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To establish and maintain proper brain architecture and elaborate neural networks,
neurons undergo massive migration. As a unique feature of their migration, neurons
move in a saltatory manner by repeating two distinct steps: extension of the leading
process and translocation of the cell body. Neurons must therefore generate forces
to extend the leading process as well as to translocate the cell body. In addition,
neurons need to switch these forces alternately in order to orchestrate their saltatory
movement. Recent studies with mechanobiological analyses, including traction force
microscopy, cell detachment analyses, live-cell imaging, and loss-of-function analyses,
have begun to reveal the forces required for these steps and the molecular mechanics
underlying them. Spatiotemporally organized forces produced between cells and their
extracellular environment, as well as forces produced within cells, play pivotal roles to
drive these neuronal migration steps. Traction force produced by the leading process
growth cone extends the leading processes. On the other hand, mechanical tension of
the leading process, together with reduction in the adhesion force at the rear and the
forces to drive nucleokinesis, translocates the cell body. Traction forces are generated
by mechanical coupling between actin filament retrograde flow and the extracellular
environment through clutch and adhesion molecules. Forces generated by actomyosin
and dynein contribute to the nucleokinesis. In addition to the forces generated in
cell-intrinsic manners, external forces provided by neighboring migratory cells coordinate
cell movement during collective migration. Here, we review our current understanding of
the forces that drive neuronal migration steps and describe the molecular machineries
that generate these forces for neuronal migration.

Keywords: neuronal migration, mechanobiology, traction force, adhesion force, mechanical tension, shootin1,
actomyosin, dynein

INTRODUCTION

Neuronal migration is a fundamental process to establish and maintain the nervous system
(Hatten, 2002; Ayala et al., 2007; Ghashghaei et al., 2007; Marin et al., 2010; Kaneko et al., 2017),
and defects in neuronal migration cause a number of disorders including brain malformation,
intellectual disability, epilepsy and psychiatric diseases (Valiente and Marin, 2010; Evsyukova et al.,
2013; Moffat et al., 2015; Stouffer et al., 2016). Decades of intensive analyses of mouse mutants
and human brain malformations have yielded substantial progress in our understanding of the
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molecular bases for controlling neuronal migration (Hatten,
2002; Govek et al., 2011; Hirota and Nakajima, 2017). In addition,
imaging analyses have uncovered spatiotemporal molecular and
cellular events underlying neuronal migration (Famulski et al.,
2010; Yanagida et al., 2012; Cooper, 2013; Hatanaka et al., 2016;
Ohtaka-Maruyama et al., 2018; Saito et al., 2019). Although
these studies have significantly advanced our understanding of
neuronal migration on the molecular and cellular levels, cell
movement ultimately depends on the generation of driving
forces. Therefore, one of the major goals of current research is
understanding the molecular machineries required to generate
forces for neuronal migration.

Migrating neurons exhibit bipolar morphology, with a long
leading process and a short trailing process (Tsai and Gleeson,
2005; Marin et al., 2006); the tip of the leading process
bears a highly motile structure, the growth cone (Marin
et al., 2006; Ayala et al., 2007; Marin et al., 2010; Cooper,
2013; Evsyukova et al., 2013; Figure 1A). Typically, neurons
migrate in a saltatory manner by repeating two distinct steps,
namely extension of the leading process and translocation
of the cell body (Edmondson and Hatten, 1987; O’Rourke
et al., 1992; Komuro and Rakic, 1993, 1995; Wichterle et al.,
1997; Nadarajah et al., 2001, 2002; Schaar and McConnell,
2005; Tsai and Gleeson, 2005; Marin et al., 2006; Figure 1A).
Neurons must therefore generate forces to extend the leading
process as well as to translocate the cell body. In addition,
they need to switch these forces alternately in order to
orchestrate their saltatory movement. This review outlines
recent findings and mechanobiological approaches that are
beginning to uncover the forces required to drive neuronal
migration. Spatiotemporally organized forces produced between
neurons and the extracellular environment play key roles in
driving these migration steps (blue box, Figure 1B). Namely,
the driving force for leading process extension (white arrow,
Figure 1B) is produced as a counter force of the traction
force on the environment (yellow arrow, Figure 1B) generated
by the growth cone. On the other hand, a decrease in
the adhesion force at the cell body (smaller green arrow,

