
Contents lists available at ScienceDirect

Differentiation

journal homepage: www.elsevier.com/locate/diff

Hnf4α is a key gene that can generate columnar metaplasia in oesophageal
epithelium

Benjamin J. Colleypriesta,b, Zoë D. Burkea,1, Leonard P. Griffithsa,b,1, Yu Chena,1, Wei-Yuan Yua,
Ramiro Joverc, Michael Bockd, Leigh Biddlestoneb, Jonathan M. Quinlanb, Stephen G. Warde,
J. Mark Farrantb, Jonathan M.W. Slacka,f, David. Tosha,⁎

a Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
b Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
c Unidad Mixta Hepatologia Experimental & CIBERehd, Departamento de Bioquimica y Biologia Molecular, Universidad de Valencia, Spain
d Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
e Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
f Stem Cell Institute, University of Minnesota, Minneapolis 55455, USA

A R T I C L E I N F O

Keywords:
Barrett's oesophagus
HNF4α
Hepatocyte nuclear factor 4-alpha
Oesophageal cancer
Metaplasia

A B S T R A C T

Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is
characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is
uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly
understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion
using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the
presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using
this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection
was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate
the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed
markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of
Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like
phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest
that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an
origin of Barrett's metaplasia from the oesophageal epithelium.

1. Introduction

Barrett's metaplasia (BM) is a pathological condition characterized
by replacement of stratified squamous epithelium (SSQE) of the distal
oesophagus by columnar epithelium (Fitzgerald, 2006; Spechler and
Goyal, 1996). BM is found in the context of gastro-oesophageal reflux
disease (GORD) and arises as a consequence of the damage provoked
by acid and bile (Vaezi and Richter, 1996; Falk, 2002). The condition is
important because it is the only known morphological precursor to
oesophageal adenocarcinoma (OA). OA has a poor prognosis with a five
year survival of between 5% and 15% (Nur et al., 2013). The incidence
of OA has increased dramatically in the western world over the last 30
years, at a faster rate than any other cancer (Pohl and Welch, 2005;
Bollschweiler et al., 2001). Despite considerable research, the mole-

cular mechanisms responsible for the induction of columnar epithe-
lium, and the precise cellular origin of BM, remain unknown
(Fitzgerald, 2006; Souza et al., 2008; Spechler et al., 2010; Chen
et al., 2011; Quinlan et al., 2007). Plausible candidates for the cell of
origin, are the oesophageal epithelium itself, the oesophageal glands, or
multipotent cells residing near the oesophageal-gastric junction (Coad
et al., 2005; Leedham et al., 2008; Barbera and Fitzgerald, 2010; Wang
et al., 2011; Nicholson et al., 2012; Streppel et al., 2014; Clemons et al.,
2014).

Several lines of evidence suggest that the caudal related homeobox
genes (CDX) 1 and 2 are involved in the initiation of BM (Souza et al.,
2008). CDX1 and CDX2 are important transcription factors in the
regional patterning of the caudal gut during embryonic development,
and in the differentiation of the intestinal epithelium (Gao et al., 2009;
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Silberg et al., 2000). The expression pattern of both genes is restricted
to the endodermal epithelium that is destined to become the small and
large intestine (Silberg et al., 2000). Ectopic expression of Cdx2 in the
stomach of transgenic mice can cause the formation of heterotopic
intestinal epithelium (Mutoh et al., 2004; Silberg et al., 2002).
Conversely, selective deletion of gut endodermal Cdx2 during develop-
ment results in the expression of squamous differentiation markers in
the intestine (Gao et al., 2009). Mice heterozygous for a null allele of
Cdx2 develop patches of SSQE reminiscent of oesophageal epithelium
within the colon and small intestine (Chawengsaksophak et al., 1997).
Cdx1 and 2 also control the rostral-caudal pattern of tissue types and
body parts: for example, loss of Cdx2 function results in an anterior
homeotic shift in vertebrae (Van Den Akker et al., 2002) and intestine

(Gao et al., 2009; Chawengsaksophak et al., 1997).
Both CDX1 and CDX2 are aberrantly expressed in BM and in

adjacent squamous epithelium (Eda et al., 2003; Silberg et al., 1997).
Since the oesophagus is exposed to acid and bile during GORD, this
suggests a potential mechanism of action for the initiation of BM
(Marchetti et al., 2003; Kazumori et al., 2006). Exposure to acid and
bile has been shown to induce expression of Cdx1 and Cdx2 in
oesophageal cells in rats (Kazumori et al., 2006). Given the potential
role of CDX2 in the development of BM, we wished to determine
whether ectopic Cdx2 expression was able to induce a columnar-like
phenotype in murine oesophageal cultures.

We were also interested to know whether other transcription factors
might be involved in the conversion of SSQE to columnar epithelium.

