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A number of neurodegenerative diseases have been linked to mutations in the human

protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular

activities) ATPase, that functions in a large number of cellular pathways. With the

assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP

hydrolysis to conformational changes that are necessary for its function. Disease-linked

mutations, which are found at the interface between two main domains of p97, have

been shown to alter the function of the protein, although the pathogenic mutations do not

appear to alter the structure of individual subunit of p97 or the formation of the hexameric

biological unit. While exactly how pathogenic mutations alter the cellular function of p97

remains unknown, functional, biochemical and structural differences between wild-type

and pathogenic mutants of p97 are being identified. Here, we summarize recent progress

in the study of p97 pathogenic mutants.
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P97 ASSOCIATED DISEASES

Multisystem Proteinopathy (MSP)
MSP1 (OMIM #167320, also called Inclusion bodies myopathy with Paget’s disease of bone and
frontotemporal dementia, IBMPFD) is an autosomal dominant disorder, meaning a single copy of
the altered gene from either parent is sufficient to cause the disease. There are also cases of new
mutations occurring in individuals with no family history of the disorder. The disease is traced to
mutations in the gene that encodes p97, also known as VCP (valosin-containing protein) (Kimonis
et al., 2000). MSP1 can affect multiple tissues including muscles, bones, and brain (Benatar et al.,
2013; Kim et al., 2013). The first symptom of the disease is often muscle weakness (IBM, inclusion
bodymyopathy), which typically appears late in life when the patient is at the age of 50–60 years old,
and is found in more than 90% of cases. Half of the cases develop Paget’s disease of the bone (PD),
which interferes with the recycling process of new bone tissue replacing old one, causing abnormal
bone formation. Bone pain, particularly in the hips and spine, is common. One-third of the cases
also involve a brain condition called frontotemporal dementia (FTD). This disorder progressively
damages parts of the brain that control reasoning, personality, social skills, speech and language,
leading to personality changes, a loss of judgment and inappropriate social behavior. So far, more
than 20 missense amino acid substitutions on p97 have been identified inMSP1 patients, all located
in the N-terminal and D1 domains of the protein and none is found in the D2 domain (Figure 1A
and Table 1).

Familial Amyotrophic Lateral Sclerosis (FALS)
ALS or Lou Gehrig’s disease is a progressive neurodegenerative disease that affects the motor
neurons in the brain and spinal cord. When these nerve cells die, the brain loses the ability

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
https://doi.org/10.3389/fmolb.2016.00079
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2016.00079&domain=pdf&date_stamp=2016-12-01
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive
https://creativecommons.org/licenses/by/4.0/
mailto:xiad@mail.nih.gov
https://doi.org/10.3389/fmolb.2016.00079
http://journal.frontiersin.org/article/10.3389/fmolb.2016.00079/abstract
http://loop.frontiersin.org/people/339398/overview


Tang and Xia AAA Chaperone p97 and Diseases

FIGURE 1 | Structure of the AAA ATPase p97. (A) Schematic domain organization of a p97 subunit showing the three structural domains: N-terminal N domain

and two ATPase domains D1 and D2, and the positions of pathogenic mutations. (B) Ribbon representation of the top and side views of the hexameric structure of
FLp97 (PDB:3CF2, Davies et al., 2008). The N domain is in purple, D1 domain in blue and D2 domain in gold. (C) The top view of ND1p97 structure showing the

location of pathogenic mutations. Selected pathogenic mutations (residue I27, R93, I126, P137, R155, R191, L198, I206, A232, T262, N387, N401, A439) are

represented as yellow spheres on the ribbon diagram of ND1p97 with ADP bound (PDB: 1E32, Zhang et al., 2000).

to control muscle movement, causing complete paralysis in late
stages of the disease and eventually death. In about 90% of cases,
the cause of ALS is sporadic, which means they are not inherited.
Pathological hallmarks of ALS are pallor of corticospinal tract
due to loss of motor neurons, the presence of ubiquitin-positive
inclusions and the deposition of pathological TDP-43 aggregates.
The cause of this sporadic ALS is not well understood; it may be
due to a combination of environmental and genetic risk factors.
About 10% of cases are considered “familial ALS” (FALS, OMIM
#613954). In these cases, more than one individual in the family
develops ALS and sometimes family members have FTD as well.
Mutations in at least 18 genes have been identified in FALS cases,

with mutations in the p97 gene contributing <1–2% (Table 1)
(Johnson et al., 2010; Koppers et al., 2012; Kwok et al., 2015).

Charcot-Marie-Tooth Disease, Type 2Y
(CMT2Y)
CMT2Y (OMIM #616687) is an autosomal dominant axonal
peripheral neuropathy characterized by distal muscle weakness
and atrophy associated with length-dependent sensory loss. The
disease CMT is named after the three physicians who first
accurately described it in 1886: Jean-Martin Charcot and Pierre
Maries in France, and Howard Henry Tooth in England. Its
principal features include slowly progressive muscular atrophy,
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TABLE 1 | Pathogenic mutations in p97.

