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Syndecans are transmembrane receptors with ectodomains that are modified by
glycosaminoglycan chains. The ectodomains can interact with a wide variety of
molecules, including growth factors, cytokines, proteinases, adhesion receptors, and
extracellular matrix (ECM) components. The four syndecans in mammals are expressed
in a development-, cell-type-, and tissue-specific manner and can function either as co-
receptors with other cell surface receptors or as independent adhesion receptors that
mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis,
cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis
processes. In some cancers, syndecan expression regulates tumor cell proliferation,
adhesion, motility, and other functions, and may be a prognostic marker for tumor
progression and patient survival. The short cytoplasmic tail is likely to be involved in
these events through recruitment of signaling partners. In particular, the conserved
carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds
to some PDZ domain-containing proteins that may function as scaffold proteins that
recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing
interest in understanding these interactions at both the structural and biological levels,
and recent findings show their high degree of complexity. Parameters that influence
the recruitment of PDZ domain proteins by syndecans, such as binding specificity
and affinity, are the focus of active investigations and are important for understanding
regulatory mechanisms. Recent studies show that binding may be affected by post-
translational events that influence regulatory mechanisms, such as phosphorylation
within the syndecan cytoplasmic tail.

Keywords: syndecan, cancer, PDZ domain, phosphorylation, cytoskeleton, extracellular matrix

Abbreviations: ECM, extracellular matrix; GAG, glycosaminoglycan; IGF1R, insulin-like growth factor-1 receptor; PDZ,
postsynaptic density-95/disc large protein/zonula occludens-1; PDZ-BM, PDZ binding motif; PKC, protein kinase C.
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INTRODUCTION

Syndecans are transmembrane proteoglycans that are found
on the surface of many types of mammalian cells. The
four syndecans in mammals are encoded by four genes, but
invertebrates have just one syndecan. Based on chromosomal
localization and exon organization studies, all syndecans arise
from a single ancestral gene. Syndecans are expressed in
a development-, cell-type-, and tissue-specific manner and
function either as independent or co-receptors that mediate cell
signaling (Bishop et al., 2007; Multhaupt et al., 2009). In these
type I transmembrane glycoproteins, the core protein ranges
in size from 20 to 45 kDa. Syndecan core proteins include an
extracellular domain (ectodomain) that carries either heparan
sulfate only or heparan sulfate and chondroitin sulfate a single
transmembrane (TM) domain; and a short cytoplasmic domain
(Figure 1A). The ectodomain can interact with a wide variety
of molecules, including growth factors, cytokines, proteinases,
adhesion receptors, and ECM components. Syndecan-1 is mainly
expressed in mesenchymal and epithelial cells. Syndecan-2 is
highly expressed in endothelial and mesenchymal tissues and
in liver, neural, and fibroblast cells. Syndecan-3, the longest of
the four syndecans, is expressed in neural tissue and developing
musculoskeletal system, but is undetectable in epithelial cells.
Finally, syndecan-4, which has the shortest core protein, is widely
expressed.

Syndecans are implicated in the control of cell–cell, cell–
pathogen, and cell–matrix interactions via the recruitment of
the actin cytoskeleton, as well as in cellular proliferation,
differentiation, and migration. Syndecans can be found in cell
protrusions and focal adhesions, where they colocalize with
actin (Granés et al., 1999; Berndt et al., 2004). Importantly,
they can act as co-receptors of other cell surface receptors like
growth factor receptors and integrins (Morgan et al., 2007;
Couchman, 2010; Rapraeger, 2013). In this context, syndecans
can bind, immobilize, concentrate, and induce conformational
changes in growth factors, adhesion molecules, and other
signaling molecules via their heparan sulfate chains, thus
facilitating their receptor interaction. They can also protect
ligands from activation or sequester them away from membrane
receptors (Zimmermann and David, 1999; Alexopoulou et al.,
2007).

Syndecans undergo regulated physiological shedding of their
extracellular domain, a process that may be increased in
pathological conditions, thereby allowing them to act as soluble
effectors and/or antagonists (Kim et al., 1994; Manon-Jensen
et al., 2010). In addition, syntenins/syndecans, in conjunction
with the syntenin-binding protein ALIX, are likely to be involved
in or to enhance exosome production (Baietti et al., 2012; Friand
et al., 2015).

