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Abstract

Adenophora racemosa, belonging to the Campanulaceae, is an important species because

it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast

genome of A. racemosa and compare it with published chloroplast genomes of congeneric

species. The chloroplast genome was reconstructed using de novo assembly of paired-end

reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. race-

mosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and

4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding

genes divided the five Adenophora species into two clades, showing that A. racemosa is

more closely related to Adenophora stricta than to Adenophora divaricata. The gene order

and contents of the LSC region of A. racemosa were identical to those of A. divaricata and

A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide

diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not

included in sect. Remotiflorae and in six regions between two species (A. racemosa and A.

stricta).

Introduction

Among the angiosperms, Campanulaceae are known to have the chloroplast genomes with the

most structural changes, along with Geraniaceae and Fabaceae [1–11]. Among the Campanu-

laceae, Adenophora species in particular have very different chloroplast genome structures due

to many rearrangements [12,13]. Although many studies have been carried out on the genus

Adenophora, its accurate phylogenetic relationships and taxonomic position are not clear [12–

19]. Therefore, it is expected that the difference in chloroplast genome structure among Ade-
nophora species may be used as important information to solve the phylogenetic relationships

and taxonomic positions of various species that are currently unclear.

The genus Adenophora, which belongs to Campanulaceae, is a perennial herbaceous plant

genus with ca. 50–100 species that are distributed in temperate regions in Eurasia [12,13]. This

genus is commonly called “Adenophora Radix” and is an important plant resource used as an

herbal medicine [20,21].
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Among Adenophora species, Adenophora racemosa J. Lee & S. Lee, discussed in this study,

is endemic to Korea and was first described by Lee and Lee [22] after collection from Mt. Odae

National Park in Korea. This species is considered closely related to Adenophora divaricata
Franch. & Sav., Adenophora tyosenensis Nakai ex T.H. Chung and Adenophora pulcher Kitam.

owing to morphological characteristics such as four-leaf verticillation, regular teeth on the leaf

margins, and a pale green colour of the adaxial surface of the leaf basin. However, A. racemosa
is distinguished from A. divaricata in that the inflorescence is a panicle, and it is distinguished

from A. tyosenensis and A. pulcher by an urceolate corolla reminiscent of that of lily of the val-

ley (Convallaria keiskei Miq.) [22].

In relatively recent molecular phylogenetic studies, however, the phylogenetic relationships

and taxonomic position of A. racemosa were not clear because it exhibited unresolved para-

phyly with related taxa [13–15]. Furthermore, the phylogenetic relationships and taxonomic

position of many Adenophora species are currently ambiguous.

In this study, therefore, we reported the complete chloroplast genome sequence of A. race-
mosa, an endemic of Korea, and compared the sequence to those of four published congeneric

chloroplast genomes, i.e., those from Adenophora divaricata, Adenophora erecta S.T. Lee, J.K.

Lee & S.T. Kim, Adenophora remotiflora (Siebold & Zucc.) Miq., and Adenophora stricta Miq.

We found that A. racemosa has a previously unreported unique chloroplast genome structure

caused by IR contraction, important evidence supporting its recognition as an independent

species. We believe that the results of this study can be used as important information for

obtaining new insights into the evolutionary history of the genus Adenophora. Additionally,

the marker information presented in this study is considered to be very useful information for

further studies aiming to determine the exact phylogenetic relationships of Adenophora
species.

Materials and methods

Sample collection, DNA extraction and chloroplast genome sequencing

Since A. racemosa is not endangered and protected species, plant materials were collected

without permission. The plant material of A. racemosa was collected from Mt. Gaya (35˚ 49’

21.5” N, 128˚ 07’ 18.3” E) in Gyeongsangnam-do Province of South Korea, and a voucher spec-

imen (voucher no. KWNU93473) was deposited in Kangwon National University Herbarium

(KWNU).

Total DNA was extracted from approximately 100 mg of fresh leaves using a DNA Plant

Mini Kit (Qiagen Inc., Valencia, CA, USA). Genomic DNA was used for sequencing on the

Illumina MiSeq (Illumina Inc., San Diego, CA, USA) platform.