Change in

amino acid

Change

in gene

Location

in protein

Phenotype References

I27 I27V 79A>G N domain IBM, FTD, PDB Rohrer et al., 2011; Majounie et al., 2012; Weihl et al., 2015

R93 R93C 277C>T N domain IBM, PDB, FTD Guyant-Maréchal et al., 2006; Hübbers et al., 2007

R93H 278G>A N domain HSP Neveling et al., 2013

R95 R95C 283C>T N domain IBM, ALS Weihl et al., 2015

R95H 284G>A N domain AD Kaleem et al., 2007

R95G 283C>G N domain IBM, PDB, FTD, ALS Watts et al., 2004; Kimonis et al., 2008b

G97 G97E 290G>A N domain IBM, PDB, FTD Gu et al., 2012; Jerath et al., 2015

I114 I114V 340A>G N domain ALS Koppers et al., 2012

I126 I126F 376A>T N domain IBM, PDB, FTD Matsubara et al., 2016

T127 T127A 379A>G N domain FTD, AD Shi et al., 2016

P137 P137L 410C>T N domain IBM, PDB, FTD Stojkovic et al., 2009; Palmio et al., 2011

I151 I151V 451A>G N domain IBM, ALS DeJesus-Hernandez et al., 2011; Boland-Freitas et al., 2016

R155 R155S 463C>A N domain IBM, PDB, FTD Stojkovic et al., 2009

R155L 464G>T N domain IBM, PDB, FTD Kumar et al., 2010

R155H 464G>A N domain IBM, PDB, FTD, ALS Watts et al., 2004; Hübbers et al., 2007; Kimonis et al., 2008a; Viassolo et al., 2008;

Stojkovic et al., 2009; González-Pérez et al., 2012

R155C 463C>T N domain IBM, PDB, FTD, ALS Watts et al., 2004; Schröder et al., 2005; Guyant-Maréchal et al., 2006; Gidaro et al.,

2008; González-Pérez et al., 2012

R155P 464G>C N domain IBM, PDB, FTD Watts et al., 2004

G156 G156C 466G>C N domain ALS Segawa et al., 2015

G156S 466G>A N domain IBM, PDB, FTD Komatsu et al., 2013

G157 G157R 469G>C N domain IBM, PDB, FTD Djamshidian et al., 2009

469G>A N domain IBM, PDB, FTD Stojkovic et al., 2009

M158 M158V 472A>G N domain PDB, ALS Ayaki et al., 2014

R159 R159G 475C>G N domain ALS, FTD Johnson et al., 2010

R159C 475C>T N domain IBM, FTD, PD, ALS Bersano et al., 2009; Chan et al., 2012; de Bot et al., 2012; González-Pérez et al., 2012

R159H 476G>A N domain IBM, PDB, FTD, ALS Haubenberger et al., 2005; Stojkovic et al., 2009; van der Zee et al., 2009; Koppers

et al., 2012

E185 E185K 553C>T N domain CMT2Y Gonzalez et al., 2014

R191 R191G 571C>G N-D1 linker IBM, ALS González-Pérez et al., 2012

R191Q 572G>A N-D1 linker IBM, PDB, FTD, ALS Watts et al., 2004; Kimonis et al., 2008b; Stojkovic et al., 2009; Johnson et al., 2010;

González-Pérez et al., 2012

L198 L198W 593T>G N-D1 linker IBM, PDB, FTD Watts et al., 2007; Kumar et al., 2010

G202 G202W 604G>T N-D1 linker IBM, FTD Figueroa-Bonaparte et al., 2016

I206 I206F 616A>T N-D1 linker IBM, PDB, FTD Peyer et al., 2013

A232 A232E 695C>A D1 domain IBM, PDB Watts et al., 2004; Kimonis et al., 2008b

T262 T262A 784A>G D1 domain IBM, PDB, FTD Spina et al., 2008

K386 K386E 1158T>C D1 domain IBM Lévesque et al., 2016

N387 N387H 1159A>C D1 domain IBM, FTD Watts et al., 2007

N387S 1160A>G D1 domain IBM, PDB, FTD Liewluck et al., 2014

N387T 1160A>C D1 domain ALS Abramzon et al., 2012

N401 N401S 1202A>G D1 domain FTD, ALS Shi et al., 2016

A439 A439S 1315G>T D1 domain IBM, PDB Stojkovic et al., 2009

A439P 1315G>C D1 domain IBM, PDB, FTD Shi et al., 2012; Kamiyama et al., 2013

A439G 1316C>G D1 domain IBM, FTD Figueroa-Bonaparte et al., 2016

R487 R487H 1460G>A D2 domain FTD, ALS Hirano et al., 2015

D592 D592N 1774G>A D2 domain ALS Johnson et al., 2010

R662 R662C 1984C>T D2 domain ALS Abramzon et al., 2012

N750 N750S 2249A>G D2 domain ALS Kenna et al., 2013

IBM, inclusion body myopathy; PDB, Paget’s disease of bone; FTD, frontotemporal dementia; PD, Parkinson disease; ALS, amyotrophic lateral sclerosis; CMT2Y, Charcot-Marie-Tooth