SYNDECANS AND CANCER

Syndecans are involved in cancers, infectious diseases, obesity,
wound healing, and angiogenesis. As documented in recent
reviews, they are considered key regulators of tumor progression

(Barbouri et al., 2014; Couchman et al., 2015; Theocharis et al.,
2015). In some cancers, syndecan expression may regulate
tumor cell function and serve as a prognostic marker for
tumor progression and patient survival. Syndecan-1 expression
is dysregulated in a number of cancers, including head and
neck, ovarian, breast, and colorectal carcinomas (Teng et al.,
2012). Syndecan-1 acts as a tumor suppressor in MDA-MB-231
breast cancer cells (Hassan et al., 2013). Treating these cells with
syndecan-1 small interfering RNA not only enhances β1-integrin
and focal adhesion kinase activity, leading to increased cellular
adhesion and migration, but it also improves cellular resistance
to irradiation. A study on pre-invasive breast cancer revealed an
inverse correlation between the expression of syndecan-1 and
the pro-metastatic microRNA miR-10b, suggesting a potential
novel mode of post-transcriptional regulation of syndecan-1
(Hannafon et al., 2011). Studies revealing the negative regulation
of syndecan-1 by miR-10b and its pro-invasive consequences
in human breast cancer cells, reported syndecan-1 as a new
regulatory target of miR-10b (Ibrahim et al., 2012). Other
studies revealed that syndecan-1 decreases cell migration in lung
epithelium via activation of Rap1, which slows focal adhesion
disassembly (Altemeier et al., 2012). Syndecan-1 also plays a
role in squamous cell carcinoma collagen-mediated motility and
invasion by modulating RhoA and Rac activity, suggesting that
decreased syndecan-1 expression during carcinoma progression
may enhance tumor cell invasiveness (Ishikawa and Kramer,
2010).

The presence of syndecan-1 is associated with favorable
outcomes in both lung cancer and mesothelioma (Kumar-
Singh et al., 1998; Anttonen et al., 2001), and the loss of
syndecan-1 is a feature of hepatocellular carcinoma with high
metastatic potential (Matsumoto et al., 1997). Low syndecan-
1 expression correlates with gastric carcinoma invasion and
metastasis (Chu et al., 2008). In contrast, studies have reported
that high expression levels of syndecan-1 in breast carcinoma are
associated with high histological grade, high mitotic count, large
tumor size, c-erbB-2 over-expression, and estrogen receptor-
negative status. These studies show that high syndecan-1
expression correlates with the most invasive breast carcinomas
(Stanley et al., 1999; Barbareschi et al., 2003; Leivonen et al.,
2004; Lendorf et al., 2011). Studies using an in vitro breast cancer
model also suggest that syndecan-1 participates directly in tumor
cell spreading and adhesion (Beauvais and Rapraeger, 2003).
In prostate cancer, high syndecan-1 expression is a feature of
biologically aggressive progression (Zellweger et al., 2003). As
stated in recent comprehensive reviews, stromal expression of
syndecan-1 may have negative prognostic value, and elevated
serum levels of the shed syndecan ectodomain might also be a
prognostic indicator (Gharbaran, 2015; Szatmári et al., 2015).
Studies have revealed a mechanism by which syndecan-1 and
-4 ectodomains, may capture and induce autophosphorylation
of the tyrosine kinase receptors HER2 and EGFR respectively,
leading to integrin mediated carcinoma cell migration (Wang
et al., 2014, 2015).

Nuclear localization of syndecan-1 has been reported,
suggesting that it may function as a transcription factor and
therefore impact gene regulation affecting cancer pathogenesis

Frontiers in Pharmacology | www.frontiersin.org 2 February 2016 | Volume 7 | Article 10

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Cheng et al. Syndecans in Cancer Biology

