
Article
Machine-learning-assisted
 discovery of highly
efficient high-entropy alloy catalysts for the oxygen
reduction reaction
Graphical abstract
Highlights
d The catalytic activity of six types of high-entropy alloys was

studied theoretically

d Machine learning shows great potential to tackle the huge

chemical space of HEAs

d The well-trained model can accurately predict catalytic

performance of HEAs

d A strategy to improve catalytic activity by tuning HEA

compositions was proposed
Wan et al., 2022, Patterns 3, 100553
September 9, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.patter.2022.100553
Authors

Xuhao Wan, Zhaofu Zhang, Wei Yu,

Huan Niu, Xiting Wang, Yuzheng Guo

Correspondence
yguo@whu.edu.cn

In brief

High-entropy alloys have great potential

to become optimal heterogeneous

catalysts due to vast chemical space.

With the aid of machine learning, the

catalytic performance of millions of

reactive sites on HEA surfaces can be

explored theoretically to overcome the

disadvantages of traditional trial-and-

error experiments. Our method offers

rational guidance for the design of highly

efficient HEA catalysts on component

elements and composition ratio.
ll

mailto:yguo@whu.edu.�cn
https://doi.org/10.1016/j.patter.2022.100553
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100553&domain=pdf


OPEN ACCESS

ll
Article

Machine-learning-assisted discovery
of highly efficient high-entropy alloy catalysts
for the oxygen reduction reaction
Xuhao Wan,1,4 Zhaofu Zhang,2,3,4 Wei Yu,1 Huan Niu,1 Xiting Wang,1 and Yuzheng Guo1,5,*
1School of Electrical Engineering, Wuhan University, Wuhan, Hubei 430072, China
2The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
3Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
4These authors contributed equally
5Lead contact

*Correspondence: yguo@whu.edu.cn

https://doi.org/10.1016/j.patter.2022.100553
THEBIGGERPICTURE Benefiting fromhuge chemical space, high-entropy alloys (HEAs) showgreat poten-
tial as heterogeneous catalysts for different reactions. However, vast chemical space makes it extremely
difficult to comprehensively study HEAs by traditional trial-and-error experiments. Therefore, a machine-
learning-assisted theoretical method is proposed to investigate the oxygen reduction reaction (ORR) cata-
lytic activity of millions of reactive sites on HEA surfaces. The well-performed gradient boosting regression
(GBR) model with high accuracy, generalizability, and simplicity is constructed by reasonable data extrac-
tion and feature engineering, which can accurately predict the catalytic activities of millions of reactive sites
on HEA surfaces. Finally, one strategy to engineer the HEA surface structure by tuning the metal element
component ratio is proposed, which doubles the amount of high-activity sites.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
High-entropy alloys (HEAs) have recently been applied in the field of heterogeneous catalysis benefiting from
vast chemical space. However, huge chemical space also brings extreme challenges for the comprehensive
study of HEAs by traditional trial-and-error experiments. Therefore, the machine learning (ML) method is
presented to investigate the oxygen reduction reaction (ORR) catalytic activity of millions of reactive sites
on HEA surfaces. The well-performed ML model is constructed based on the gradient boosting regression
(GBR) algorithm with high accuracy, generalizability, and simplicity. In-depth analysis of the results demon-
strates that adsorption energy is a mixture of the individual contributions of coordinated metal atoms near
the reactive site. An efficient strategy is proposed to further boost the ORR catalytic activity of promising
HEA catalysts by optimizing the HEA surface structure, which recommends a highly efficient HEA catalyst
of Ir48Pt74Ru30Rh30Ag74. Our work offers a guide to the rational design and nanostructure synthesis of HEA
catalysts.
INTRODUCTION

High-entropy alloys (HEAs) are multi-principal-component alloys

that consist of five or more elements, with each element at near-

equimolar proportion, which commonly are the complex solid

solution.1–5 HEAs are stable as the number of elements species

and completely disordered atom positions make the system en-
This is an open access article under the CC BY-N
tropy higher. The alloys have attracted the world’s attention after

first being discovered in 2004,1 benefiting from their easily

tunable mechanical property such as elasticity modulus, hard-

ness, and strength of extension.6,7

Recently, HEAs have been applied in the field of catalysis as

their huge chemical space from the enormous number of ele-

ments combinations and inherent surface complexity make it
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Figure 1. The typical structure and reactive

sites of HEA IrPtRuRhAg

(A) The geometric structure of the equimolar

IrPtRuRhAg HEA with an fcc crystal configuration.

(B) The schematic diagram of finding all possible

sites on HEA surface, including atop (blue), bridge

(red), and hollow (black) by the Delaunay triangulate

algorithm.43
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possible to achieve higher activity, selectivity, and stability

as catalysts.8–10 Thus far, HEAs have been studied as highly

efficient catalysts in many different reactions, including

hydrogen evolution reaction (HER),11 oxygen reduction reaction

(ORR),12–14 carbon dioxide reduction reaction (CO2RR),
8,15 and

methanol oxidation,16,17 which are mostly experimental studies.