Assembly and genome mapping

Chloroplast genome assembly was conducted by the de novo assembly protocol [23] via the

Phyzen bioinformatics pipeline (http://phyzen.com). The DNA of A. divaricata was sequenced

to produce 8,361,496 raw reads with a length of 301 bp. Low-quality sequences (Phred

score < 20) were trimmed using CLC Genomics Workbench (version 6.04; CLC Inc., Arhus,

Denmark). After trimming, the library for A. racemosa included 6,991,585 reads. Then, de
novo assembly was implemented using the CLC Genome Assembler (http://www.clcbio.com/

products/clc-assembly-cell). A total of 107,248 reads were aligned and selected form chloro-

plast contigs using the nucmer tool in MUMmer [24]. The draft genome contigs were merged

into a single contig by joining overlapping terminal sequences of each contig. Additionally, the

chloroplast genome coverage was estimated using CLC Genomics Workbench (version 6.04;

CLC Inc.).
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The protein-coding genes, transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) in the

chloroplast genome were predicted and annotated using Dual Organellar GenoMe Annotator

(DOGMA) with the default parameters [25] and manually edited by comparison with the pub-

lished chloroplast genome sequences of Campanulaceae. tRNAs were confirmed using tRNAs-

can-SE [26]. A circular chloroplast genome map was drawn using the OGDRAW program [27].

Phylogenetic analyses

Two genes (rpl23 and clpP) among the total 78 PCGs were excluded from the phylogenetic analy-

sis data matrix, since most of these gene regions were deleted, and only a few regions existed in

the chloroplast genomes of Adenophora species. A total of 76 protein-coding genes from 13 spe-

cies (see S1 Table for accession numbers) were compiled into a single file of 83,906 bp (S2 Table)

and aligned with MAFFT [28]. Twelve Campanulaceae s. str. species were selected as the

ingroups, and one species (Lobelia chinensis Lour.) was chosen as the outgroup. Maximum likeli-

hood (ML) analyses were performed using RAxML v7.4.2 with 1000 bootstrap replicates and the

GTR+I model [29]. Bayesian inference (ngen = 1,000,000, samplefreq = 200, and burnin-

frac = 0.25) was carried out using MrBayes v3.0b3 [30], and the best substitution model (GTR+I)

was determined by the Akaike information criterion (AIC) in jModelTest version 2.1.10 [31].

Comparative analysis of genome structure

mVISTA was used to compare similarities among the five Adenophora species using shuffle-

LAGAN mode [32]. The annotated A. racemosa chloroplast genome was used as a reference.

Additionally, the genome structures of the five Adenophora species were compared using

MAUVE [33].

Nucleotide diversity and Ka/Ks ratio analysis

To assess complete nucleotide diversity (Pi) among the five Adenophora chloroplast genomes,

the complete chloroplast genome sequences were aligned using the MAFFT [28] aligner tool

and manually adjusted with BioEdit [34]. We then performed sliding window analysis to cal-

culate the nucleotide variability (Pi) values using DnaSP 6 [35] with a window length of 600 bp

and a step size of 200 bp [36]. The 75 protein-coding genes were extracted and aligned sepa-

rately using MAFFT [28] to estimate the synonymous (Ks) and nonsynonymous (Ka) substitu-

tion rates. The Ka/Ks for each gene was estimated in DnaSP [35].

Results

Feature of the Adenophora chloroplast genomes

The chloroplast genome of Adenophora racemosa (GenBank accession no. MT012303) has

been submitted to GenBank of the National Center for Biotechnology Information (NCBI).

The complete chloroplast genome of A. racemosa is 169,344 bp in length, with an average

mean coverage depth of 159-fold (S1 Fig). It exhibits a typical quadripartite architecture, with

an LSC (large single copy), an SSC (small single copy) and a pair of IRs (inverted repeats) of

122,518 bp, 29,588 bp and 8619 bp, respectively (Fig 1; Table 1).

The total length of the chloroplast genomes of five Adenophora species, i.e., A. racemosa
and four species analysed in a previous study (A. divaricata, A. erecta, A. remotiflora, and A.

stricta), ranged from 159,759 to 176,331 bp (Table 1). The length of the LSC regions in the five

chloroplast genomes anged from 105,555 to 122,518 bp, and the SSC and IR were 8648 to

29,588 bp and 8619 to 28,098 bp in length, respectively. In the chloroplast genome of A.
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racemosa, very long sequences were inserted into two IGSs (intergenic spacers) of psbB-rpl20
and ψpsbJ-ycf3, resulting in an extended LSC region (Fig 2; Table 1).