Figure 1B) propels somal translocation. In addition, intracellular
forces (red box, Figure 1B), including leading process tension
(black arrows, Figure 1B) and pushing and pulling forces
exerted on the nucleus (red and blue arrows, Figure 1B),
contribute to somal translocation. Furthermore, forces provided
by neighboring migratory cells (brown arrow, Figure 1B)
coordinate cellular movement during collective migration.
Concerning the mechanical regulation of nuclear translocation,
readers are also referred to other reviews (Tsai and Gleeson,
2005; Marin et al., 2010; Trivedi and Solecki, 2011; Nakazawa and
Kengaku, 2020).

FORCES FOR LEADING PROCESS
EXTENSION

Traction Force at the Growth Cone
Extends the Leading Process
Neurons migrate within tightly packed environments, including
glial cells, other neurons and the extracellular matrix (ECM)
(Franco and Muller, 2011; Solecki, 2012), which serve as adhesive
substrates. To migrate through these environments, neurons
need to produce forces against the adhesive substrates. Indeed,
using traction force microscopy (Figure 2A), recent studies
detected traction forces produced by migrating cerebellar granule
cells in 2D conditions (Jiang et al., 2015; Umeshima et al.,
2019) and by olfactory interneurons in a semi-3D condition
(Minegishi et al., 2018). In all cases, prominent traction forces
were observed at the growth cone of the leading process
(yellow arrows, Figure 2B and Supplementary Video S1).
The direction of the traction forces at the growth cone was
oriented toward the rear of the cell (Minegishi et al., 2018;
Umeshima et al., 2019). In addition, the magnitude of the
forces showed a positive correlation with the speed of growth
cone advance (Minegishi et al., 2018), indicating that the
traction forces generated at the growth cone drive leading
process extension.