In the past several decades, theoretical simulations have been

widely used to better understand the catalytic processes and

directly design highly efficient catalysts before experiments.18–20

The huge configuration space of HEAs can provide a surface

with a very large number of unique reactive sites. However, mil-

lions of different active-site environments of HEAs and current

limited computing implementation ability extremely complicate

the theoretical research on the catalytic performance of all of

the sites by only applying the traditional density functional theory

(DFT) method. To break the bottleneck of computing power, one

of the most reasonable strategies is to discover new algorithms

or improve original algorithms, which can remarkably reduce to-

tal computational cost. As a result, machine learning (ML) at-

tracts attention around the globe, as it is very helpful in these

two directions.21–23 The ML method can dramatically reduce

the computational cost of the traditional DFT method and it

can maintain high accuracy when predicting the catalytic activ-

ities. In addition, ML methods can reveal the intrinsic descriptor

of catalytic reactions by elucidating the nonlinear relationship

between the structure and properties of materials.24,25 As a

result, the state-of-the-art ML-assisted theoretical computations

method has become a rising star in the catalysis field.26,27

In 2015, Ma et al. realized high-throughput screening of highly

efficient CO2 electroreduction catalysts by combining ML and

theoretical calculation.28 Many researchers have developed

and spread the ML-assisted theoretical method to complicated

chemical systems and different reactions such as MXene

ordered binary alloy for HER,29 dual-metal-site catalysts

(DMSCs) for ORR,30 and perovskite for oxygen evolution reac-

tions (OER).31 ML has also been widely applied in many studies

on HEAs such as searching for HEAs with large hardness32 and

phase prediction of HEAs.33 This significant research inspires us

to explore and predict the catalytic performance of HEAs by the

advanced ML-assisted theoretical method.

In this work, the stability of six types of quinary HEAs was

investigated at first. Then, the ORR volcano curve between the

ORR catalytic activity of reactive sites on HEA surfaces and
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OH* absorption energies was established.

The excellent ML model was constructed

by reasonable data extraction, feature en-

gineering, and model validation processes

to predict the OH* absorption energies of

millions of reactive sites on different crystal
facets of HEAs with high accuracy. Finally, the predicted results

and the ML models were further analyzed to find highly efficient

HEA catalysts and reveal their ORR activity origin.

RESULTS AND DISCUSSION

The components and stabilities of HEAs
Six transitionmetal (TM) elements are under consideration as the

constituent elements of quinary HEAs—Ir, Pt, Ru, Rh, Ag, and Fe.

They can form six types of HEAs. These elements are chosen

because of a similar atomic radius and close lattice constant

with the same crystal structure of face-centered cubic (fcc), as

listed in Table S1. In addition, their corresponding elementary

metals have been reported as being highly efficient catalysts

for ORR.34–39 The HEAs of fcc are constructed to study in this

work because six selected elements mostly have fcc structures.

The constructed HEA IrPtRuRhAg are shown in Figure 1A as an

example, with 256 atoms in the supercell. There are several

HEAs with a similar structure as above that had been synthe-

sized and show promising catalytic activities.40–42

The high disorder resulting from the completely random

configuration space of HEAs can increase the mixed configura-

tion entropy of HEAs, which is beneficial for the formation of a

stable single-phase solid solution structure rather than fragile

intermetallic compounds. Whether HEAs can form stable solid

solutions is closely related to some thermodynamic properties

of HEAs such as atomic radius, energy differences, and config-

urational mixing entropy. According to the Hume-Rothery rules,

the difference between atom radii and the ratio of formation

enthalpy to entropy can evaluate the stability in a straight

way.44–46 Hereafter, the atom radii difference factor (d) and the

ratio of formation enthalpy to entropy (U) are used to describe

the phase of HEAs. The detailed computation methods of the

d and U parameters are listed in Note S1.

Instead of simulating a large number of metal atoms in a whole

crystal lattice, we calculated smaller 32-atom supercells with pe-

riodic boundary conditions, considering the huge computation

cost of ab initio calculations of so many extremely disordered

metal atoms. The approximation of a supercell had a negligible

influence on the DFT-calculated values, as shown in Note S2

and Figure S1. In addition, for each type of HEA, 10 different

HEAs with different structure and composition ratios of elements

that are adjusted in the range of ±15%are studied to evaluate the



Figure 2. The distribution of d and U parameters of HEAs

The HEAs within the purple area are more likely to form a solid solution. Six

types of quinary HEAs are studied, and 10 different component ratios are

considered for each type of HEA. The highly efficient ORR catalyst

Ir48Pt74Ru30Rh30Ag74 is marked by a red star.
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stability of HEAs more reliably and thoroughly. That is, 60 HEAs