Fig. 1. Expression of Cdx2 and HNF4α in Barrett's metaplasia Immunohistochemical staining for CDX2 and HNF4α (brown) in sections of normal oesophagus, gastro-oesophageal
junction, stomach, ileum, colon and Barrett's metaplasia. Sections counterstained with Gill's haematoxylin. H & E staining of similar sections are also shown. Staining for HNF4α in
oesophagus represents background staining. Scale bar represents 200 µm.
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Hepatocyte nuclear factor 4α (HNF4α), a nuclear receptor type
transcription factor, may also be considered as a candidate for the
initiation of BM. During early development of the gut, Hnf4α is
expressed in the intestine as well as the stomach, kidney, liver and
pancreas (Zhong et al., 1993; Taraviras et al., 1994). Importantly,
HNF4α is not expressed in normal human oesophagus, but is expressed
in BM (Piessen et al., 2007; Green et al., 2014; Wang et al., 2009).
Normal epithelial differentiation of the colon and maturation of goblet
cells is dependent upon the presence of Hnf4α (Garrison et al., 2006).
Therefore, we wanted to know whether ectopic expression of Cdx2 and/
or Hnf4α might incite Barrett's-like changes in squamous cells.

To address the potential role of CDX2 and HNF4α in BM we
developed a long-term adult mouse oesophageal explant model. Long-
term culture of oesophageal epithelium has proven difficult. Broadly
there are two sources of cells available to study BM: immortalized cell
lines such as Het-1A, or ex vivo primary cell culture involving either
mechanical tissue mincing or enzymatic digestion of oesophageal
tissue. Cells or explants have been cultured on a variety of substrates,
matrices and scaffolding, including organotypic models with multi-
layered squamous cells (Green et al., 2010). While each of these models
has advantages and disadvantages, for our purposes we ideally needed
the following features: first, the full repertoire of squamous cells
expressing basal cell markers (cytokeratin 14 (K14) and p63), differ-
entiating markers (K4 and involucrin) and a terminally differentiated
cell marker (loricrin); second a feeder-free model to simplify char-
acterisation and experimental interpretation; and third cell viability for
at least two weeks to allow for gene insertion. None of the existing
models satisfied all these criteria. We developed and characterized our
oesophageal model, transduced oesophageal explants with adenoviral
vectors expressing Cdx2 or HNF4α and analysed the phenotype of the
cells.

Our study directly investigated the ability of Cdx2 and HNF4α
overexpression to induce an intestinal columnar phenotype in a model
of adult oesophageal epithelium. Contrary to previous expectations, but
consistent with some other recent studies (Kong et al., 2011, 2009),
introduction of Cdx2 did not provoke a columnar phenotype with
expression of intestinal genes. However, we found that HNF4α did so.
Since we also confirm thatHNF4α is expressed in BM, we consider that
its ectopic activation is likely to be a key early step in the formation of
BM. The fact that the changes are provoked in cultures of normal
oesophageal epithelium are consistent with the possibility that BM
does arise from the oesophageal epithelium, although cannot exclude
the other possibilities.

2. Result

2.1. Expression of Cdx2 and HNF4α along the normal GI tract and in
Barrett's metaplasia

Previous studies have described the expression of CDX2 in Barrett's
epithelium but the involvement of HNF4α is less well documented.
Here we demonstrate using immunohistochemical analysis of normal
human oesophagus and Barrett's epithelium that HNF4α protein is
indeed present in BM in an identical pattern to that of CDX2 (Fig. 1).
HNF4α background staining was not eliminated from the slide sections
of oesophagus, but contrast is demonstrated at the gastro-oesophageal
section.

2.2. Oesophageal explants are viable in vitro for up to 3 months

We have developed a new culture system for adult mouse oeso-
phagus, to complement the system previously developed for embryonic
oesophagus. (Yu et al., 2005). Adult mouse oesophageal explants
attached to plastic substratum within 48 h of plating in 82% of cases
(41/50). In 95% (39/41) of explants that attached, cells migrated out
from the explants within a week (Fig. 2). Two distinct cell morphologies

were found around each explant: mesenchymal and epithelial. A
central area surrounding the original explant exhibited overlapping
cells, comprising a multilayered structure. The size of the outgrowth
increased daily for 2–3 weeks before reaching equilibrium and
remained viable for up to three months (Fig. 2A; Supplementary Fig 1).

2.3. Characterisation of oesophageal explant cultures

To assess the adult oesophageal explant culture as an in vitromodel
of squamous oesophagus, cellular phenotypes were characterized by
immunofluorescence detection using proteins typically found in the
native oesophageal structure. The outgrowth of tissue surrounding the
oesophageal explant contained mesenchymal cells expressing smooth
muscle actin (SMA, Fig. 2Bi, iii and vii) and E-cadherin-positive
epithelial cells (Fig. 2Bii). The majority of outgrowths (36/39; >
90%) contained both epithelial and mesenchymal cell types. A minority
of explants contained only SMA-positive cells, but no outgrowth
consisted purely of epithelium, suggesting that mesenchymal cells are
required for the maintenance of the epithelial cells.