disease.
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which initially involves the feet and legs, but does not affect the
upper extremities until several years later. CMT is a clinically and
genetically heterogeneous disorder and is divided into subtypes
based on genetics, pathology, and electrophysiology of the disease
(Dyck and Lambert, 1968). The subtype CMT2Y has missense
mutations in the p97 gene, which were identified in patients
(Gonzalez et al., 2014; Jerath et al., 2015) (Table 1). As most
patients with CMT2Y do not obtain a genetic diagnosis, the
number of cases having mutations in p97 may be higher than
expected.

STRUCTURAL AND BIOCHEMICAL
DIFFERENCES BETWEEN WILD-TYPE AND
PATHOGENIC p97

Structure of p97
P97 is a Type II AAA+ ATPase (two AAA ATPase domains)
and a homo-hexamer with each subunit consisting of three
main domains: the N-terminal domain (N domain) followed by
two tandem ATPase domains (D1 and D2 domains), which are
connected by two short polypeptides (N-D1 and D1-D2 linker).
Both the D1 and D2 domains possess all essential sequence
elements (Walker A and B motifs) for ATP hydrolysis and share
high amino acid sequence identity. The N domains are known
for interacting with various cofactors and adaptor proteins.
Cofactors of p97 are defined as those proteins that are necessary
for p97 function, whereas adaptors are those that target p97 to
different cellular locations (Xia et al., 2016). At first glance, a
p97 hexamer appears to have two rings of different sizes stacked
on top of each other. The crystal structure of full-length wild-
type p97 (FLp97) reveals that the two ATPase domains form two
concentric rings, called D1 and D2 rings, and the N domains
are attached to the periphery of the D1 ring (DeLaBarre and
Brunger, 2003) (Figure 1B). The hexameric architecture of p97
is maintained by interactions among the D1 domains (Wang
et al., 2003), as isolated D2 domains are prone to form heptamers
(Davies et al., 2008). This hexameric structure of p97 is very stable
and can withstand treatment of up to 6M urea and its assembly
does not require the addition of nucleotide (Wang et al., 2003).

More than 20 amino acid mutations have been identified in
p97 fromMSP1 or IBMPFD patients and these mutations appear
to be randomly scattered throughout the sequence of the N and
D1 domain of p97 (Figure 1A). However, when mapped to the
structure of FLp97, these MSP1 mutations were found exclusively
at the interface between the N and D1 domain (Figure 1C). None
was found at the sites where ATP hydrolysis occurs. Structural
studies using X-ray crystallography show the pathogenic mutants
retain a hexameric ring structure and share identical overall
folding with the wild-type protein (Tang et al., 2010).

Amount of Pre-bound ADP
One important characteristic of p97 related to binding of
nucleotides is the presence of pre-bound ADP at the D1 domain,
which was hinted at by p97 crystallization experiments in the
presence of different types of nucleotides. Crystallographic efforts
with wild-type p97 yielded ADP invariably bound to the D1

domain, while various types of nucleotides bound to the D2
domain (Zhang et al., 2000; DeLaBarre and Brunger, 2003),
leading to the misconception that the D1 domain was incapable
of exchanging for different types of nucleotides. Subsequent
experiments led to the realization that the nucleotide state
at the D1 domain of p97 is tightly regulated (Davies et al.,
2005). Without the addition of any ADP during the course of
purification, isolated wild-type p97 was shown to have tightly
bound ADP at the D1 domain with at least 3 molecules of ADP
per p97 hexamer (DeLaBarre and Brunger, 2003; Briggs et al.,
2008; Tang and Xia, 2013). This phenomenon is referred to as
the pre-bound ADP at the D1 domain. Apparently, a subset of
D1 domains in the hexameric p97 is occupied by ADP, thus
preventing saturation of all D1 sites with ATP, which has a higher
binding affinity for an empty D1 site (Tang et al., 2010; Tang and
Xia, 2013). Thus, structural studies of the conformational change
of wild-type p97, especially at low resolutionwhere the nucleotide
state is uncertain, should take the feature of the pre-bound ADP
into account when interpreting the results.

Compared with wild-type p97, pathogenic mutants have less
pre-bound ADP (Tang and Xia, 2013). More importantly, these
mutants are not able to tightly regulate the nucleotide state of the
D1 domain, as does the wild-type p97. They allowATP to displace
pre-bound ADP. Consequently, a uniform binding of ATP to the
D1 sites can be observed (Tang et al., 2010; Tang and Xia, 2013).