with different structures are studied. The detailed component

and ratios of 60 HEAs are listed in Table S2. As shown in Figure 2,

all 60 HEAs studied fall within the solid solution phase area, the

criteria of which are defined as that the parameter d is smaller

than 6.6% and U is larger than 1.1 simultaneously.46 The HEAs

matching the requirements are quite likely to form a single solid

solution owing to the subtle lattice structure and mixing

energy.45

The ORR activity volcano of HEA surfaces
After confirming the stabilities of HEAs, the possible active sites

for ORRwere studied. As shown in Figure 1B, the Delaunay trian-

gulate algorithm43 was applied to find all of the possible sites on

the HEA surface, including atop, bridge, and hollow sites for this

high-throughput research. Stability analysis of reactive interme-

diates on the HEA surface demonstrated that the intermediate

adsorbates are mostly unstable on atop and hollow sites, but

only stable on bridge sites for different HEA surfaces, which is

consistent with previous experimental studies.47,48 Therefore,

only bridge sites were considered as possible reactive sites on

two fcc-structured HEA Miller index surfaces, (100) and (111),

as they are the most common surfaces.14

Then, we focused on the catalytic activities for ORR of

different reactive sites on HEA surfaces. Based on the Sabatier

rule,49 the absorption energies of reaction intermediates are

generally good descriptors for catalytic activity. Accordingly,

the volcano curve between adsorption energies of intermediates

and catalytic activities for ORR can be established, whichmakes

it simple to explore the activities of millions of possible active

sites on HEA surfaces. To obtain a comprehensive understand-

ing of the ORR catalytic activity on HEA, the intermediates (OH*,
O*, and OOH*) involved in the reaction process of 20 different

sites on different HEA surfaces experienced systematic and

adequate DFT optimizations. The 20 sites were equally and

randomly selected from different bridge sites and Miller index

surfaces to guarantee the reliability of the results.

The previous research demonstrates similar TM�O interac-

tions between TM and ORR intermediates (OH, O, and OOH)

will lead to similar adsorption behaviors on metal surfaces,50

meaning the adsorption energies of OH, O, and OOH on metal

surfaces are likely to have a similar trend. As shown in Figure 3A,

the results show that the adsorption energies of OH, O, and OOH

on HEA surfaces possess apparent scaling relations, as dis-

cussed above. Specifically, the relationship between DGO* and

DGOH* can be expressed as DGO* = 2.21*DGOH* + 1.44, with a

high coefficient of determination (R2) of 0.91, while DGOOH* and

DGOH* are DGOOH* = 1.02*DGOH* + 3.31, with a R2 of 0.85. Based

on the aforementioned scaling relationship, the volcano curve

was established by choosingDGOH* as the descriptor for activity,

as illustrated in Figure 3B. According to the Sabatier rule, both

the too strong and tooweak adsorption of reaction intermediates

on surfaces harm catalytic performance; because too strong

adsorption prevents the desorption process and makes the cat-

alysts poisoned, whereas too weak adsorption impedes the acti-

vation of intermediates. Therefore, the sites with the best cata-

lytic activity are the peak of the volcano, where the adsorption

energies of intermediates are moderate. As Figure 3B shows,

the chosen reactive sites all lie to the left of the volcano, and

the reference point of Pt (111) is very close to the peak. Our moti-

vation then changed to find those sites on HEA surfaces with

higher activity than Pt (111), namely to cross over Pt (111) and

achieve the peak of the ORR volcano (�0.16 eV weaker adsorp-

tion energy than Pt (111)).

ML process
Although the volcano curve properly bridges the catalytic activity

and the adsorption energies of OH*, it is almost impossible to

calculate the adsorption energies of millions of reactive sites

on HEA. Therefore, ML was introduced to link the local atomic

environment around the sites with the adsorbate strength, which

makes it feasible to discover the activity of millions of sites on

HEAs. At first, 360 reactive sites on HEAs with different Miller in-

dex surfaces and component elements were randomly selected,

and the absorption energies of OH* intermediates on them were

obtained by DFT calculations to construct the original dataset for

building MLmodels. The 360 sites can be divided into 12 groups

based on 2 different Miller index surfaces and 6 different quinary

HEAs; there are 30 sites for each group. The specific types of 12

groups and the specific positions of 360 sites can be found in

Note S3 and Figure S2.

Then, some easily obtainable physical and chemical proper-

ties were selected to reasonably describe the local atomic envi-

ronment of reactive sites by feature engineering. It is the most

significant step as it determines the highest accuracy of the

MLmodel.22,27We abstracted the science problem of describing

the local environment of sites into generating the dataset,

which was characteristics of coordinated atoms of two metal

atoms that make up bridge sites, and the characteristics

were reasonable physical and chemical features of each coordi-

nated atom. There are several common strategies to determine
Patterns 3, 100553, September 9, 2022 3



Figure 3. The volcano curve between DGOH*

and overpotential

(A) Scaling relations between the adsorption en-

ergies of reaction intermediates (DGO* versusDGOH*

in red, while DGOOH* versus DGOH* in blue) on HEA

(100) and (111) surfaces.