FIGURE 1 | (A) The syndecan family of heparan sulfate proteoglycans. Syndecans consist of a transmembrane core protein with a short cytoplasmic tail and an
ectodomain. All syndecan ectodomains are modified with either heparan sulfate only or heparan sulfate and chondroitin sulfate sugar chains. (B) A schematic
showing the syndecan domains and examples of functions and interacting partners. (C) List of known PDZ-containing proteins that interact with syndecans.
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(Brockstedt et al., 2002). In addition, heparanase and syndecan-1
may cooperate to drive growth factor signaling and to regulate
cell behavior, thus enhancing tumor growth and dissemination
(Ramani et al., 2013; Palaiologou et al., 2014; Roucourt et al.,
2015). One study found that syndecan-4 inhibited breast
carcinoma cell invasion (Beauvais and Rapraeger, 2003), and
its expression in human breast carcinoma was described as
being associated with good prognosis (Lendorf et al., 2011).
In contrast, another study found that syndecan-4 expression
correlated significantly with high histological grade and negative
estrogen receptor status (Baba et al., 2006) and was therefore a
marker of poorer prognosis. Furthermore, a study of pancreatic
cancer showed that syndecan-2 was involved in perineural
invasion of pancreatic adenocarcinoma cells (De Oliveira et al.,
2012). Silencing syndecan-2 expression in these cells significantly
reduced motility and invasiveness. Syndecan-2 is upregulated
in breast tumors (Lim et al., 2015) and in colon carcinomas
(Park et al., 2002; Ryu et al., 2009; Choi et al., 2010). In
highly metastatic colorectal cancer cells, syndecan-2 expression
is enhanced by fibronectin secreted by stromal cells (Vicente
et al., 2013). In colorectal carcinoma, low epithelial expression
of syndecan-1 is associated with a higher histological grade,
with more advanced clinical stage of the patients, and with
potentially more unfavorable prognosis (Lundin et al., 2005;
Hashimoto et al., 2008; Mitselou et al., 2012). Results from a
recent meta-analysis of colorectal cancer studies demonstrated
that loss of syndecan-1 expression in colorectal cancer correlates
with histological grade and tumor stage, but not with lymph
node or distant metastasis (Wei et al., 2015). The authors also
reported that syndecan-1 expression does not have prognostic
value in colorectal carcinoma patients. To date, syndecan-3 has
not been implicated in cancer. Although the mechanisms are
not yet fully understood, these examples highlight the important
role of syndecans in tumor progression and suggest that they
are relevant and promising therapeutic targets (Ramani et al.,
2013; Barbouri et al., 2014; Theocharis et al., 2015). For instance,
the anti-tumoral activity of zoledronic acid on breast cancer
cells was reported to correlate with a differential modulation of
syndecans (Dedes et al., 2012). Synstatin peptides based on HER2
and EGFR interaction motifs on syndecan-1 and -4 respectively
can competitively displace receptor tyrosine kinase interaction
and disrupt activation of cell motility (Wang et al., 2015). Similar
peptides were designed to block IGF1R binding to syndecan-
1/αvβ3 integrin complex and inhibit the integrin activity in
endothelial and tumor cells (Rapraeger, 2013).

THE TRANSMEMBRANE
DOMAIN-INDUCED OLIGOMERIZATION
PROPERTIES OF SYNDECANS

Syndecans transmembrane domain is composed of 25
hydrophobic amino acid residues responsible for the molecular
interaction that causes homo-oligomerization of syndecan core
proteins (Asundi and Carey, 1995; Choi et al., 2005), a step
essential for their signaling activation. The conserved GXXXG
(where X is any amino acid) motif is involved in this process.

Recent studies have revealed the potential of syndecan-2 and -4
to form hetero-oligomers, reducing each syndecan activity (Choi
et al., 2015). This hetero-oligomerization capacity may offer
insight into an underlying modulating mechanism (Kwon et al.,
2015).

The cytoplasmic tail has two conserved regions, C1 and C2,
that share common characteristics in all syndecans, plus a central
variable region (V) that may regulate cell spreading and actin
cytoskeleton assembly (Figure 1B; Carey et al., 1996; Chakravarti
et al., 2005; Stepp et al., 2015). Each region can support signaling
complexes formation (Carey, 1997; Bernfield et al., 1999; Yoneda
and Couchman, 2003). The C1 domain is thought to participate
in syndecan dimerization (Oh et al., 1997) and in the binding
of various intracellular proteins, such as ezrin (Granés et al.,
2000). In neuroblastoma, the C1 region of syndecan-3 interacts
with a protein complex composed of Src family kinases and the
actin-binding proteins cortactin and tubulin (Kinnunen et al.,
1998). Likewise, the V region of syndecan-4 interacts with PKCα

(protein kinase Cα) as well as with phosphatidylinositol 4,5-
bisphosphate (PtdIns-4,5-P2) (Oh et al., 1997, 1998). The C2
carboxyl-terminal tetrapeptide sequence present in all syndecans
consists of the highly conserved tetrapeptide sequence Glu-Phe-
Tyr-Ala (EFYA) (Bass and Humphries, 2002; Multhaupt et al.,
2009; Rousselle and Letourneur, 2009).