FIGURE 1 | A Mechanical model for neuronal migration. (A) Neurons migrate in a saltatory manner by repeating the two distinct steps: leading process extension
and somal translocation. (B) The driving force for leading process extension (white arrow) is produced as a counter force of the traction force on the adhesive
substrate produced by the growth cone (yellow arrow). Somal translocation is likely to be driven by multiple forces, including mechanical tension along the leading
process (black arrows), a decrease in the adhesion force at the cell body (smaller green arrow), and pushing (red arrow) and pulling (blue arrow) forces exerted on the
nucleus. In addition, forces provided by neighboring cells (brown arrow) coordinate cell movement during collective migration.
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FIGURE 2 | Generation of traction force for leading process extension by actin–adhesion coupling. (A) Schema of traction force microscopy to monitor force
generated by migrating neurons. Neurons are cultured on polyacrylamide gel coated with adhesive substrates such as L1-CAM; fluorescent beads are embedded in
the gel. Traction forces under the cell (yellow arrow) are monitored by visualizing force-induced deformation of the gel, which is reflected by the movement of beads
under the neuron (blue arrows). (B) Force mapping of a migrating neuron. Differential interference contrast (DIC, upper panels) and fluorescence (lower panels)
time-lapse images of a migrating olfactory interneuron (see Supplementary Video S1). The original and displaced positions of the beads are indicated by green and
red, respectively, while the bead displacements are indicated by cyan rectangles. Yellow arrows in DIC images indicate the magnitude and direction of traction
forces. Dashed lines indicate the boundary of the cell. The kymographs (lower right) along the axis of bead displacement (pink arrows) at the boxed areas 1 and 2 of
the neuron show movement of beads. Note that the gel under the cell body deformed forward during the somal translocation step (white arrows in the bottom DIC
image and box 2). Modified from Minegishi et al. (2018) (This work is licensed under the CC BY license, https://creativecommons.org/licenses/by/4.0/) with
permission. (C) Fluorescent speckle image of HaloTag-actin at the leading process growth cone of an olfactory interneuron, and kymograph of the boxed area at 3 s
intervals (right) (see Supplementary Video S2). The dashed line indicates the retrograde flow of speckles. Reproduced from Minegishi et al. (2018) with permission.
(D) Molecular machinery for generation of traction force in migrating olfactory interneurons. At the leading process growth cone, shootin1b mediates actin–adhesion
coupling, through its interactions with cortactin and L1-CAM. This coupling generates traction force under the growth cone (yellow arrow). The driving force for
leading process extension (forward white arrow) is generated as a counterforce to the traction forces exerted on the adhesive substrate. Scale bars: 5 µm.
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Shootin1b Mediates Actin–Adhesion
Coupling for Generation of Traction
Force at the Leading Process Growth
Cones
The tip of an extending axon also bears a growth cone (Lowery
and Van Vactor, 2009), and axonal growth cones produce traction
forces for axon outgrowth and guidance (Chan and Odde, 2008;
Koch et al., 2012; Abe et al., 2018; Baba et al., 2018). Decades of
analyses of axonal growth cones have revealed a key machinery
to generate traction forces for growth cone migration. At the
leading edge of the axonal growth cone, actin filaments (F-actins)
polymerize and disassemble proximally, which, in conjunction
with myosin II activity, induces retrograde flow of F-actins
(Forscher and Smith, 1988; Katoh et al., 1999; Medeiros et al.,
2006). Mechanical coupling between F-actin retrograde flow
and adhesive substrates through clutch and adhesion molecules
generates traction forces on the substrates (Mitchison and
Kirschner, 1988; Suter and Forscher, 2000; Toriyama et al.,
2013). Namely, the actin–adhesion coupling transmits the force
of F-actin retrograde flow to the adhesive substrate, producing
traction force on the substrate. Concurrently, actin–adhesion
coupling reduces the speed of the F-actin retrograde flow,
thereby converting actin polymerization into force that pushes
the leading-edge membrane. To date, shootin1a is one of the
best-characterized clutch molecules involved in the generation of
traction forces at the axonal growth cone (Toriyama et al., 2006;
Shimada et al., 2008). Shootin1a interacts with F-actin retrograde
flow through its association with the F-actin-interacting protein
cortactin (Kubo et al., 2015). Shootin1a also interacts with the
cell adhesion molecule L1-CAM (Baba et al., 2018), which binds
to the ECM protein laminin (Abe et al., 2018) as well as to
L1-CAM expressed on neighboring cells (Lemmon et al., 1989),
thereby mechanically coupling the F-actin retrograde flow with
the adhesive substrates. The shootin1a-mediated actin–adhesion
coupling generates traction forces for axon outgrowth (Kubo
et al., 2015) and axon guidance induced by diffusible and
substrate-bound chemical cues (Abe et al., 2018; Baba et al., 2018).
N-cadherin–catenin complexes were also reported to mediate
actin–adhesion coupling at the axonal growth cone (Bard et al.,
2008; Garcia et al., 2015).

As in the case of axonal growth cones, F-actins also
undergo retrograde flow at the tip of leading process growth
cones (Figure 2C and Supplementary Video S2; He et al.,
2010; Minegishi et al., 2018). A recent study reported that
shootin1b, a splicing variant of shootin1a (Higashiguchi et al.,
2016), functions as a clutch molecule at the leading process
growth cone of migrating olfactory interneurons (Minegishi
et al., 2018; Figure 2D). During neuronal migration, shootin1b
undergoes dynamic accumulation in the leading process growth
cone; this accumulation positively correlates with leading
process extension. Shootin1b at the growth cone couples
F-actin retrograde flow and cell adhesions via cortactin and
L1-CAM, thereby generating traction force on the adhesive
substrate (Minegishi et al., 2018; yellow arrow, Figure 2D).
In addition, a recent study reported that shootin1b directly
interacts with F-actin and promotes actin polymerization in vitro

(Zhang et al., 2019). The driving force for leading process
extension (forward white arrow) is produced as a counter
force of the traction force. Shootin1 knockout (KO) decreased
the magnitude of the traction force produced by the growth
cone and reduced the extension of the leading process as well
as the speed of neuronal migration. Furthermore, shootin1
KO led to abnormal positioning of olfactory interneurons and
dysgenesis of the olfactory bulb (Minegishi et al., 2018). These
data indicate that traction force generated by shootin1b-mediated
actin–adhesion coupling promotes leading process extension for
migration of olfactory interneurons.