(B) The ORR volcano curve of reactive sites on HEA

surfaces between overpotential and DGOH*. The Pt

(111) is marked as a purple star as the reference

point. The high activity area is marked in red.
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features: They should comprehensively describe the atomic,

electronic structures, and the local environment of reactive sites,

and they should be physically intuitive to guarantee the model’s

robustness.22,27 Based on these strategies, prior knowledge,

and previous studies,21,51 11 features were selected: atomic

radius (r), relative mass (M), atomic number (AN), Pauli electro-

negativity (Nm), electron number of d orbital (ed), d-band center

of the corresponding pure metal surface (εd), electron affinity

(Am), first ionization energy (Im), oxide formation enthalpy (Hf),

generalized coordination number (CN) of the coordinated atoms,

and the distance between the coordinated atoms and OH* (d).

Among these features, r, M, and AN are atomic structure fea-

tures; Nm, ed, εd, Am, Im, and Hf are electronic structure features;

CN and d are local environment features. Considering that

wrapper strategy is time-consuming and embedded strategy is

only applicable for specific algorithms, filter strategy was chosen

to determine final features. The standard of the filter strategy was

that the final features should be relatively independent and have

larger variance. In addition, as the features that describe the

local environment are simple enough and they are not relative,

only atomic features and electronic structure features are

filtered.

First, the Pearson matrix between the features was calculated

as shown in Figure S3. The results indicate that all of the atomic

features have a strong correlation. There are also two groups of

relevant electronic structure features. The first group areNm, Am,

and Im, while the second are εd and Hf. Then, the variance of

these relevant features was obtained and painted in three colors

at the bottom of Figure S3. Among the three groups, r, Nm, and

εd show the highest variance, so other features are excluded

as the features with higher variance are easier to learn by ML

models. It should be noticed that the variance is from the fea-

tures after normalization; therefore, their absolute values are

relatively small. In general, six features are selected as the final

input features, including r, Nm, ed, εd, CN, and d, as listed in

Table S3. It means thewhole input dataset is a [360 * n * 6] matrix,

where n is 15 for sites on HEA (111) and 14 for HEA (100) surface,

as shown in Figure S4 and Table 1. The values of the r,M,Nm,Am,

Im, and ed come from the PTable database.52

After completing the process of feature engineering and data

extraction, the pre-processed dataset was used to train seven

different ML models with seven different regression algorithms,

including gradient boosted regression (GBR),53 feedforward neu-

ral network (FNN),54 and Random forest regression (RFR),55 sup-
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port vector regression (SVR),56 k-neighbor

regression (KNR),57 kernel ridge regression

(KRR),58 and least absolute shrinkage and
selectionoperator regression (LASSO),59as illustrated inFigure4.

Then, the first round of model selection was performed by simply

tuning the hyperparameters of 7 ML models and comparing

modelmetrics on the test set after 4-fold cross-validation. The re-

sults were demonstrated in Figure S5, and it indicated that the

model performance of the GBR and RFR models were evidently

better than the other 5 models as they have the lowest root-

mean-square error (RMSE) (both <0.15) and the highest R2 score

(both >0.95). The model performance of FNN was relatively bad,

but it was more likely to achieve better performance after a

comprehensive parameters-tuning process. As a result, the

GBR, RFR, and FNN algorithms were selected to establish better

MLmodels. Hereafter, 500-time repeated 4-fold cross-validation

was applied to evaluate model performance so as to reduce

the random effect of dataset split and the risk of overfitting.27

Table S4 indicates that 500 times is enough to eliminate the sam-

pling error and guarantee the generalization ability ofMLmodels.

By manually adjusting the hyperparameters over and over again,

theGBR, FNN, andRFRmodels achieved thebest of themselves,

and thehyperparameterswere tunedas listed inTableS5.Amore

detailed flow chart is illustrated in Figure S6.

The results of model training and testing are demonstrated in

Figure 5. As shown in Figures 5A and 5B, the GBR and RFR

models both performed well on the train and test set with lower

RMSE (�0.1 eV) and higher R2 score (�0.95). The average met-

rics of 500-time repeated 4-fold cross-validation on train and test

set were close, indicating no risk of overfitting. In addition, the er-

ror bar of the two models was relatively short, suggesting good

model robustness. As for the well-known FNN model, the model

performance was bad and the error bar was long, showing the

unstable character of the FNN model. The poor accuracy of

the FNNmodel can be attributed to the limited size of the original

dataset from DFT calculations and the difficult hyperparameter

tuning process. For the well-performed GBR and RFR models,

the metrics on the test set of the GBR model were better with

lower RMSE (0.112 eV) and higher R2 score (0.961) than RFR

(RMSE of 0.129 eV and R2 of 0.948). Therefore, the GBR model

was the optimal ML model that can exactly describe the under-

lying pattern of the local atomic environment and the ORR cata-

lytic activities of reactive sites on HEA surfaces.