Three different markers of squamous differentiation were examined
within the explant cultures: K14 (basal)-, K4 (suprabasal)- and loricrin
(the major component of the cornified cell envelope)- expressing cells
were all present in the cultures (Fig. 2B iv-xii). K4-positive cells were
found above the K14 layer (Fig. 2Bvi and viii). The transcription factor
p63, required for the induction and maintenance of the oesophageal
SSQE (Daniely et al., 2004), was expressed in two distinct patterns
(Fig. 2Bx-xii). The first type of p63-positive cell was found within or
immediately adjacent to the explant and lacked K14 expression
(Fig. 2Bx and Fig. 3Ciii). The second was in cells co-expressing p63
with K14 and were more commonly located in the area surrounding the
explant (Fig. 2Bxi and Fig. 3Ciii). The epithelium surrounding these
cells was positive for K14 but negative for p63 (Fig. 3Ciii). The K14/
p63 co-expressing cells were covered by a layer of K14-positive cells
(Fig. 2Bxii).

2.4. Role of calcium in oesophageal differentiation

Calcium is an essential determinant of epidermal keratinocyte
proliferation and differentiation (Hennings and Holbrook, 1983;
Hennings et al., 1980). We wished to determine whether SSQE behaves
in a similar fashion to skin in its response to calcium. To address this
we cultured oesophageal explants in either BME or MDCB 153 medium
which contain 1.8 mM (normal) and 0.03 mM (low) calcium respec-
tively (Fig. 3). Explants cultured in normal calcium had a different
morphology to those cultured in low calcium (Fig. 3A). Oesophageal
cells cultured for seven days in low calcium grew as monolayers, failed
to form cell-cell contacts, and did not stratify, as judged by the absence
of K4 (Fig. 3Bi). These conditions facilitated quantification of staining
and greatly improved viral infection efficiency (see below) In contrast,
cells cultured in BME showed robust staining for K4 (Fig. 3Biii vs Bi).
To test the response to calcium, we cultured oesophageal explants for 5
days in 0.03 mM calcium followed by 3 days at a final concentration of
1 mM calcium (Fig. 3Biv). In low calcium conditions cells did not
express K4 (Fig. 3Bii) but after short term exposure to higher
concentrations of calcium, K4 became expressed in approximately
25% of the cells (Fig. 3Biv). Expression of p63 was maintained in
most (99%) of the cells cultured in low calcium and was co-expressed
exclusively with K14. This contrasts with oesophageal explants cultured
in normal calcium, where cells expressing K14 alone can be found
(Fig. 3C compare ii and iv).

2.5. Cdx2 represses p63 expression but does not induce intestinal
genes

We examined the efficacy of the Ad-CMV-Cdx2-eGFP virus in adult
oesophageal explants, cultured in low (MCDB 153) and normal (BME)
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calcium concentrations, to induce intestinal gene expression (Fig. 4).
Explants were grown for 7 days, incubated with medium containing
virus for 12 h, and the expression of intestinal markers was assessed by
immunofluorescence and RT-PCR after 3 further days of culture. The
presence of Cdx2 protein within the nuclei of K14-positive epithelial
cells was determined by GFP expression (Fig. 4A and B) and Cdx2
mRNA was detected by RT-PCR (Fig. 4C and D). In cells cultured in
normal calcium, incubation with Ad-CMV-Cdx2-eGFP resulted in
robust expression of Cdx2 within the majority of epithelial cells
(Fig. 4A) with a transfection efficiency of 73%. In low calcium cultures,
we initially used the same titre of virus as for the BME cultures but as
this resulted in significant cell death the titre was reduced 100-fold to
5×105 IU per explant to maintain viability and produce a similar
percentage of GFP-positive cells ( > 50%) (Fig. 4B) as for the BME
cultures. Three days following Cdx2 infection, p63 was lost from some
of the cells expressing Cdx2 but not from cells infected with control
adenovirus (4.33+/−1.53 cells per high power field lost p63 expression
compared with 0.33+/- 0.58; p=0.046 Mann-Whitney test)
(Supplementary Fig 2). It was only possible to determine the p63 loss
because of the monolayer morphology and the fact that the vast
majority of cells within the low calcium culture were p63-positive.

Despite the high level of expression of Cdx2 in the low calcium
medium, the levels of induction of Mucin2 and Villin RNA were only
just detectable (Fig. 4C – 35 cycles of PCR) and were not visible at the
protein level. Ectopic expression of Cdx2 did not induce detectable
expression of the intestinal markers Mucin 2, Sucrase isomaltase (SI),
Villin, Lactase, Trefoil factor 3 (Tff3), Alkaline phosphatase 1(ALP1),
or Cryptdin 1 (Fig. 4D) in BME. This confirms the limited effect of
Cdx2 overexpression in driving authentic oesophageal epithelial cells to
an intestinal columnar phenotype.

2.6. HNF4α induces a columnar-like phenotype in oesophageal
explant cultures

We tested the effects of ectopic expression of HNF4α on oesopha-
geal explants cultured in low calcium medium. A transfection efficiency

of 96% was achieved with expression of human HNF4α protein was
confirmed by immunofluorescence (Fig. 5A). Co-staining for HNF4α
and p63 in control andHNF4α infected cultures revealed a reduction in
the number of p63-positive cells from 98% in HNF4α-infected cultures
to 32% in control infected cultures (n=3; S.D +/- 11.6%) indicating that
HNF4α suppresses the SSQE phenotype (Supplementary Fig 3).