Communication among Domains and
Subunits
In each biological unit of p97, there are six identical subunits,
containing a total of 18 main domains. The proper function
of p97 therefore relies on a coordinated interplay among these
domains. For instance, the conformation of the N domain has
a strong influence over the ATPase activity of p97. Fixing the
N domain position by introducing a disulfide bond between the
N and the D1 domain reduces p97 ATPase activity (Niwa et al.,
2012). The binding of adaptor proteins such as p47 and p37 to the
N domain alter the overall ATPase activity of p97 (Meyer et al.,
1998; Zhang et al., 2015). On the other hand, the nucleotide states
of the D1 domains control the conformations of the N domain of
p97 (Tang et al., 2010; Banerjee et al., 2016; Schuller et al., 2016).

The binding of ATP in the D1 domain is required for the
activity of the D2 domain, and vice versa (Ye et al., 2003;
Nishikori et al., 2011; Tang and Xia, 2013). One of the possible
mechanisms of communication between these two ATPase
domains is through the D1-D2 linker. This 22-residue linker
peptide contains a highly conserved N-terminal half that appears
to be a random loop and extends to the vicinity of both the
D1 and D2 nucleotide-binding sites, as illustrated in the FLp97
structures (Davies et al., 2008). The inclusion of the D1-D2 linker
to the N-D1 truncate of p97 activates the ATPase activity of the
D1 domain (Chou et al., 2014; Tang and Xia, 2016).

Among the three domains of a p97 subunit, the D1 domain
seems to play a role consistent with (1) maintaining the
hexameric architecture of p97 (Wang et al., 2003), (2) driving
the conformational change of the N domain (Tang et al., 2010;
Banerjee et al., 2016; Schuller et al., 2016), (3) regulating the
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activity of the D2 domain (Tang and Xia, 2013), and (4)
communicating with and controlling the nucleotide states of D1
domains of neighboring subunits (Tang and Xia, 2013, 2016;
Zhang et al., 2015). All these suggest an intricate communication
network centered on the D1 ring of the hexameric p97.

Instead of causing structural changes to the protein,
pathogenic p97 mutations appear to alter the function of
p97 by perturbing the communication network between
domains. Our experiments have shown that while the
domain communication within an individual subunit remains
undisturbed, communication between neighboring subunits
in pathogenic mutants has changed, leading to uncoordinated
nucleotide binding among different subunits (Tang et al., 2010;
Tang and Xia, 2013). Specifically, the mutations weaken the
ADP-binding affinity at the D1 domain and thus relax the tight
regulation of the nucleotide states at the D1 domains (Tang and
Xia, 2013). As a result, more ATPase domains of mutants are
engaged in ATP hydrolysis compared to wild-type p97, giving
rise to an apparent more active protein with higher ATPase
activity (Halawani et al., 2009; Manno et al., 2010; Tang et al.,
2010; Niwa et al., 2012).

Nucleotide-Driven Conformational
Changes
It is generally believed that p97 functions as amolecular extractor,
pulling damaged or unwanted proteins from large molecular or
cellular assemblies. It does so by undergoing ATP-dependent
conformational changes to generate mechanical forces necessary
for substrate extraction (Acharya et al., 1995; Latterich et al.,
1995; Rabouille et al., 1995; Xu et al., 2011; Ramanathan and
Ye, 2012; Xia et al., 2016). Although exactly how p97 extracts
substrate from a large molecular assembly remains unclear,
progress has been made in identifying different conformations.
Low-resolution cryo-EM studies showed a moderate rotational
movement between the D1 and D2 rings in association with
changes in the size of the D2 central pore in response to the
presence of different nucleotide (Rouiller et al., 2002). However,
a similar study by another group suggested a different domain
movement (Beuron et al., 2003). The insufficient resolution to
determine the exact nucleotide state in each domain of p97 in
these studies could be the cause of the inconsistency.

Earlier crystallographic studies showed the D1 domains are
always bound with ADP, regardless of the presence of different
types of nucleotides in solution, and the N domains are in a
conformation that is coplanar with the D1 ring (Zhang et al.,
2000; DeLaBarre and Brunger, 2003; Davies et al., 2008). This
N domain conformation when the D1 domain is occupied
with ADP is termed the Down-conformation (Figure 2) (Tang
et al., 2010). On the other hand, the nucleotide-binding state in
the D2 domains is determined by what is present in solution
(either bound ADP, AMP-PNP, or ADP-AlFx). Therefore, these
crystallographic data can only reveal the conformational changes
associated with the nucleotide state at the D2 domain. The D2
ring undergoes a rotation relative to the D1 ring and size of
the D2 central pore changes during ATP cycle, but whether the
binding or the hydrolysis of ATP triggers the opening remains

FIGURE 2 | The Up- and Down-conformation of p97 N domain. Ribbon

presentation of the structure of the hexameric ND1p97. The D1 domains are

colored in blue and the N domains are in purple.

controversial (Davies et al., 2005; Pye et al., 2006; Banerjee
et al., 2016; Hänzelmann and Schindelin, 2016b; Schuller et al.,
2016). It is worth pointing out that, for the same nucleotide
state, non-uniform domain conformation is observed in subunits
within a crystallographic asymmetric unit, and the magnitude
of such a difference is comparable to that observed between
different nucleotide states (Davies et al., 2008). It is unclear if the
conformational differences observed in various nucleotide states
of the D2 domain represent actual changes in solution.