The parity plot of the GBR model applied in the whole dataset

is clearly shown in Figure 5C, and the GBR-predicted absorption

energies are consistent with those energies from DFT calcula-

tions. Nearly all of the dots fell into the ±0.2 eV deviation area,



Table 1. An example table of the input data to establish ML models of 5 reactive sites on HEAs surfaces

Sites A1 A2 An A15 DGOH* (eV)

1 [180, 2.20, 7, �2.25, 8, 2.28] [177, 2.28, 9, �2.42, 8, 2.28] . [0, 0, 0, 0, 0, 0] 0.0373

2 [156, 7.83, 6, �0.81, 8, 2.40] [180, 2.20, 7, �2.25, 8, 2.40] [0, 0, 0, 0, 0, 0] �0.6672

3 [173, 2.28, 8, �2.18, 9, 2.22] [177, 2.28, 9, �2.42, 9, 2.22] [177, 2.28, 9, �2.42, 9, 4.91] �0.5263

4 [178, 2.20, 7, �1.95, 9, 2.22] [180, 2.20, 7, �2.25, 9, 2.22] [173, 2.28, 8, �2.18, 9, 4.88] 0.1562

5 [156, 7.83, 6, �0.81, 9, 2.23] [173, 2.28, 8, �2.18, 9, 2.23] [180, 2.20, 7, �2.25, 9, 4.88] �0.6126

An connotes the coordinated metal atoms in the order of distance. The values in the square brackets correspond to r, Nm, ed, εd, CN, and d. The first 2

sites are on HEA (100), while the latter 3 are onHEA (111). The data of A15 atom are empty for sites 1 and 2 because the number of coordinated atoms for

sites on HEA (100) is only 14.
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indicating the effective-trained GBR model achieves high accu-

racy in prediction via learning significant information about the

underlying pattern of the local environment and adsorbate

strength on HEA surfaces. The learning curve of the GBR model

was plotted in Figure 5D, suggesting that there was no risk of

overfitting as the RMSE on the train and test set gradually

converged with the increase in training size and the convergence

values were close to one another. The high efficiency of the

ML-assisted method is shown in Note S4.

The ORR activity of HEA surfaces
The well-performed GBRmodel empowered us to reliably obtain

accurate absorption energies of reactive sites, thereby exploring

catalytic activities of HEAs from the huge chemical space. Here-

after, 12,000 different bridge sites on HEAs with different Miller

index surfaces and component elements were randomly and

equally generated, which means there were 2,000 sites for

each type of HEA, divided into 1,000 sites for (100) surfaces

and 1,000 for (111). Then, these sites were fed into the well-per-

formed GBR model, and the output absorption energies were

collected and sorted instantly.

The frequency distribution of OH* absorption energies of sites

on HEA (100) and (111) surfaces are illustrated in Figure 6. As

shown, the distribution of energies is continuous, suggesting

the possibility that the HEA catalytic activity can be fine-tuned

by adjusting the coordination environments of reactive sites.

Apparent and individual peaks emerge on the total frequency

distribution, inspiring us to classify all energies points according

to the types of bridge sites—namely the types of the two metal

atoms of sites—to decompose the frequency distribution and

discover the intrinsic mechanism. The result demonstrates that

the decomposed (colorful) sites type distribution peaks have

similar shapes and widths, indicating the effect of the coordi-

nated atoms on the adsorbate strength of reaction intermediates

possess similar physical origins. These decomposed peaks own

an independent distribution center, which is also the average ab-

sorption energy of one type of bridge site. As for the identical

metal reactive sites with the XX pattern, the average absorption

energies follow the same order for both the (100) and (111) sur-

faces. The order is FeFe < RuRu < RhRh < IrIr < PtPt < AgAg,

which is consistent with the oxygen intermediates absorption

energies trend of the corresponding monometallic surfaces.

For the dual metal reactive sites with the XY pattern, their ab-

sorption energies distribute between the absorption energies

distribution center of the XX and YY sites. For example, the ab-

sorption energies of PtFe sites all lie in the middle of PtPt and
FeFe distribution center. In addition, the frequency of XX sites

is relatively lower than XY sites as a result of the XY sites consist-

ing of XY and YX combinations, while the XX sites have only one

combination possibility.