In addition we examined expression of the columnar marker
cytokeratin 8 (K8) (Yu et al., 2005), E-cadherin and villin (Fig. 5C-E
respectively). We found that E-cadherin is not expressed in the low
calcium cultures but that it becomes robustly expressed in the presence
of HNF4α (Fig. 5D). HNF4α also induces expression of cytokeratin 8
(K8) and villin (Fig. 5C and E). To ascertain whether HNF4α was able
to provoke an intestinal columnar phenotype, we determined the
expression of Cdx1, Cdx2, Mucin2, SI, Villin, Lactase, Tff3, ALP1,
the stomach mucin Muc5AC and K14 by PCR. Villin was robustly
expressed following ectopic HNF4α expression, while expression of the
transcription factor Tff3 was induced to a lesser extent. All other
mRNAs examined were not detected (Fig. 5F).

We also tested the effects of Cdx2 and HNF4α in combination but
conditions could not be found in which the cultures remained viable.

2.7. Adenoviral expression of Cdx2, HNF1α and HNF4α in Het-1A
cells

Because it was not practicable to test the combined effect of Cdx2
and HNF4α on the oesophageal explant model, for this purpose we
used the human Het-1A oesophageal cell line. In these experiments an
additional gene, HNF1α, was included. HNF1α plays a crucial role in
intestinal development so we wished to determine if co-expression with
HNF4α and Cdx2 could further enhance intestinal gene expression.
Het1A cells were infected with virus encoding Cdx2, HNF4α and
HNF1α alone or in combination and analysed by RT-PCR for the
induction of Mucin2, K20, SI and Villin (Fig. 6A). Infection with
HNF4α alone induced expression of villin, while Cdx2 provoked the
expression of K20 and SI. Combined infection with HNF4α and Cdx2
resulted in the induction of villin, K20 and SI. Infection with HNF1α

Fig. 2. Characterisation of oesophageal explant cultures. (A) Brightfield images of a single mouse oesophageal explant followed over 7 days of culture. An outgrowth of cells is first
observed after 2 days of culture (see inset for higher magnification), and increases in size thereafter. Scale bars represent 250 µm. (B) Immunofluorescent staining of oesophageal
explants for (i) SMA, (ii) E-cad, (iii) SMA/PanCK (red/green), (iv) K14, (v) K4, (vi) K4/K14 (green/red), (vii) SMA/K14 (green/red), (viii) K4/K14 (green/red), (ix) Loricrin and (x-xii)
p63/K14 (green/red). Z-stack images are shown for clarity (vii, viii and xii). Scale bars represent 500 µm (i/ii), 200 µm (vi), 100 µm (ix), 50 µm (iii/x/xi) and 20 µm (iv/v). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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enhanced Cdx2 induced expression of K20 and SI but had a negligible
effect on its own. Interestingly, HNF1α expression appeared to have an
antagonistic effect on HNF4α mediated induction of villin.

We also generated stable HNF4α-expressing Het-1A cells (Het-1A-
HNF4α c1). Expression of HNF4α protein in the Het-1A-HNF4α c1
clone was confirmed by immunofluorescence (Fig. 6B) and induction of
intestinal gene expression analysed by RT-PCR (Fig. 6C). Robust
expression of Villin was induced in the stable Het-1A-HNF4α c1 clone.
Subsequent infection with Cdx2 induced K20 and SI expression, while
HNF1α did not. K20 and SI were induced following combined infection
with Cdx2 and HNF1α whereas villin expression was reduced.
Quantitative RT-PCR analysis revealed a significant increase in villin
expression in HNF4α transiently transfected Het-1A cells and the
stable Het-1A-HNF4α c1 clone (compared to uninfected controls) but

this was not significantly increased by addition of Cdx2 or HNF1α.
There was no significant increase in villin expression in cells infected
with the virus combinations tested (Supplementary Fig 4).

3. Discussion

Although BM itself does not arise spontaneously in rodents, there
are several murine rodent-based models of the condition (reviewed in
(Kapoor et al., 2015)). Moreover, mechanisms underlying gut differ-
entiation are similar in all mammals and the requirements of tissue
supply and in vitro culture make it necessary to use an animal model
for experimental purposes. We have developed an adult explant culture
model that recapitulates the full repertoire of cell types found in the
oesophagus (basal, suprabasal and differentiated layers). The presence