Recently, by genetically modifying some regions in the D2
domain, Hanzelmann and colleagues were able to determine the
crystal structure of full-length p97 with both ATPase domains
either empty or bound with ATPγS (non-hydrolyzing ATP
analog) (Hänzelmann and Schindelin, 2016b). The binding of
ATPγS opens the D2 pore and generates a rotational movement
between the two concentric rings. However, questions remain
concerning the physiological relevance of these observations, as
the effect of these mutations on the function of p97 was not
characterized.

Pathogenic mutations weaken the ADP binding interactions
at D1 sites and alter the regulation imposed among neighboring
subunits. Effects of these mutations, though very subtle, are
sufficient to make these mutants achieve uniform N domain
conformation or loss of asymmetry within the hexamer, which is
a property that facilitates crystallographic studies. When ATPγS
binds to the D1 sites of the N-D1 fragment of p97, the N domains
move to a position above the D1 ring, which is termed the Up-
conformation (Figure 2) (Tang et al., 2010). Such nucleotide-
dependent conformational switch has also been detected for only
a subset of subunits in wild-type p97 in solution (Tang et al.,
2010). The nucleotide-dependent conformational movement of
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the N domain has been confirmed by recent studies of full-
length wild-type p97 using single particle cryo-EM (Banerjee
et al., 2016; Schuller et al., 2016). Instead of having all six p97
subunits in the Up-conformation in the presence of ATPγS or
AMP-PMP, Schuller and colleagues observed a distribution of
N domain conformations, either in Up- or Down-conformation
within a hexamer (Schuller et al., 2016). By contrast, Benerjee and
colleagues only reported a single conformation that N domains
of all subunits were in the Up-conformation, despite the very
weak EM density for the N domain (Banerjee et al., 2016).
More interestingly, crystal structure of the full-length p97 with
genetically modified D2 domain showed the N domain remains
in the Down-conformation when the D1 domain is bound with
ATPγS (Hänzelmann and Schindelin, 2016b). Thus, whether
the six nucleotide-binding sites in the D1 ring bind ATP in a
concerted manner leading to symmetrical N domain movement
or in a sequential/random manner leading to asymmetrical
hexamer has yet to come to a consensus. However, the presence
of tightly pre-bound ADP in the D1 domains of a subset of p97
subunits may have already suggested a non-uniform nucleotide
binding of p97.

A model was proposed to illustrate the regulatory mechanism
of ATP binding and hydrolysis in the D1-ring and how it might
influence the ATPase activity of the D2 ring (Figure 3A) (Tang
et al., 2010; Tang and Xia, 2013). In this model, there are four
states for a subunit of a wild-type p97 hexamer, each representing
one specific nucleotide-binding state. (1) There is an Empty state
where no nucleotide is bound at the D1 site; the conformation
of the N- domain is unknown (pink sphere). Noticed that for
a wild-type p97 hexamer, only a subset of subunits is in the
Empty state because of the pre-bound ADP. The N domains
for those with pre-bound ADP are in the Down-conformation
and are shown as pink sphere labeled with D. (2) When ATP
enters the D1 site (ATP state), it is only allowed in the Empty
subunits and not allowed in those with pre-bound ADP. The
subunits with ATP bound have their N domain adopt the Up-
conformation (pink sphere labeled with T), which has been
determined from the crystal structure of IBMPFDmutants (Tang
et al., 2010). (3) The hydrolysis of ATP to ADP at the D1
domain brings the N domain back to the Down-conformation,
which is supported by the crystallographic data from both wild-
type p97 and IBMPFD mutants (Zhang et al., 2000; DeLaBarre
and Brunger, 2003; Huyton et al., 2003; Tang et al., 2010). (4)
Importantly, it was proposed that there are two ADP-bound
states existing in equilibrium for a subunit: an ADP-locked and
ADP-open state. Both ADP-open and ADP-locked states can
coexist for different subunits in a p97 hexamer. The ADP-locked
state is inspired by the presence of pre-bound ADP at the D1 site
in the wild-type p97, which is difficult to remove (Davies et al.,
2005; Briggs et al., 2008; Tang et al., 2010). The ADP-open state
represents the situation where ADP has a reduced affinity to the
D1 site ready to be exchanged. (5) It was also proposed that the
D2 domain of a subunit is permitted to hydrolyze ATP only if its
cognate D1 domain is occupied by ATP.