As shown in Figure 6, we noted that the absorption energies of

the same sites on HEA (100) are more negative than HEA (111)

and the differences were �0.4 eV. To directly compare the ab-

sorption energies distribution of different Miller index surfaces

and study the ORR activity of HEAs, the total frequency distribu-

tion of two types of surfaces and the volcano curve were painted

together in Figure 7A. The maximum, minimum, and means

values of the absorption energies of HEA (100) are all lower

than HEA (111), and it can be concluded that lower coordinated

environments result in stronger OH* binding on the HEA surface

and it can be attributed to high coordination environments

mean stronger electronic coupling between metal atoms and it

weakens the binding strength of adventitious adsorbate. In addi-

tion, only part of the reactive sites onHEA (111) lies in the high ac-

tivity area and it consists of AgAg, PtAg, and part of the IrAg sites.

To reveal the intrinsic mechanism of the OH* absorption by

model analysis, the feature importance27 in the coordinated

atom dimension and physical or chemical property dimension

were studied and plotted in Figures 7B and 7C, respectively.

The specific values of feature importance are listed in

Tables S6 and S7. As for the coordinated atom dimension, the

atoms are sorted and numbered in order from close to far—A1

and A2 are two bridge site atoms. Figure 7B demonstrates that

the feature importance of two bridge metal atoms is relatively

high and close to each other (39.29% and 39.47%), indicating

two bridge metal atoms are equivalent and the most significant

coordinated atoms to influence OH* absorption, which is consis-

tent with physical intuition. For the same reason, the third and

fourth atoms have close feature importance. It is noteworthy

that the feature importance presents the downward trend with

the increase in the distance between the coordinated atom

and oxygen intermediate, indicating that closer coordination

atoms have a stronger influence on the adsorbate strength of

the OH intermediate. Interestingly, the 15th coordinated atom

features an abnormal increase as it can determine the surface

is (100) or (111), confirming that the abstract ML model can

reflect scientific fact. The specific position of coordinated atoms

is displayed in Figure S4.

For the physical and chemical properties dimension, εd is the

most important descriptor for OH* absorption, with a high feature

importance of 71.18%,which is in agreement with the theory that

the d-band center has a direct and strong relation to adsorbate
Patterns 3, 100553, September 9, 2022 5



Figure 4. The scheme of the machine

learning process
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strength.60,61 The feature importance of CN and d are, respec-

tively, 7.04% and 11.24%, suggesting that they are relatively

more important than the other three descriptors (<5%). Consid-

ering the cruciality of εd, we compared it with the average ab-

sorption energies of XX pattern HEA sites. As shown in Figure S7,

the changing trend of εd and average absorption energies of the
6 Patterns 3, 100553, September 9, 2022
corresponding metal XX sites are correla-

tive, and more negative εd leads to weaker

binding strength, which is consistent with

the d-band center theory.

Based on these advanced analyses, it

can be concluded that adsorption energy

on the HEA surface is a mixture of the indi-

vidual contributions from all ambient coor-

dinated component metal atoms; the two

bridge metal atoms which directly bonded

to OH* are the dominant factor to deter-

mine the adsorption energy of adsorbent

ORR intermediate; the closer the coordi-

nated atom is to OH*, the stronger its influ-

ence. As a result, the decomposed peaks

according to the type of two atoms of

bridge sites own individual distribution

center and the absorption energies of

XY sites lie between XX and YY sites. In

addition, the coordination environments

of two XY bridge atoms are similar in the

statistical view, leading to similar shape

and width of the decomposed peaks. The
model analysis of feature importance also obeys these rules.

The importance of two bridge metal atoms occupies �80%,

which is far larger than other coordinated atoms. εd possesses

�70% importance, as it represents the absorption ability of a sin-

gle coordinated atom, while CN and d possess �20%, as they

reflect the strength of the single contribution.
Figure 5. Model performance of 3 different
ML models

(A and B) Comparison of the RMSE and the R2 score

of 3 ML models on (A) the train set and (B) the test

set. The error bar denotes the range of RMSE and

R2 in the process of 500-time repeated 4-fold cross-

validation.

(C) Parity plot of DFT-calculated DGOH* with those

predicted by the GBR model and model perfor-

mance metrics of the optimal GBR model. Dotted

lines indicate ±0.2 eV deviation.

(D) The learning curve of the GBR model.



Figure 6. The frequency distribution of OH*

adsorption energies of 12,000 reactive sites

(A) The sites on HEA (100) surface. (B) HEA (111).