In addition, shootin1 KO results in ectopic accumulation of
mitral cells (Minegishi et al., 2018), olfactory excitatory neurons
that undergo radial migration (Hinds, 1968; Blanchart et al.,
2006). Recent studies also reported that shootin1 knockdown
inhibits the radial migration of cortical neurons (Sapir et al.,
2013) and that shootin1 KO delays the collective cell migration
of zebrafish posterior lateral line primordium (PLLP), a cluster of
progenitor cells destined to form a mechanosensory organ called
the neuromast (Urasaki et al., 2019). These data suggest that
traction force generated by shootin1-mediated actin–adhesion
coupling may propel the migration of multiple types of neurons.

FORCES FOR SOMAL TRANSLOCATION

Tension Along the Leading Process for
Somal Translocation
The cell body is the swollen part of migrating neurons;
therefore, its translocation against the mechanical barriers of
the surrounding environment must rely on the generation
of robust forces. One of the candidate forces for mediating
somal translocation is tension along the leading process
(Figure 3A). He et al. (2010) reported that severing the leading
process of cerebellar granule cells arrested somal translocation,
demonstrating that the leading process is required for somal
translocation. Consistently, in cerebellar granule cells and
gonadotropin-releasing hormone (GnRH)-expressing neurons,
F-actins located along the leading process move forward in
correlation with somal translocation (Solecki et al., 2009; He
et al., 2010; Hutchins et al., 2013; Hutchins and Wray, 2014).
In addition, traction force microscopy demonstrated that the gel
substrate under the cell body of olfactory interneurons deformed
forward during the somal translocation step (Minegishi et al.,
2018; white arrows and Box 2, Figure 2B and Supplementary
Video S1). These data suggest that the leading process pulls
the cell body for somal translocation (Solecki et al., 2009; He
et al., 2010; Hutchins et al., 2013; Hutchins and Wray, 2014;
Minegishi et al., 2018; Figure 3A). As described above, shootin1b
promotes leading process extension of olfactory interneurons
(white arrows, Figure 3A) by producing traction force at the
growth cone (yellow arrows); on the other hand, shootin1b is
also involved in somal translocation (Minegishi et al., 2018).
A previous study with chick sensory neurons demonstrated
that mechanical tension along neurites increases according to
neurite extension (Lamoureux et al., 1989). Therefore, the
leading process extension driven by traction force at the growth
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FIGURE 3 | Multiple forces that cooperate for somal translocation. (A) Leading process extension (white arrows) increases the mechanical tension along the leading
process (black arrows), which in turn pulls the cell body for somal translocation. In addition, actomyosin contraction at the proximal region of the leading process (red
arrows) increases the tension along the leading process. (B) Decrease in the adhesion force at the cell body (smaller green arrow) propels somal translocation.
Adhesion receptors are transported from the cell body to the leading process via endocytic pathways (black arrows), resulting in an increase in the adhesion force at
the leading process and a decrease in adhesion force at the cell body (smaller green arrow). (C) Actomyosin, which may be anchored to the cell cortex, contracts at
the rear of the nucleus (small red arrows), thereby squeezing the nucleus and generating pushing force (large red arrow) for nucleokinesis. (D) The dynein complex
mechanically interacts with the nucleus via the LINC complex, and its movement (yellow arrows) along perinuclear microtubules generates pulling force (blue arrow)
for nucleokinesis. (E) In the swelling of the proximal part of the leading process, the dynein motor complex may be immobilized on a cellular component via an
anchoring molecule. The force of dynein movement (yellow arrow) slides microtubules forward, thereby pulling (blue arrow) the centrosome forward.

cone (Jiang et al., 2015; Minegishi et al., 2018; Umeshima
et al., 2019) would increase tension along the process (black
arrows, Figure 3A), which in turn pulls the cell body for
somal translocation.