A major difference between the wild-type and mutant p97
was proposed to be the regulation of the inter-conversion
or the equilibration between the ADP-open and ADP-locked

FIGURE 3 | Model proposed for the relationship between control of N

domain conformation and ATPase activity in p97. Cartoon representation

of a hexameric p97 shows the D1 domains in blue, D2 domains in orange, and

the N domains in pink circle. N domains that are labeled with the letter “D” are

in the Down-conformation and their corresponding D1 domains are occupied

by ADP. N domains that are labeled with the letter “T” are in the

Up-conformation and their corresponding D1 domains are occupied with ATP.

Only those subunits that have their D1 domains occupied by ATP are capable

of hydrolyzing ATP in their D2 domains. The conformation of the N domains is

not determined when their corresponding D1 domains are empty (No label in

the N domain). Proposed nucleotide binding and hydrolysis cycle for (A) the

wild-type p97 and for (B) mutant p97. Mutations are represented by the green

dots at the interface between N and D1 domains. Empty state indicates a

state in the absence of added ATP or ADP. The ATP state is the presence of

added ATP. The ADP-locked state refers to a subset of subunits where ADP in

the D1 domain is very tightly bound, whereas the ADP-open state refers to a

subset of subunits where ADP molecules in the D1 domains are able to

exchange nucleotides with those in solution. The ADP-locked and ADP-open

states are in equilibrium in solution.

state (Figure 3B). In the wild type, the equilibration favors
the ADP-locked state, whereas in the mutant, it prefers
the ADP-open state. This means, in the case of a wild-
type p97 hexamer, that ATP can only get into a subset
of D1 domains, driving corresponding N domains to the
Up-conformation. This non-uniform nucleotide-binding state
in the wild-type p97 in the presence of ATP generates an
asymmetry in the N domain conformation in a hexameric
p97. In p97 mutants, the equilibration between ADP-locked
and ADP-open states is shifted toward the latter. As a result,
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a uniform nucleotide-binding state at the D1 domains and
a synchronized N domain movement can be reached in the
presence of a sufficiently high concentration of ATP, forming
symmetrical hexamers. More importantly, this model implies
that the function of p97 requires an asymmetry in the D1
nucleotide-binding state in a hexameric ring. We should also
point out that a consequence of this model is that the
p97 mutants are higher in ATPase activity, because there
are more ATP molecules occupying the D1 sites, which is
required for ATP hydrolysis in the D2 domain (Tang and Xia,
2013).

Although the role of the conformational changes observed
in p97 during the ATP cycle in relation to its physiological
function remains unclear, the opening and closing of the D2
pore as well as the up-and-down swinging motion of the
N domain have consistently been observed. As experimental
evidence increasingly points to a role played by p97 in
extracting protein substrates from its interacting partners, the
coordinated up-and-down motion of the N domain at the
D1 ring and the opening and closing of the D2 ring within
the hexamer during the ATP hydrolysis could conceivably
generate a pulling force to extract protein substrates from
various organelles. Taking ERAD as an example, p97 is recruited
to the ER membrane via interaction between the N domain
and adaptor proteins. The swinging movement of the N
domain would create a pulling force to extract the protein
substrates from the ER membrane. Conceivably, the generation
of this pulling force requires a highly sophisticated coordination
among the subunits of p97. As shown from biochemical and
structural studies, individual subunits of pathogenic mutants
fail to communicate, resulting in uniform movement of the
N domain. This un-coordinated conformational change in
pathogenic p97 may be why mutants fail to process protein
substrates effectively, thus leading to accumulation of protein
inclusions.

Interacting with Protein Partners
Over 30 different cofactor/adaptor proteins have been identified;
they interact mostly with the N domain but in some cases
the C-terminal tail of p97. These proteins either function as
adaptors that recruit p97 to a specific subcellular compartment or
substrate, or serve as cofactors that help in substrate processing.
They are found in many different subcellular structures such
as mitochondria, endoplasmic reticulum membrane, nuclear
membrane, and Golgi body. Hence, their bindings lead p97 to
function in different cellular pathways.

Several common binding-domains or motifs, such as the UBX
domain, the PUB-domain, and the VCP-interactingmotif (VIM),
have been found to interact with p97. Despite differences in
structures among these binding motifs, most of them bind to the
N domain at the interface between the two subdomains, as shown
from crystal structures of these binary complexes (Figure 4). This
observation provides an explanation for the mutually exclusive
binding pattern observed biochemically among various p97-
interacting proteins (Meyer et al., 2000; Rumpf and Jentsch,
2006). Intriguingly, while all six binding interfaces on the N
domains of a hexameric p97 are available, crystal structures of

FIGURE 4 | Structures of p97 in complex with interacting proteins. The

N domain of p97 is shown as a surface representation with the two

subdomains, double ψ-barrel and β-barrel, in gray and violet, respectively.