Additionally, each of the five chloroplast genomes contained 112 unique genes, including

78 protein-coding genes, 30 transfer RNAs (tRNA), and 4 ribosomal RNAs (rRNA). The G+C

contents in the five chloroplast genomes ranged from 37.7 to 38.8%.

Cheon et al. [12] reported that three genes (rpl23, infA, and clpP) in Adenophora chloroplast

genomes were pseudogenized, two tRNAs (trnI-CAU and trnV-GAC) and one gene (psbJ) had

one additional copy and two additional copies, respectively, and part of three genes (psbB,

ycf3, and rrn23) was duplicated. The A. racemosa chloroplast genome analysed in this study

had the same characteristics. The 5’ exon of the rps12 gene in the A. racemosa chloroplast

genome was located in the SSC region due to IR contraction, making it identical to the chloro-

plast genome of A. stricta. Meanwhile, trnQ-UUG in the chloroplast genome of A. racemosa
had an additional copy in the LSC region.

Fig 1. Gene map of the Adenophora racemosa chloroplast genome. Genes inside the circle are transcribed clockwise, and

genes outside are transcribed counterclockwise. The dark grey inner circle corresponds to the GC content, and the light-grey

circle corresponds to the AT content.

https://doi.org/10.1371/journal.pone.0248788.g001
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Phylogenetic analyses of Campanulaceae

The ML (maximum likelihood) tree formed the following two clades: platycodonoids and

campanuloids. The campanuloids formed two subclades: the Campanula s. str. clade and

Rapunculus clade. All nodes in the ML tree were strongly supported, with 100% BP (bootstrap)

and 1.00 PP (Bayesian posterior probability) values (Fig 3).

In the Campanula s. str. clade, Trachelium caeruleum L. formed a basal branch, and Campan-
ula zangezura (Lipsky) Kolak. et Serdjukova was sister to Campanula punctata Lam. and the Cam-
panula takesimana Nakai clade. Within the Rapunculus clade, Hanabusaya asiatica (Nakai) Nakai

was the earliest-diverging lineage and was sister to all other species in the clade. Additionally, five

Adenophora species were divided into two subclades: a clade containing the sect. Remotiflorae spe-

cies (A. remotiflora and A. erecta) and a clade containing the remaining three Adenophora species.

Furthermore, A. divaricata was sister to the A. stricta and A. racemosa clade.

The structural changes of Adenophora chloroplast genomes

The gene order and contents of the LSC region of A. racemosa were identical to those of A.

divaricata and A. stricta. In the results of previous study [12], the LSC of A. divaricata and A.

stricta were confirmed that inversion of two large gene blocks (trnT-UGU-ndhC, and psbJ-
ψpsbJ) were occurred when compared to LSC of sect. Remotiflorae speices, A. erecta and A.

remotiflora. Cheon et al [12] also reported that the gene order and contents of the IR and SSC

in two sect. Remotiflorae species and A. divaricata were the same, but the IR of A. stricta was

identified as being much shorter than that of other Adenophora species due to IR contraction.

Meanwhile, the IR of A. racemosa was identified as the shortest among the five studied Adeno-
phora species because IR contraction, including partial contraction of psbB, trnN-GUU, and

trnR-AGC, contraction further occurred in the A. racemosa chloroplast genome than in the A.

stricta chloroplast genome (Fig 4; Table 1).

Nucleotide diversity and Ka/Ks ratio

The average nucleotide diversity (Pi) among the five Adenophora chloroplast genomes and all

chloroplast genomes except those of the two sect. Remotiflorae species were estimated to be

0.087 and 0.010, respectively. Additionally, the Pi between the two chloroplast genomes of A.

racemosa and A. stricta, the species with the closest phylogenetic relationship with A. racemosa,

Table 1. Comparison of chloroplast genome features of five Adenophora species.