Fig. 3. Calcium provokes stratification of oesophageal epithelium. (A) Brightfield images showing oesophageal explant morphology in MCDB 153 medium (calcium concentration
0.03 mM) and BME medium (calcium concentration 1.8 mM). (B) Immunofluorescent staining for K4 and K14 in oesophageal explants cultured in MCDB 153 (i) or BME (iii) for 7 days.
Also shown are explants cultured for 5 days in MCDB followed by 3 days culture in 1 mM calcium (iv – compare to 8 days culture in MCDB ii). (C) Immunofluorescent staining for p63
and K14 in oesophageal explants cultured in MCDB 153 (i and ii) or BME (iii and iv). Scale bars represent 20 µm (Cii) 50 µm (B i, B ii and C iv), 100 µm (B ii and B iv) and 200 µm (C I
and C ii).
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of a myofibroblast connective tissue layer beneath the basal cells allows
for epithelial-mesenchymal interactions and might help to maintain the
oesophageal phenotype in culture and account for the model's long-
term viability. Above the connective tissue layer, the K14-positive basal
cells differentiated and expressed the markers involucrin and K4, prior
to the formation of the cornified cell envelope in fully mature squames.
(Seery and Watt, 2000) Loricrin is a major component of the cornified
cell envelope found in terminally differentiated squamous cells and has
been demonstrated in epidermal keratinocyte cultures but to date has
not been demonstrated in any in vitro oesophageal model (Hohl et al.,
1991). Loricrin is located in the epithelial component of the outgrowth
demonstrating that all stages of oesophageal squamous cell differentia-
tion are represented. This model of squamous oesophagus allows for
the assessment of the effects of ectopic gene expression on squamous
differentiation in the context of columnar metaplasia.

We examined the role of calcium in the differentiation of SSQE.
Calcium is an essential determinant of epidermal keratinocyte prolif-
eration and differentiation (Hennings and Holbrook, 1983; Hennings
et al., 1980). Mouse epidermal keratinocytes cultured in media
containing less than 0.1 mM calcium do not stratify, proliferate rapidly
and exhibit wide intercellular distances (Hennings and Holbrook,
1983; Hennings et al., 1980). Calcium at concentrations higher than

0.1 mM provoke an increase in stratification, terminal differentiation
and cell-cell contacts (Hennings et al., 1980, 1981). We found that
oesophageal cells grown under low calcium conditions behave in a
similar way with increased proliferation and lack of stratification and
differentiation. Increasing the calcium concentration provokes the
formation of cell-cell contacts and the appearance of differentiation
markers such as K4.

Several lines of evidence have previously suggested that Cdx2 is
implicated in the initiation of BM. We tested the ability of Cdx2 to
induce the conversion of oesophageal cells to intestinal cells. However,
adult oesophageal explant cultures fail to express any intestinal
markers following Cdx2 infection despite the fact that we can obtain
efficient Cdx2 expression in the K14-expressing cells in both normal
and low calcium culture conditions. The only effect, apparent in the
monolayer cultures, is a tendency for loss of p63 from Cdx2-expressing
cells. Although at first sight a surprising result, it is consistent with
other recent studies. Immortalized oesophageal cells require over-
expression of the cell-cycle regulator cyclin D1 along with demethylat-
ing agents before ectopic Cdx2 expression can provoke the expression
of intestinal genes (Kong et al., 2009). Likewise, a transgenic study in
which Cdx2 is driven from the K14 promoter, demonstrated lack of
intestinal gene expression in the oesophagus (Kong et al., 2011).

Fig. 4. Ectopic expression of Cdx2 in oesophageal explants does not induce a columnar phenotype. Immunofluorescent staining for K14 (red) and Cdx2 (surrogate green from GFP) in
Ad-null or Ad-CMV-Cdx2-hrGFP infected oesophageal explants cultured in MCDB 153 (A) or BME media (B) RT-PCR analysis for: β-actin, Cdx2, Mucin 2, SI, villin, lactase, Tff3,
cryptidin and alkaline phosphatase in Ad-RSV-GFP, Ad-CMV-Cdx2-hrGFP or Ad-CMV-VP16Cdx2-hrGFP virus infected oesophageal explants cultured in MCDB 153 (C) or BME media
(D). Scale bars represent 200 µm and 100 µm (A) and 50 µm (B). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The transgenic experiments in which Cdx2 expression in the
stomach provoked intestinal development involved initial upregulation
of Cdx2 at foetal stages (Silberg et al., 2002; Mutoh et al., 2002), and it
has not been established whether Cdx2 overexpression in the adult
stomach has the same effect. One reason why Cdx2 might provoke an
intestinal phenotype in foetal but not adult stomach is because the
proximal half of the rodent foetal stomach is lined by primitive
columnar cells. This suggests that conversion to a columnar phenotype
could be a prerequisite before induction of a differentiated intestinal
phenotype. This consideration led us to examine HNF4α, which is
expressed in stomach but not in oesophagus in early development
(Duncan et al., 1994).

We show here for the first time a potential role for HNF4α in the
development of the columnar phenotype in BM. When HNF4α is
ectopically expressed in oesophageal cells there is a reduction in the
number of cells expressing p63 and a robust induction of villin and, to
a lesser extent, Tff3. The presence of Tff3 is significant because it is
considered as a marker of differentiated goblet cells (Velcich et al.,
2002). In low calcium cultures HNF4α also induces E-cadherin
expression. The induction of E-cadherin and K8 is in keeping with
the role of HNF4α in epithelialisation and tight junction formation.
HNF4α can provoke epithelialisation of a dedifferentiated hepatoma
cell line (H5) (Spath and Weiss, 1998). HNF4α null embryos lack E-
cadherin expression, adherens junction proteins and exhibit large
intracellular gaps (Parviz et al., 2003; Battle et al., 2006). The induction
of E-cadherin in HNF4α-transduced cultures may also reflect func-
tional regulation by the transcription factor. In the intestine, E-
cadherin is expressed at a higher level in differentiated enterocytes in
the villus region compared to the crypt (Escaffit et al., 2005).