Individual domains or peptides from different p97-interacting proteins are

shown as a cyan cartoon. All the structures were superposed with the N

domain of p97 and presented in the same orientation. (A) PDB:1S3S (Dreveny

et al., 2004). (B) PDB:4KDI (Kim et al., 2014). (C) PDB:3TIW (Hänzelmann and

Schindelin, 2011). (D) PDB:5C1B (Hänzelmann and Schindelin, 2016a).

the complexes showed the binding stoichiometry is not more
than 3 molecules of adaptor proteins to 1 FLp97 hexamer
(Dreveny et al., 2004; Hänzelmann and Schindelin, 2016a).
Consistently, binding studies using the isothermal calorimetry
(ITC) technique showed a similar effect (Hänzelmann et al.,
2011). Indeed, the sharing of the same binding interface and
the substoichiometric binding of the interacting protein to
p97 led to the hierarchical binding model for p97 to fulfill
specific cellular functions (Hänzelmann et al., 2011; Meyer et al.,
2012).

The impact of pathogenic mutations on the interactions
between p97 and adaptor proteins has been investigated. So far,
there is no structural data in the literature that demonstrate
the difference in adaptor protein binding between wild-type and
mutant p97. Using isolated FLp97, it was shown biochemically
that cofactors p37 and p47 regulate ATPase activity of p97 in
a concentration-dependent manner. By contrast, mutant p97
lost this regulation although it still interacts with the cofactors
(Zhang et al., 2015). Results derived from cell-based experiments
from different groups are not always consistent (Fernández-
Sáiz and Buchberger, 2010; Manno et al., 2010). For example,
in one study, isolated mutant p97 exhibited the same binding
as wild-type p97 toward the adaptor proteins p47, Ufd1-Npl4,
and E4B, the human UFD-2 homolog. However, mutants in the
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same study showed impaired binding to ubiquitin ligase E4B
in the presence of Ufd1-Npl4. In vivo pull-down experiments
using HEK293 cells showed reduced binding toward the E4B
and enhanced binding toward ataxin 3, thus resembling the
accumulation of mutant ataxin 3 on p97 in spinocerebellar ataxia
type 3 (Fernández-Sáiz and Buchberger, 2010). In another study,
however, similar in vivo pull-down were carried out showing
enhanced binding of the Ufd1-Npl4 pair by IBMPFD mutants
but not for p47 (Manno et al., 2010). An increased amount of
cofactor pair Ufd1-Npl4 was detected in association with mutant
p97 (Fernández-Sáiz and Buchberger, 2010; Manno et al., 2010).
However, no significant difference was found in the binding of
the same adaptor to either wild-type or pathogenic mutants when
using isolated protein for pull-down assays (Hübbers et al., 2007;
Fernández-Sáiz and Buchberger, 2010). This inconsistency may
be due to the difference in the N domain conformation, which
depends on the nucleotide state at the D1 domain of p97. Such
an effect can be demonstrated by the seven-fold decrease in
the binding affinity of SVIP to pathogenic p97 in the presence
of ATPγS (Hänzelmann et al., 2011). So far, two nucleotide-
dependent conformations (the Up- and Down-conformation) of
the N domain have been observed in p97. In both cases, the
binding interface for adaptor proteins is available but orients
differently. In the Up-conformation, the binding interface faces
outward to the side of the hexameric ring, while in Down-
conformation, the binding interface faces down toward the D2
ring. As the sizes and shapes of adaptor proteins vary, it is
conceivable that the binding of some adaptor proteins will be
hindered by spatial restrictions caused by different N domain
conformations.

FUNCTIONAL DEFECTS IN PATHOGENIC
p97

The diverse biological roles played by p97 in various cellular
activities, such as membrane fusion, DNA repair, and protein
homeostasis, have been reported and extensively reviewed
(Dantuma and Hoppe, 2012; Meyer et al., 2012; Yamanaka et al.,
2012; Franz et al., 2014; Meyer and Weihl, 2014; Xia et al.,
2016). These important functional roles are reflected by the
sequence conservation of the protein and indicate that mutations
in p97 would have severe functional consequences. Despite
embryonic lethality in p97 knock-out mice (Müller et al., 2007)
and acceleratedMSP1 pathology in homozygote p97mutantmice
(Nalbandian et al., 2012), pathogenic mutations in p97 seems well
tolerated and affect only a subset of its functions, as there is no
evidence of developmental abnormalities in affected individuals
(Kimonis et al., 2008b). This is consistent with the fact that MSP1
is a late-onset disease and clinical pathology of MSP1 seems to
point to a defective function in maintaining protein homeostasis.

Pathological features in MSP1 patient samples include
rimmed vacuoles found in muscle tissues that stain positive for
p97 and ubiquitin (Watts et al., 2004) and nuclear inclusions in
neurons, which also stained positive for p97 and polyubiquitin
in brain tissues (Kimonis and Watts, 2005; Schröder et al.,
2005). This common pathologic feature found in MSP1 affected

tissues suggests a defective function of pathogenic p97 mutants
in protein degradation/trafficking pathways. Similar phenotypes
can be reproduced in in vitro cultured cells, either transfected
with disease-associated p97 mutants (Weihl et al., 2006; Janiesch
et al., 2007) or derived from patient tissues (Ritz et al.,
2011). Moreover, studies using various animal models further
strengthen the linkage between mutations in p97 and MSP1.
Transgenic mice bearing a p97 mutation (R155H or A232E)
display dominant-negative phenotypes similar to MSP1 patients
(Weihl et al., 2007; Custer et al., 2010); mutant p97 (R155H)
knock-in mice display progressive muscle weakness and other
MSP1-like symptoms (Badadani et al., 2010).