In the case of migrating cerebellar granule cells which extend
F-actin-enriched leading process (Rivas and Hatten, 1995; Solecki
et al., 2009), Myosin II and myosin light chain kinase (MLCK)
accumulate at the proximal region of the leading process (Solecki
et al., 2009; Umeshima et al., 2019). Consistently, traction
force analyses detected a myosin II dependent contraction
center at the proximal region of the leading process during
somal translocation step (Jiang et al., 2015; Umeshima et al.,
2019). Thus, actomyosin contraction would actively contribute
to increase the tension along the leading process of cerebellar
granule cells (red arrows, Figure 3A), thereby pulling the soma
(Solecki et al., 2009; Trivedi and Solecki, 2011; Jiang et al., 2015;

Umeshima et al., 2019). Recent studies have developed
fluorescent tension probes that are applied in fluorescence
lifetime imaging (FLIM) (Colom et al., 2018) and fluorescence
resonance energy transfer (FRET) imaging (Li et al., 2018).
Detailed analyses of mechanical tension along the leading process
remains an important issue for future studies.

Decrease in Adhesion Force at the Soma
for Somal Translocation
As described above, cell adhesion is required for the generation
of traction force for neuronal migration. On the other hand,
it was also proposed that a decrease in the adhesion force at
the rear of the migratory cells facilitates forward movement of
cells (Sheetz et al., 1998). Indeed, overexpression or knockdown
of cell adhesion molecules, such as N-cadherin or L1-CAM,
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inhibits neuronal migration (Kawauchi et al., 2010; Shikanai
et al., 2011; Kishimoto et al., 2013; Tonosaki et al., 2014; Mestres
et al., 2016), implying that coordinated regulation of adhesion
forces generated between neurons and adhesive substrates is
required for neuronal migration. To assess the spatial dynamics
of adhesion force in migrating cerebellar granule cells, Jiang et al.
(2015) performed a cell detachment assay. They mechanically
pulled the middle region of the leading process of cerebellar
granule cells using a micropipette, and examined the first
detachment point of the neurons. In neurons whose soma was
stationary, the growth cone was detached first from the substrate.
In contrast, in neurons whose soma was moving forward, the cell
body was detached first (Jiang et al., 2015). These data suggest
that a decrease in the adhesion force at the cell body is important
to propel somal translocation (Figure 3B). Although this assay
is qualitative, other recent studies have reported a quantitative
cell detachment assay: using femtosecond lasers combined with
atomic force microscopy (AFM), controlled impulsive forces to
induce cell detachment can be applied to estimate the adhesion
force of cells (Hosokawa et al., 2011; Iino et al., 2016). In
addition, cell adhesion molecules tagged with pH-sensitive GFP
could enable analyses of spatiotemporal dynamics of adhesions
in migrating neurons (Famulski et al., 2010). Quantification and
spatiotemporal analyses of adhesion forces in migrating neurons
are important issues for future research.

Several studies have reported an involvement of endocytic
trafficking of cell adhesion molecules in regulation of
spatiotemporal dynamics of cell adhesion during neuronal
migration (Kawauchi et al., 2010; Wilson et al., 2010; Shieh
et al., 2011; Mestres et al., 2016; Figure 3B). Kawauchi et al.
(2010) performed loss-of-function assays and proposed that
N-cadherin is internalized at the cell body by Rab5-dependent
endocytic pathways and transported to the leading process
by a Rab11-dependent recycling pathway; disruption of
these trafficking pathways led to migration defects in cortical
projection neurons. Similarly, Shieh et al. (2011) reported that
inhibition of endocytosis by loss-of-function of dynamin led
to an accumulation of integrin β1 at the cell rear, leading to
disruption of the migrations of olfactory interneurons and
cortical projection neurons. On the other hand, knockdown of
the early endosomal protein SARA (Smad anchor for receptor
activation), increased surface expression of L1-CAM and delayed
radial migration of cortical neurons (Mestres et al., 2016).
These findings suggest that endocytic trafficking (black arrows,
Figure 3B) decreases the number of adhesion receptors at the
cell body for somal translocation.