Although Tff3 was expressed, we did not observe expression of
Muc2 with HNF4α. However it is noteworthy that Muc2 expression is
minimally altered in Hnf4α null intestine (Garrison et al., 2006). The

ability of Hnf4α to induce a partial intestinal phenotype in non-
intestinal/non-hepatic cells has also been demonstrated in NIH-3T3
fibroblasts and MIA PaCa-2 pancreatic cell lines. Stable, retrovirally
inducedHnf4α expression provoked the induction of apolipoprotein A-
IV and villin in both cell lines as well as Tff3 mRNA in fibroblasts
(Babeu et al., 2009). The induction of Tff3 and villin mRNA in
oesophageal explants in the present study is in keeping with these
findings.

While our results do not provide any particular evidence for a role
of HNF1α in the formation of BM, the results presented here show for
the first time that HNF4α induces a columnar phenotype with some
intestinal features in oesophageal cells (K8, villin and Tff3). The
question therefore arises whether HNF4α is also involved in the
development of BM. The presence of HNF4α has previously been
shown in BM (Piessen et al., 2007), and we have confirmed this by
immunostaining of our own human biopsies. Therefore we consider
HNF4α induction a prime candidate as an early initiating event in the
formation of BM. The results are consistent with the oesophageal
epithelium being the cell of origin for BM although cannot exclude
other possibilities such as oesophageal glands or multipotent cells left
over from embryonic life (Barbera and Fitzgerald, 2010; Wang et al.,
2011; Nicholson et al., 2012). Further investigation will be required to
establish the cause of HNF4α induction, and whether the HNF4α
protein is found in oesophagitis.

4. Materials and methods

All experiments were repeated at least three times.

4.1. Immunohistochemistry of human tissue

Formalin-fixed wax-embedded sections of archival biopsy forceps

Fig. 5. HNF4α transduction induces a columnar-like phenotype in oesophageal explants. Immunofluorescent staining for HNF4α (A), p63/HNF4α (B), K8/HNF4α (C), Ecad/HNF4α
(D) and Villin/HNF4α in Ad-null or Ad-CMV-HNF4α infected oesophageal explants cultured in MCDB 153 medium. DAPI counterstain is also shown (A). RT-PCR analysis for β-actin,
Cdx2 (mouse and human), Mucin 2, SI, villin, lactase, Tff3, alkaline phosphatase 1, Mucin 5ac and K14 in Ad-null or Ad-CMV-HNF4α infected oesophageal explants cultured in MCDB
153 medium. Scale bars are as indicated.
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specimens of human oesophagus (normal and BM), gastro-oesophageal
junction (GOJ), stomach, small intestine and colon were obtained from
the Pathology unit at the Royal United Hospital Bath (REC number:
13/YH/0197). Immunohistochemical staining for CDX2 (1:80) and
HNF4α (1:80) was carried out using a polymer detection system and
DAB label. Briefly, for Cdx2, tissue sections were dewaxed, rehydrated,
submerged in a low pH solution (BioGenex Antigen Retrieval Citra Plus
Solution), microwaved until boiling and for two minutes thereafter.
Sections were heated for a further 15 min in a 99 °C waterbath, allowed
to cool for 20 min, transferred to PBS and sequentially treated with 3%
peroxide block and BioGenex Power Block for 10 min each. Cdx2
antibody (BioGenex, Mouse) was diluted 1:80 (BioGenex Enhanced
Antibody Diluent) and incubated with the sections for 30 min. Sections
were rinsed thoroughly in PBS and treated with the Super Enhancer
and Polymer-HRP reagent for 20 and 30 min respectively. Antibody
detection was carried out in the presence of DAB (10 min). For HNF4α,
sections were submerged in Dako EnVision™ Flex Target Retrieval
Solution (high pH - diluted according to manufacturer's instructions),
microwaved until boiling and microwave simmered for a further
20 min. Slides were allowed to cool for 20 min and transferred to
PBS. Sections were rinsed in PBS and blocked for 2 h in 2% Roche
blocking buffer followed by sequential treatments with the BioGenex
peroxide and blocking solution as above. Hereafter, sections were
subjected to the same protocol of antigen labelling and detection as for
Cdx2 with HNF4α (Santa Cruz, Rabbit) also being diluted 1:80.
Sections were counterstained with Gill's haematoxylin (Vector
Laboratories).