The bottom row shows the total energy distribution

with a gray color, while the top 3 rows show the

decomposed varicolored peaks according to the

identity of the 2 bridge site atoms.
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Optimizing HEA for activity enhancement
As discussed in the last section, AgAg, PtAg, and part of IrAg

sites on the HEA (111) surface show favorable OH* absorption

energy, which is commonly called active sites and located

around the peak of the volcano curve. Therefore, equimolar
HEA IrPtRuRhAg, IrPtRuAgFe, and

IrPtRhAgFe, including the key elements

Ag, Pt, and Ir, are promising highly efficient

ORR catalysts in all six types of HEAs stud-

ied in this work. Hereafter, 10,000 reactive

sites on the (111) surface were randomly

generated for each HEA belonging to

the above 3; then, they were fed into the

ML model to obtain their corresponding

absorption energies. The active sites

coverage (the proportion of the active

sites between all of the reactive sites) of

IrPtRuRhAg, IrPtRuAgFe, and IrPtRhAgFe

are 16.59%, 15.02%, and 15.84%,

respectively. Among them, IrPtRuRhAg is

the optimal HEA catalyst, owing to more

active sites as the coordination environ-

ments including Ru and Rh are more likely

than RuFe and RhFe environments to

weaken the OH absorption energies of

IrAg sites, as listed in Table S8. However,

even for the best HEA IrPtRuRhAg cata-

lyst, the ORR activity is limited because

of relatively low active sites coverage. As

a result, one strategy to enhance the

ORR activity of HEA catalysts was pro-

posed by optimizing the surface so that

the likelihood of finding highly efficient

active sites with desired OH* absorption

energies can be enlarged.

The strategy is to adjust the metal

element component ratio of HEAs to

enlarge the number of active sites. Taking

the optimal HEA IrPtRuRhAg as the

research target, we adjusted its compo-

nent ratio and investigated the variation

of the active sites. Considering the AgAg,

PtAg, and part of IrAg sites are active sites,

the component ratio of Ir was fixed to

maintain the amount of the possible IrAg

active sites and not to occupy the configu-

rational space of key elements Pt and Ag.

The ratio of Pt and Ag was enlarged, while

Ru and Rh were minimized in the same
proportion to increase the amount of highly efficient AgAg and

PtAg active sites.

We consider that the GBR ML model constructed by the data

from nearly equimolar HEAs may be inaccurate when predicting

activities of HEAs with different compositions of the elements.
Patterns 3, 100553, September 9, 2022 7



Figure 7. Further analysis of differences be-

tween HEA(100) and HEA(111) and the feature

importance of the GBR model

Frequency distribution of OH* adsorption energies

of reactive sites on 2 different Miller index surfaces

and the volcano curve (A). The mean values of ab-

sorption energies, high ORR activity area, and the

position of Pt (111) on the volcano curve are

marked. The feature importance obtained from the

well-performed GBR model in (B) coordinated atom

dimension and (C) physical or chemical property.
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Herein, an active learning strategy was used to make the GBR

model more reasonable for predicting the activities of HEAs

with different compositions. First, 10 HEA IrPtRuRhAg were

generated with random compositions, and 1 site was randomly

selected for each HEA. Second, the OH* absorption energies

of these 10 sites were calculated and compared with the pre-

dicted values from the GBR model based on equimolar HEAs.

Then, the 10 new sites were regarded as the new data points

to train the new GBR model by adding new data points to the

original dataset. Finally, 10 new sites were generated, evaluated

the performance of the new GBR model, and retrained the GBR

model until its performance achieved the standard.

The metric to evaluate model performance is RMSE and the

standard to stop the iteration is 0.1 as it is close to the stable

metric on the test set for the GBR model for equimolar HEAs,

as shown in Figure 5D. The iteration results were painted in Fig-

ure S8. It shows that the RMSE of the new GBR model has a

gradual downward trend and it achieves the standard after 5

complete active learning loops with a low RMSE of 0.098 eV.

The specific information of 60 new sites on HEAs with different

compositions can be found in Table S9. The result demonstrates

that the strategy can effectively improve the model performance

when predicting HEAs with different compositions by tuning the

original GBR model. In addition, even the RMSE in iteration 1

shows a small difference with RMSE of the GBR model for equi-

molar HEAs, indicating that the error of applying the same GBR

model to predict the activities of HEAswith different composition

is small. As a result, the GBR model based on equimolar HEAs

also possesses the knowledge of HEAs with different composi-

tions and it can be attributed to the fact that thewhole input data-

set is statistically related to the elements composition, but the
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particular single input data is not abso-

lutely related to the composition.

As for each HEA IrPtRuRhAg with

different metal element component ratios,

10,000 reactive sites on (111) surfaces

were generated and fed into the GBR

model for corresponding OH* absorption

energies. The variation of the active site

coverage of these HEAs is illustrated

in Figure 8A, demonstrating that the

activity sites’ coverage increases first

and decreases later with the variation of

component ratio. The peak of active sites

coverage is Ir48Pt74Ru30Rh30Ag74, with a

coverage of 31.54%, approximately twice
the equimolar HEA IrPtRuRhAg, indicating the efficiency of the