Pushing Forces for Nucleokinesis
Generated by Actomyosin Contraction
As somal translocation occurs in a saltatory manner, this
step would not be explained simply in terms of a balance
between the leading process tension and somal adhesion.
Since the nucleus is the largest organelle in the cell body, its
movement, nucleokinesis, is critical for somal translocation
(Tsai and Gleeson, 2005). Accumulating evidence indicates
that actomyosin contraction contributes to nucleokinesis by

squeezing the nucleus (Figure 3C). During nucleokinesis of
olfactory and medial ganglionic eminence (MGE)-derived
interneurons, F-actin and myosin II accumulate at the rear
of the nucleus, where myosin II is activated (Bellion et al.,
2005; Schaar and McConnell, 2005; Martini and Valdeolmillos,
2010). Live imaging analyses demonstrated that the F-actin
accumulation at the rear precedes nuclear movement.
Furthermore, inhibition of myosin II activity by blebbistatin
abolishes F-actin accumulation at the rear, thereby inhibiting
nuclear squeezing as well as nuclear translocation (Martini and
Valdeolmillos, 2010). These findings indicate that actomyosin at
the rear squeezes the nucleus (small red arrows, Figure 3C) and
exerts pushing force (large red arrow) to drive nucleokinesis in
interneurons (Bellion et al., 2005; Schaar and McConnell, 2005;
Martini and Valdeolmillos, 2010).

On the other hand, in the case of cerebellar granule cells,
F-actins do not accumulate at the rear of the nucleus (Solecki
et al., 2009; He et al., 2010; Umeshima et al., 2019). In addition,
traction force analyses failed to detect pushing forces at the rear
of these neurons (Jiang et al., 2015), thereby suggesting that
actomyosin dynamics at the rear differs depending on the cell
types (Trivedi and Solecki, 2011).

Pulling Force for Nucleokinesis
Generated by Dynein Motor Complex
Live-cell imaging analyses demonstrated that somal translocation
is preceded by a swelling of the proximal part of the leading
process and forward movement of the centrosome into this
swelling (Bellion et al., 2005; Schaar and McConnell, 2005;
Tsai and Gleeson, 2005; Marin et al., 2010; Shinohara et al.,
2012). Accumulating data suggest that coupling between the
centrosome and the nucleus plays an important role in
somal translocation (Tsai and Gleeson, 2005; Marin et al.,
2010; Cooper, 2013; Kaneko et al., 2017). In migrating
neurons, the centrosome acts as a microtubule organizing
center and extends microtubules to the leading process and
to the nucleus; therefore, centrosome-organized microtubules
are oriented with their minus end toward the centrosome
(Tsai and Gleeson, 2005; Marin et al., 2010). Previous studies
reported that minus-end-directed Lis1/Ndel1/dynein motor
complex is responsible for both nucleokinesis and centrosomal
movement (Shu et al., 2004; Tanaka et al., 2004; Tsai et al.,
2007; Zhang et al., 2009). Perinuclear microtubules act as the
scaffold for dynein-mediated nucleokinesis (Shu et al., 2004;
Tanaka et al., 2004; Tsai et al., 2007). The dynein complex
pulls the nucleus forward via the LINC complex (blue arrow,
Figure 3D), which is formed by the transmembrane SUN
and KASH proteins (Zhang et al., 2009). On the other hand,
less is known about the molecular mechanism by which
the dynein complex drives the forward movement of the
centrosome. Tsai et al. (2007) proposed that dynein motor
slides microtubules forward, thereby driving the centrosome
movement (blue arrow, Figure 3E). This idea is supported by
live-cell imaging data that demonstrate forward movement of
microtubules in the proximal leading process (Rao et al., 2016).
To underpin the centrosomal movement, the dynein complex
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must be immobilized on a cellular component; however, the
molecular linkage for dynein immobilization remains unclear.
Recent studies reported that actomyosin accumulates in front
of the nucleus of migrating cerebellar granule cells, suggesting
that actomyosin contraction may also contribute to pulling the
nucleus for somal translocation of these cells (Solecki et al.,
2009; Jiang et al., 2015; Umeshima et al., 2019). Further analyses
are required to uncover the detailed molecular mechanics of
nuclear translocation.