Feature A. racemosa A. stricta A. divaricata A. erecta A. remotiflora
GenBank accession No. MT012303 KX462131 KX462129 KX462130 KP889213

Genome size 169,344 159,759 176,331 173,324 171,724

Large single copy (LSC) 122,518 112,321 113,353 105,861 105,555

Small single copy (SSC) 29,588 27,238 8648 11,267 11,295

Inverted repeat (IR) 8619 10,100 27,165 28,098 27,437

Number of unique protein-coding genes 78 78 78 78 78

Number of tRNAs 30 30 30 30 30

Number of rRNAs 4 4 4 4 4

G+C (%)

Large single copy (LSC) 36.1 37.1 37.1 37.5 37.5

Small single copy (SSC) 35.6 35.4 33.0 35.0 34.9

Inverted repeat (IR) 52.3 51.0 42.2 41.8 42.0

Total genome 37.7 38.5 38.5 38.7 38.8

https://doi.org/10.1371/journal.pone.0248788.t001

PLOS ONE Complete chloroplast genome sequence of Adenophora racemosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0248788 March 18, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0248788.t001
https://doi.org/10.1371/journal.pone.0248788


was estimated to be 0.009, ranging from 0 to 0.383 (Fig 5). In the five chloroplast genomes,

seven regions (rpoA-petD, psbB-rpl20, ycf3-ropB, ndhD-trnI, ndhF-rpl32, and two ycf1 regions)

showed high values of Pi (> 0.05). In the results for the groups of three species and two species,

11 (rpoA-petD, trnL-rpl20, psbJ-ndhC, trnT-psbJ, trnC-petN, psbJ-ycf3, ycf3-rpoB, rpoC2, ndhF-
rpl32, and two ycf1 regions) and seven regions (trnL-rpl20, trnT-psbJ, trnC-petN, psbJ-ycf3,

ndhF-rpl32, and ycf1) showed a high value of Pi (> 0.05), respectively.

The Ka (non-synonymous)/Ks (synonymous) ratio was calculated for the 75 protein-coding

genes of three Adenophora species, namely, A. divaricata, A. stricta, and A. racemosa (Fig 6;

S3 Table). Comparison between A. divaricata and A. stricta revealed high values of 1 or more

in seven gene regions (matK, rpoB, rpoC1, rpoC2, ycf2, ndhF, and ycf1), and that between A.

Fig 2. Visualization of alignment of five Adenophora chloroplast genomes using A. racemosa as a reference. The vertical scale indicates the percent identity, ranging

from 50% to 100%. Coding regions, RNAs, and non-coding regions are marked in purple, sky blue, and red, respectively.

https://doi.org/10.1371/journal.pone.0248788.g002
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divaricata and A. racemosa showed that 5 gene regions (matK, rpoB, rpoC1, rpoC2, and ycf1)

had a value of 1 or more. Furthermore, only one region showed a high value of more than 1

between A. stricta and A. racemosa, which showed the closest phylogenetic relationship.

Discussion

Chloroplast genome organization in Adenophora
The lengths of the LSC of A. divaricata, A. stricta, and A. racemosa were longer than those of

the two sect. Remotiflorae species (A. erecta and A. remotiflora). Additionally, A. racemosa had

the longest LSC among the five Adenophora species. The difference in the lengths of LSC

regions between sect. Remotiflora and the remaining three species is judged to be due to

sequence mutations of the inversion end point of two large gene blocks. Also, we confirmed

that the difference lengths of IRs and SSC regions among the three Adenophora species except

two sect. Remotiflorae species were attributed to IR contraction (Fig 4).

Adenophora species are known to be difficult to distinguish because of their overlapping

morphological characters [13]. In particular, A. racemosa, discussed in this study, has morpho-

logical characteristics that are very similar to those of A. divaricata, which makes it very diffi-

cult to distinguish the two species. Therefore, the difference in chloroplast genome structure

Fig 3. The ML tree based on 76 protein coding genes from 13 chloroplast genomes. The 100% bootstrap (BP) value and

1.00 Posterior probability (PP) value are marked with �.

https://doi.org/10.1371/journal.pone.0248788.g003
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between the two species identified in this study is considered to be very useful information for

distinguishing between the two species.

Suggestions for classification system of genus Adenophora
The ML tree in this study showed that Adenophora forms a monophyletic clade divided into two

subclades, one containing the two sect. Remotiflorae species and another containing the remaining

three species. In the clade containing the remaining three species, A. racemosa has a closer rela-

tionship with A. stricta than with A. divaricata. We think that these relationships have important

implications because they are different from the relationships in the recent classification system.