strategy. The results are interesting because the increase in

activity sites coverage is expected, but the decrease is not pre-

dicted. For the decrease, we surmise that the reason is that the

new coordination environments with far more Pt and Ag atoms

than equimolar HEA make the adsorbate strength between OH

and promising active AgAg, PtAg, and IrAg sites weakened

immoderately, so their statistical distribution moves away

from the high activity area. To prove the hypothesis, the OH*

absorption energies distribution around the high activity area

of the reactive sites on typical HEA Ir48Pt84Ru20Rh20Ag84 (which

shows decreasing ORR activity) are shown in Figure 8B. As

shown, the OH* absorption energies of the promising active

AgAg, PtAg, and IrAg sites change to more positive and the

distribution of them moves to the right as a whole because of

the weakening effect on absorption strength from new coordi-

nation environments. The AgAg sites even move out of the high

activity area, which is the main reason for the anomalistic

decrease in catalytic activity. In addition, it is noteworthy that

the increase in OH* absorption energies of active sites makes

more sites closer to the vertex of the volcano, which means

that more single active sites feature lower energy barriers and

better activity. By the effective strategy, the ORR catalytic ac-

tivity of equimolar HEA IrPtRuRhAg successfully enhances

more than double. The stability of Ir48Pt74Ru30Rh30Ag74 is

then checked and it is more likely to form a stable solid solu-

tion, as shown in Figure 2 (star). DFT calculations were per-

formed to compare the GBR-predicted and accurate values

of 10 sites on HEA Ir48Pt74Ru30Rh30Ag74, and the error is small

enough to determine the high activity of recommend catalysts,

as listed in Table S10. In general, the discovery of the highly



Figure 8. The activity results of HEAs with

different compositions

(A) The variation trend of the active sites coverage of

HEA IrPtRuRhAg with the change of metal element

component ratio.

(B) Frequency distribution of OH* adsorption en-

ergies around the high activity area of the reactive

sites on the (111) surface of the typical HEA

Ir48Pt84Ru20Rh20Ag84, which shows decreasing

ORR activity.
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efficient Ir48Pt74Ru30Rh30Ag74 HEA catalyst offers rational guid-

ance for the experimental nanostructure synthesis of excellent

ORR HEA catalysts such as the determination of component el-

ements, composition ratio, and crystal phase.
Conclusions
In this study, considering that the HEA surface can provide a

near-continuum of oxygen intermediate adsorption energies

distribution benefit from their huge configurational and chemi-

cal space, the potential of highly active ORR electrocatalysts

of six types of quinary HEAs were investigated with the aid of

ML. The stability of these HEAs was confirmed because they

quite likely to form a stable single solid solution according to

the Hume-Rothery rule. The ORR volcano curve was estab-

lished based on the Sabatier rule, providing the way to study

the catalytic activity by the key ORR descriptor absorption en-

ergies of the OH* intermediates. Then, the well-performed GBR

model with high accuracy, generalizability, and simplicity was

constructed by reasonable data extraction, feature engineering,

and model validation process. Using this excellent GBR model,

millions of reactive sites on HEA surfaces with different coordi-

nation combinations, which are impossible to study by tradi-

tional DFT calculations or experiments, can be predicted with

high fidelity. The ML-predicted results and further model anal-

ysis demonstrate that the adsorption energy on HEA surfaces

is approximately a mixture of the individual contributions of

the metal atoms near the reactive site. Finally, a strategy to en-

gineer the HEA surface structure by tuning the metal element

component ratio so that the adsorption energies distribution

can be closer to the peak of the volcano to enlarge the ORR

catalytic activity was proposed, which doubles the ORR activ-

ity. Our proposed DFT-ML scheme demonstrates its ability and

potential to become the pioneer in the field of HEA catalysis

as it can conquer the extremely broad configurational and

chemical space, as well as offer a rational and direct guide

on the practical nanostructure synthesis of highly efficient

HEA catalysts.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information should be directed to and will be fulfilled by

the lead contact, Yuzheng Guo, PhD (yguo@whu.edu.cn).
Materials availability

This study did not generate chemical reagents.

Data and code availability

All original data and code are available in the online repository at GitHub

(https://github.com/XuhaoWan/HEA-ORR) and at Zenodo (http://doi.org/10.

5281/zenodo.6666342).

DFT calculations

In this work, spin-polarized DFT calculations were conducted with the Syn-

opsys Quantum ATK simulation package.62 Detailed computation methods

and parameters were listed in Notes S5, S6, and S7.63

ML

The ML process was conducted by DMCP,27 together with the Scikit-learn,64

and PyTorch65 package. The computational methods of RMSE and R2 score

are listed in Note S8. Normalization is conducted for the original dataset.66

The FNN model uses a three-layer neural network (input, hidden, and predict

layer) and ReLU as the activation function. The specific hyperparameters of

the ML models can be found in Table S11.

Limitations of the study

The study does not include experimental validation considering the workloads

and difficulties of synthesizing the corresponding HEAs, exactly controlling

their component ratio, and evaluating their ORRperformance. The significance

of the work is to guide later experimental studies, which can be ensured by the

accuracy of DFT calculation and reasonable cross-validation process.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100553.
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