Forces Externally Provided by
Neighboring Cells During Collective Cell
Migration
Some of neuronal progenitor cells, for example the cranial
neural crest and zebrafish PLLP, migrate as cell clusters
during development (Ghysen and Dambly-Chaudiere, 2007;
Nogare et al., 2017; Shellard and Mayor, 2019). In addition,
neonatal and adult olfactory interneurons undergo a stream-type
collective cell migration called chain migration (Marin and
Rubenstein, 2003; Rorth, 2009; Kaneko et al., 2017). In
such cases, migrating cells receive forces from neighboring
migratory cells (brown arrow, Figure 1B), and thus their
migration is affected by the movements of the neighboring
cells. For example, a recent study reported that contraction
of “supracellular” actomyosin ring localized at the rear
of the neural crest cell cluster drives collective migration
of the cell group (Shellard et al., 2018). In the case of
endothelial cells, it is proposed that cadherin-mediated cell-cell
junctions between leader and follower cells orient cellular
movement during collective migration (Hayer et al., 2016).
Similarly, chain migration is thought to be associated with the
efficient and coordinated movement of olfactory interneurons
(Kaneko et al., 2017).

CONCLUDING REMARKS

With the aid of emerging mechanobiological approaches,
the molecular mechanics underlying neuronal migration is
beginning to be elucidated. In this review, we have described a
current view of the forces that drive the two neuronal migration
steps, leading process extension and somal translocation.
Spatiotemporally organized forces produced between neurons
and the extracellular environment, as well as intracellular
forces, play pivotal roles to drive these migration steps.
Diverse molecules may contribute to the generation of these
forces, depending on the neuronal cell type. As an important
question, it remains unknown how neurons can switch between
these processes. Molecular and mechanical interactions between
the leading process and the cell body should coordinate
the two processes to achieve saltatory movement. Ca2+

imaging analyses demonstrated transient increases in Ca2+

concentration in the cell body of cerebellar granule cells,
which positively correlated with their somal translocation
(Komuro and Rakic, 1996; Kumada and Komuro, 2004). In
addition, treatment with BAPTA, a calcium chelator, abolished

the transient Ca2+ increases and F-actin accumulation at
the rear of the nucleus, resulting in inhibition of somal
translocation (Martini and Valdeolmillos, 2010). These reports
support the notion that transient Ca2+ increases are involved
in the activation of actomyosin to trigger nucleokinesis.
Similarly, shootin1b underwent dynamic accumulation at
the leading process growth cone of migrating olfactory
interneurons, which positively correlated with leading process
extension (Minegishi et al., 2018). In addition, shootin1 KO
inhibited the leading process extension, suggesting that the
shootin1b accumulation triggers leading process extension
(Minegishi et al., 2018). To understand how migratory neurons
produce forces for their pathfinding, it is also important
to link guidance cues in the extracellular environments
with the regulation of the machineries involved in force
generation. Such extracellular cues would include diffusible and
substrate-bound chemical cues and mechanical properties of
the environment. Further detailed measurement of forces, in
combination with molecular and cell biological approaches,
will enhance our understanding of the mechanics underlying
neuronal migration.
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VIDEO S1 | A force-mapping video of a migrating neuron. This video shows DIC
(upper) and fluorescence (lower) time-lapse imaging of a migrating olfactory
interneuron. Arrows in the DIC image indicate strength and direction of traction
forces (force magnitude is shown by the length of the arrows, which are 4.5 times
longer than bead displacements). The original and displaced positions of the
beads are indicated by green and red, respectively. The bead displacements are
also indicated by cyan rectangles. Images were acquired every 30 s for 24.5 min.
Scale bar, 5 µm. Modified from Minegishi et al. (2018) with permission (see
Figure 2B).

VIDEO S2 | Fluorescent speckle imaging of HaloTag-actin at the leading process
growth cone of an olfactory interneuron. Images were acquired every 3 s for 42 s.
Scale bar, 5 µm. Reproduced from Minegishi et al. (2018) with permission (see
Figure 2C).
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