4.2. Culture of adult squamous mouse oesophageal epithelium

All animal experiments were performed in accordance with UK
Home Office regulations. Oesophagi were removed from adult CD1
mice following cervical dislocation and dissected in Minimum Essential
Medium Eagle (MEM) with Hank's salts supplemented with 10% FBS
(Invitrogen, Paisley, UK), penicillin/streptomycin (50U, Sigma) and
2 mM L-glutamine (all from Sigma-Aldrich, Poole, UK). The oesopha-
gus was cut at the proximal and distal ends to ensure that gastric and
buccal mucosa were excluded. It was opened longitudinally and the
epithelium stripped from the underlying connective tissue. Each
sample of oesophageal epithelium was dissected into approximate
1 mm2 sections and the samples from different individual mice were
cultured separately. Sections (10−15) of epithelial tissue were then
inserted into furrows that had been etched onto plastic coverslips. The
coverslips were then placed in a 35 mm tissue culture dish and covered
with 1.5 ml of Basal Medium Eagle (BME) with Earle's salts (Sigma-
Aldrich, Poole, UK) supplemented with 20% foetal bovine serum,
penicillin/streptomycin (50U, Sigma) and 2 mM L-glutamine.

For culturing oesophageal explants under low calcium conditions,
MCDB 153 (Autogen Bioclear, Wiltshire, UK) medium was supple-
mented with L-glutamine (6 mM), human epidermal growth factor
(5 ng/ml), ethanolamine (6.1 μg/ml), α-phosphoethanolamine
(14.1 μg/ml), hydrocortisone (0.5 μg/ml) and bovine insulin (5 μg/
ml) (all Autogen Bioclear).

4.3. Culture and generation of stable Het-1A cell line

Het-1A cells (ATCC, Middlesex, UK) were maintained in Basal
Medium Eagle medium (BME) (Sigma) supplemented with 10% (v/v)
foetal bovine serum (Gibco), 2 mM L-glutamine (Sigma) and penicillin/
streptomycin (50U, Sigma). Culture medium was replaced every 2 days,
and cells were subcultured (1:10) every 5–7 days.

Stable HNF4α expressing Het-1A cells were generated through
lentiviral infection with pL-S-Hnf4α-I-EGFP28. Briefly, the lentivirus
was prepared by transfecting pL-S-Hnf4α-I-EGFP and the packaging
constructs pVSV-G, pREV, pGal/Pol/PRE into HEK293T cells (ECACC,
Porton Down, U.K). Virus containing medium was harvested 48 h after

Fig. 6. Expression of HNF4α and Cdx2 in Het-1A cells induces the expression of
intestinal genes. (A) RT-PCR analysis for Cdx2, HNF1α, HNF4α, K20, Mucin2, SI, Villin
and β-actin in Het-1A cells transiently infected with Ad-Null, Ad-Cdx2, Ad-HNF4α, Ad-
HNF1α virus alone or in combination as indicated. (B) Immunofluorescent staining for
HNF4α and phase contrast images of the stable HNF4α-expressing Het-1A clone Hnf4α-
c1. (C) RT-PCR analysis (as above) of stable Hnf4α-c1 cells infected with Ad-Null, Ad-
Cdx2, Ad-HNF1α alone or in combination as indicated.
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transfection, diluted in complete BME medium supplemented with
dextran (5 µg/ml) and added to 6.9×104 Het-1A cells for 24 h. Medium
was changed every 2 days following infection. Cells were split and
seeded onto 96-well plates for single cell colony selection with HNF4α
expression being validated by immunofluorescence and RT-PCR.

4.4. Immunostaining of explant cultures and mouse oesophageal
sections

Fixation and immunostaining of explant cultures or adult mouse
oesophageal sections was performed as described previously (Yu et al.,
2005). Primary antibodies were obtained and diluted as described in
Table 1. Nuclei were stained with 0.1 µg/ml of 4′, 6-diamidino-2-
phenylindole (DAPI). Images were either collected on a Leica DMRB
fluorescent microscope with a digital camera or a Zeiss LSM 510
confocal microscope. We determined the specificity of antibodies
directed against squamous epithelial epitopes by immunohistochem-
istry on adult mouse oesophageal sections (p63, K14, K4 and loricrin).
In addition, we also determined the expression of villin in sections of
adult mouse intestine and oesophagus. All oesophageal and intestinal
proteins were expressed appropriately (Supplementary Fig 5).

4.5. Construction of Cdx2 and Cdx2-VP16 adenoviral vectors

Two viruses were constructed: one with the VP16 transactivation
domain from Herpes simplex and one without. The VP16 virus was
fused to the 5′ end of the full length mouse Cdx2 cDNA (from Dr Debra
Silberg University of Pennsylvania, USA). Cdx2 was subcloned into a

VP16-containing plasmid by ClaI digestion. The AdEasy expression
system (Stratagene) was used for adenovirus delivery into cells and
explant cultures. Briefly, BglII and XhoI were used for subcloning Cdx2
and VP16-Cdx2 into the pShuttle-IRES-hrGFP construct. The resulting
shuttle vectors were then linearized with PmeI and cotransformed into
BJ5183 electrocompetent cells with pAdEasy-1, the supercoiled viral
DNA plasmid. Recombination was identified by restriction enzyme
digestion analysis. The recombinant constructs were then produced in
bulk in XL-10 Gold cells. Purified recombinant adenovirus plasmid
DNA was digested with PacI to expose its inverted terminal repeat
(ITR), and then used to transfect HEK239 cells where deleted viral
assembly genes were complemented in vivo.