The classification system of Adenophora has been established by many studies [37–44], and

the species in this genus are divided into sections mainly by leaf arrangement and disk shape.

Among the five Adenophora species discussed in this study, accordingly, it is common to treat

A. erecta and A. remotiflora as belonging to sect. Remotiflorae, A. divaricata and A. racemosa
as belonging to sect. Platyphyllae, and A. stricta as belonging to sect. Gmelinianae. However,

the two species belonging to sect. Platyphyllae exhibited paraphyly, and these phylogenetic

relationships were different from the relationships in the current classification system. Of

course, this study was carried out with only a few taxa, which makes it difficult to discuss the

complete phylogenetic relationships of Adenophora. However, paraphyletic relationships have

been confirmed in this study, and we think that in-depth studies are necessary to delimit the

sections of Adenophora, except sect. Remotiflorae.

Fig 4. IR contraction in the Adenophora racemosa chloroplast genome.

https://doi.org/10.1371/journal.pone.0248788.g004
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Evolution of protein-coding genes in Adenophora species

The Ka/Ks ratio may indicate which selection pressure is acting on a particular PCGs. Ka/

Ks> 1 and Ka/Ks< 1 indicate that the gene is affected by positive selection and negative selec-

tion, respectively, and a value of 0 indicates neutral selection [36,45].

The Ka/Ks ratio of Adenophora species was calculated for the first time in this study. As a result,

between A. divaricata and A. stricta, there were two more positively selected genes (ycf2 and ndhF)

than between A. divaricata and A. racemosa. Additionally, between A. racemosa and A. stricta, 62

and 12 genes were calculated to be under neutral selection and negative selection, respectively, and

only 1 gene (ycf1) was identified as being under positive selection (Fig 4; S3 Table).

In the Caesalpinioideae of Leguminosae, known as one of the groups with the most struc-

tural changes in the chloroplast genome, four genes (ndhD, ycf1, infA and rpl23) and three

genes (psbH, clpP, and rps16) were identified as being under positive selection [36,46], respec-

tively. In the Convolvulaceae and Araceae, three genes (accD, cemA, and ycf2) and only one

gene (rps12) were positively selected, respectively. Moreover, ycf1 was identified as the gene

with the most accelerated mutation rates among the species in this study, and ycf1 was found

to have the highest sequence mutation rates among the protein-coding genes in a previous

study including sect. Remotiflorae species [12].

Fig 5. Sliding window analysis of Adenophora chloroplast genomes. A; Pi values of five Adenophora species, B; Pi values of

three Adenophora species, excluding the two sect. Remotiflorae species, C; Pi values of A. stricta and A. racemosa.

https://doi.org/10.1371/journal.pone.0248788.g005
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Useful molecular marker information for Adenophora phylogenetics

We think that marker information that can best describe the phylogenetic tendencies of the

remaining sections (except sect. Remotiflorae) is most needed at this point. In a previous study

[13], because sect. Remotiflorae formed a monophyletic group, there was no issue in classifying

it as a section.

The results of this study using the sliding window method among the three Adenophora
species (Fig 3B) showed that the nucleotide diversity in eleven regions, including three gene

regions and eight IGS (intergenic spacer) regions, had high calculated values (> 0.05). We

think that six regions (Fig 3C), namely, trnL-rpl20, trnT-psbJ, trnC-petN, psbJ-ycf3, ndhF-rpl32,

and ycf1, among the eleven regions have particularly high phylogenetic resolution because

their nucleotide diversity values were high in two species that showed a close phylogenetic rela-

tionship in the ML tree (Fig 2).

Conclusion

In this study, we assembled the chloroplast genome of A. racemosa, which had a total length of

169,344 bp. The IR of A. racemosa was identified as the shortest among the Adenophora species

because of IR contraction. A. racemosa is not easy to distinguish because its morphological

characteristics are very similar to those of A. divaricata. Therefore, the different structures of

the chloroplast genomes are considered to be very useful information for distinguishing

between the two species. The ML tree results showed that A. racemosa is more closely related

to A. stricta than to A. divaricata, indicating a clear problem with the current classification sys-

tem for Adenophora. Therefore, we think that further in-depth phylogenetic studies of Adeno-
phora are needed, and the molecular marker information presented in this study is expected to

be very useful for such studies.
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