One of the best studied cellular functions of p97 is
endoplasmic reticulum-associated degradation (ERAD)
(Meyer et al., 2012). Protein substrates in the ER are labeled
with polyubiquitin chains, recognized, and subsequently
retrotranslocated by p97 across the ER membrane to the cytosol,
where they are degraded by the proteasome. Failure to clear these
polyubiquitinated protein substrates leads to ER stress. It has
been shown that MSP1 mutants have impaired ERAD, leading to
accumulation of ERAD substrates (Weihl et al., 2006; Erzurumlu
et al., 2013).

Another characteristic that sets pathogenic mutants apart
from wild-type p97 is their failure to form a ternary complex
with ubiquitylated CAV1 (Ritz et al., 2011). CAV1 (caveolin-1) is
a main constituent of caveolae, small invaginations on the plasma
membrane. The degradation of CAV1 through the endocytic
pathway requires mono-ubiquitin modification (Haglund et al.,
2003; Parton and Simons, 2007). During maturation, CAV1
first forms SDS-resistant oligomers that associate to form larger
assemblies in a cholesterol-dependent manner during exit from
the Golgi apparatus. P97 binds to a mono-ubiquitylated cargo
substrate, CAV1, on endosomes and is critical for its transport
to endolysosomes. Blocking p97 binding of CAV1 with MSP1-
associated mutations or its protein segregase activity with
the Walker B motif mutation or the DBeQ inhibitor leads
to accumulation of CAV1 at the limiting membrane of late
endosomes (Ritz et al., 2011).

Besides ubiquitin, TAR DNA-binding protein-43 (TDP-43)
is also found in protein inclusions in MSP1 affected tissues
(Neumann et al., 2007; Weihl et al., 2008). TDP-43, the major
pathological protein in ALS and FTD (Neumann et al., 2006), is
primarily localized in the nucleus (Wang et al., 2001) and was
suggested to play a role in transcription repression and other
cellular processes (reviews please see Wang et al., 2008; Buratti
and Baralle, 2009). Although how TDP-43 gets into the protein
inclusions in tissue samples of MSP1 patients is unknown, it
is believed that TDP-43 is a substrate for either proteasome
or autophagic degradation (Caccamo et al., 2009; Wang et al.,
2010), hence suggesting a role of p97 in autophagy, a degradation
process involving the lysosomal machinery. The role of p97 in
autophagy has been demonstrated in both mammalian and yeast
cells, in which p97 has been found essential for the maturation
of autophagosomes (Tresse et al., 2010). MSP1 mutants have
also been observed to accumulate autophagosome markers p62
and LC3-II (Ju et al., 2009; Vesa et al., 2009; Tresse et al.,
2010).
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CONCLUSIONS AND PERSPECTIVE

Since the recognition of the linkage between MSP1 disease
and the AAA protein p97 in 2001 (Kovach et al., 2001),
there has been a steady increase in the number of pathogenic
mutations being identified and increasing number of diseases
associated with these mutations in p97. The association of the
mutations with the disease calls for a clear understanding of the
exact molecular function and its underlying mechanism of p97.
Through comparative studies between wild type and mutants
and using an array of genetic, biochemical, and structural
methodologies, these mutants added a new dimension to our
understanding on the structure and function of p97. Despite
the progress made, a few fundamental mechanistic questions
regarding the action of p97 remain unclear and require further
engagement of the research community. First, what is the
physiological significance of the conformational changes in p97?
To answer this question, an in vitro system needs to be established
to reconstruct the process identified in vivo for p97, which would
allow us to investigate the role of p97 in a well-controlled manner
and to pinpoint the steps in the reaction coordinates, which are
affected by mutations. Secondly, studies are required to further
identify properties of p97 that are affected by mutations, such as
binding of adaptor/cofactor proteins. Finally, mutations in p97
can cause different diseases. How do cellular factors influence the
ultimate clinical outcomes in patients? As a late-onset disease,

individuals with p97 mutations can live a normal life for a long
time without symptoms. Identifying the factors that delay the
onset of the diseases and understanding how they interact with
p97 can have a significant impact on those who are predisposed
to the disease. The path to address these questions seems
unlikely to be straight forward, as pathogenic mutations only
manifest their effects in a subtle way and p97 involves in many
cellular pathways. Nevertheless, optimism is warranted, given the
progresses made in the past, that this path will lead us to the
solutions to these unsolved issues.
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