraging the advantages of high sensitivity, high
spatial resolution, and relatively simple operation, it is becoming
increasingly easy to visualize various diseases and use these imaging
techniques to draw critical diagnostic conclusions. Many of these
systems focus on a variety of disease models, including tumors,
inflammation, and atherosclerosis.

Other Imaging Nanoprobe Technologies
In addition to the technologies described above, other research
groups continue to work on a variety of alternatives. For
example, gold, si lver, and bimetall ic and magnetic
nanoparticles are widely used in the manufacture of sensing
tools due to their unique optical properties and biocompatibility
(22, 46–51). The functionalization of these nanoparticles with
different components provides an excellent opportunity to
assemble selective and sensitive sensing materials for the
detection of various cancer-related biomolecules. This was
exemplified in the Zhang et al. (52) study, where a
multifunctional ASnFAp : Gd/Tb system was synthesized using
a new bionic strategy. Subsequent in vitro and in vivo
experiments then confirmed improved tumor imaging and
recognition ability, compared with conventional methods. The
generated nanoparticles could be used as drug carriers for tumor
imaging and treatment with good tumor recognition, treatment
capacity, and superior biocompatibility. Thus, this study
supports the very important potential clinical application of
nanomaterials in diagnosis.
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PATH TO CLINICAL TRANSLATION

Given the complexity of the tumor microenvironment and the
diversity of analytes that contribute to global hypoxia, there is
currently no “gold standard” for measuring tumor hypoxia (53).
Nevertheless, several novel methods designed to detect and evaluate
tumor hypoxia have been developed, with several entering clinical
evaluations. These include oxygen electrodes, electron paramagnetic
resonance oximetry, positron emission tomography (PET),
and more.

One example is the system created by de Georgia (54), which
facilitates pO2 evaluation in invasive tumors via electrochemical
probes. This system has been successfully employed in critical care
settings focused on retaining nerve function. However, when the
oxygen is completely consumed, the electrode undergoes
electrochemical reduction, resulting in reduced signal sensitivity
and increasing inaccurate readings. This system is also invasive and
can lead to edema and hemorrhage in some tissues. Daimiel et al.
(55) developed an alternative technique for repeatable quantitative
pO2 measurement in tumors using electron paramagnetic
resonance oximetry. This non-invasive method requires the use of
a paramagnetic probe, which responds to the oxygen in any given
environment and evaluates pO2 levels bymeasuring relaxation rates.

In addition, recent developments in 2-nitroimidazole-based
radiotracers may facilitate an increase in PET application as an
alternative non-invasive technique for detecting tumor hypoxia.
Relatively short-lived radionuclides, such as 18F, can be easily
bound via isotope exchange reactions to produce novel probes.
Several studies have evaluated 18F LA-Beled FMISO,
pentafluorinated etanidazole, hydrophilic fluoridazole, and
arabinosfluorroazomycin as PET probes for hypoxia imaging (56).

However, the development of a new probe must always be
followed by preclinical evaluation and scaled-up good
manufacturing practices to facilitate clinical trials. Obstacles in
each specific area must be overcome before probes can be
incorporated into routine clinical practice. Despite all the
immediate challenges of clinical transformation, nanoprobe
imaging offers significant opportunities to provide improved
non-invasive diagnostic tools. Combining optical imaging with
other biomedical imaging methods may also facilitate
multimodal imaging, providing even better tumor detection.
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CONCLUSION AND PERSPECTIVES

Nanoprobes have a unique set of physical advantages,
including flexible biocompatibility and pharmacokinetics,
and most present various unique nanoscale properties,
providing more convenient tumor imaging. Nanostructures
can also promote the production of organic dye aggregates.
Thus, cancer diagnostic specialists have continued to
focus on biomedical sensing and imaging. Nanosensors
can also provide a protective substrate to prevent unnecessary
interactions within the biological environment and
improve in vivo circulation time and system delivery.
With improved understanding of the basic physical
phenomena resulting from nanoconstraints, nanosensors can
be designed to facilitate both assembly and disassembly
in response to specific physicochemical conditions, providing
the possibility for the further development of “smart”
responsive nanosensors.

In addition, the high degree of heterogeneity between and
within tumors can result in complex diagnostic and evaluation
issues, including a large discrepancy in imaging results (57). This
highlights the importance of further studies on different tumor
types. Considering the temporal and spatial variability of tumors,
the development of sensors that can accurately track treatment
dynamics in real time is a promising concept. Thus, we believe
that nanoprobe sensors are likely to play a fundamental role in
our understanding of tumors and are almost guaranteed to
become increasingly important in the detection and treatment
of various cancers due to their physical, pharmacokinetic, and
nanoscopic properties.
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