4.6. Expression of transgenes by adenoviral infection

Transgenes were expressed in cultured epithelium and Het-1A cells
using first generation, replication defective, recombinant, adenoviral
vectors: Ad-null, Ad-RSV-GFP, Ad-CMV-Cdx2-hrGFP, Ad-CMV-VP16-
Cdx2-hrGFP, Ad-CMV-HNF1α and Ad-CMV-HNF4α.(Martinez-
Jimenez et al., 2006).

Each explant culture was incubated with 5×107 infectious units of
adenoviral vector in 2 ml of complete BME for 12 h. Oesophageal
explants grown under low calcium conditions were incubated with
5×105 IU of adenovirus in 2 ml of MCDB 153 media (Autogen Bioclear,
Wiltshire, UK) for 12 h. Explants were processed for RT-PCR or
immunohistochemistry up to 7 days post-infection.

Het-1A cells were exposed to Ad-null, Ad-CMV-HNF4α, Ad-CMV-
VP16-Cdx2-IRES-hrGFP and Ad-HNF1α alone or in combination (as
indicated) to an MOI of 15 in the presence of dextran (5 µg/ml) for
24 h. Cells were harvested for analysis 4 days post infection.

4.7. Reverse transcription and polymerase chain reaction

RNA extraction, 1st strand cDNA synthesis and reverse transcrip-
tion polymerase chain reaction was performed as described previously.
(Li et al., 2007) Annealing temperatures and primer sequences are
shown in Table 2. Quantitative real-time RT-PCR (qRT-PCR) was
carried out using a LightCycler 1.5, Roche and reagent mix (FastStart
SYBR Green Master, Roche). Primer sequences and annealing tem-
perature are shown in Table 2.
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Table 1
Primary antibodies used in immunohistochemistry.

Primary antibody Manufacturer Dilution Species

anti-smooth muscle
actin

Sigma-Aldrich, Poole, UK 1:100 Mouse

anti-cytokeratin 4 Sigma-Aldrich, Poole, UK 1:100 Mouse
anti-pan p63 (4A4) Santa Cruz Biotechnology,

California, USA
1:50 Mouse

anti-loricrin Covance Princetown, USA 1:100 Rabbit
anti-cytokeratin14 Covance Princetown, USA 1:200 Rabbit
anti-cytokeratin 8/18 Developmental Studies Hybridoma

Bank, University of Iowa, USA
1:200 Rat

anti-E-cadherin BD Transduction Laboratories, New
Jersey, USA

1:100 Mouse

anti-HNF4α Santa Cruz Biotechnology,
California, USA

1:100 Rabbit

anti-Cdx2 Biogenex, San Ramon, California,
USA

1:100 Mouse

Table 2
Primers used for reverse transcriptase PCR.

Gene Forward Primer Reverse Primer Annealing temp Product size (bp)

HNF4α GAAATGCTTCCGGGCTGGC CTGCAGCTCCTGGAAGGGC 59 487
βActin AAGAGCTATGAGCTGCCTGA TACGGATGTCAACGTCACAC 54 160
βActina TAGGCACCAGGGTGTGATGG CATGGCTGGGGTGTTGAAGG 58 323
ALPI TGGATGCTGCCAAGAAGCTGC AGAGATAGGCGGTTGCTGTGC 56 243
Cdx1 GA CGCCCTACGA ATGGATGC CAGGTTAGCAGCCAGCTCG 58 184
Cdx2 CCATCACCCGCATCATCACCCG AGTGAAACTCCTTCTCCAGCTCCAGC 60 272
Hnf4α ACAGGAGAGGGTCAGAAGCA GATGTTTGCACAACCACAGG 58 180
K14 GACTGGTACCAGAGGCAGCGGC GGCATTGTCCACGGTGGCTGC 56 108
Lactase TGCCCATCGACTGGAATGAGC TGTCTCATGCTGCTGCTCGC 56 192
Muc2 GCAGTATCAGGCCTGTGGC CACAATCTCGGTCTTCACTTCG 56 430
Muc5ac GTGCAGGGCTCAGTTCTTTC TGGTCTCTGTTTTCGTGCTG 56 224
Tff3 AGA TTA CGT TGG CCTGTC TCC TCA GAT CAG CCT TGT GTTGGC 56 341
SI GGC AAG ATC CTG TTT CCT GGA CGA GCC TTA GGA ACA TAG CCA 56 271
Villin TATGATATCCACTACTGGATTGGC GCTTGAGTGCAGCCTTAGCG 54 586
Villina TTCCTGGCTTGGGATCCCTT CCACTTTGGGGCTTGTGAC 68 121

a Denotes primers used for qRT-PCR.
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Summary statement

To date the molecular mechanisms underlying Barrett's oesophagus
remain unidentified. We provide evidence for a role of the transcription
factor HNF4a in the switch from stratified squamous to columnar
epithelium.
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