THE INTERACTIONS OF SYNDECANS
WITH CYTOSKELETON PDZ DOMAIN
PROTEINS

The EFYA sequence binds to PDZ domain-containing proteins,
such as syntenin-1 (Grootjans et al., 1997) and CASK (Cohen
et al., 1998), which may function as membrane scaffold proteins
that recruit signaling and cytoskeletal proteins to the plasma
membrane. The EFYA motif thus belongs to the large family of
PDZ-binding motifs (PDZ-BMs). Recent work suggests that PDZ
interactions are involved in protein trafficking, possibly routing
proteoglycans to the cell surface (Wawrzyniak et al., 2012).

There is growing interest in understanding the binding
of syndecans to their PDZ domain-containing counterparts
(Figure 1C). Not only are the interactions involved in cytoskeletal
rearrangements in response to the signaling activities, but
syndecan-PDZ domain-containing protein complexes may also
participate in cell-ECM adhesion and migration. For example,
synectin binding to syndecan-4 may modulate in vitro cell
migration (Gao et al., 2000; Tkachenko et al., 2006). As well,
cell adhesion to fibronectin is regulated by the interaction of
syndecan-1 with the PDZ domain of the T-cell lymphoma
invasion and metastasis gene 1 protein (Tiam1) (Shepherd et al.,
2010). A study of hippocampal neurons revealed that syndecan-
2 induces spine formation by recruiting intracellular vesicles
toward postsynaptic sites through an interaction with synbindin
(Ethell et al., 2000).

The name PDZ is an acronym derived from the first
three proteins in which these domains were identified: PSD-
95 (postsynaptic density PSD-95/SAP90), DLG (Drosophila
melanogaster tumor suppressor septate junction protein Disks
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large-1), and ZO-1 (epithelial tight junction protein Zonula
Occludens-1) (Kennedy, 1995; Zimmermann, 2006; Ye and
Zhang, 2013). Over 250 non-redundant PDZ domains have been
identified in the human proteome (Wang et al., 2010) and are
found in proteins involved in diverse cellular functions, such as
maintenance of cell polarity, signal transduction in neurons, and
cell migration (Harris and Lim, 2001; Sheng and Sala, 2001; Jeleñ
et al., 2003).

The number of amino acid residues in a PDZ domain is
relatively small (80–100 amino acids) (Hung and Sheng, 2002).
Structural analysis of these domains indicates that a canonical
PDZ domain consists of five or six β-strands and two or three
α-helices (Luck et al., 2012) (Figure 2A). In addition, the domain
itself folds into a compact globular shape; this maintains the
proximity of the N- and C-termini to each other on opposite
sides of the PDZ-BM interaction site (Sheng and Sala, 2001;
Jeleñ et al., 2003; Lee and Zheng, 2010). The PDZ-BM fits in the
groove between the α2-helix and the β2-strand structure such
that the α2-helix is anti-parallel to the β2-strand (Figure 2B).
This interaction site is also known as the carboxylate-binding
site because of the highly conserved carboxylate-binding loop
at the end of the groove that connects the β1- and β2-strand

structures: R/K-X-X-X-G-�-G-� (where � is a hydrophobic
residue) (Sheng and Sala, 2001; Hung and Sheng, 2002; Lee and
Zheng, 2010).

There are no reports of PDZ domains interacting with
syndecans through motifs other than the EFYA sequence. Since
the EFYA motif is the only PDZ-BM in syndecans, it seems
likely that all four syndecans have similar binding affinity for the
same PDZ-containing proteins. For example, all syndecans have
similar affinity for the PDZ1-PDZ2 tandem domain of syntenin-1
(Grootjans et al., 2000). However, CASK has a higher affinity for
syndecan-2 and syndecan-4 than for syndecan-1 and syndecan-3.
The molecular mechanism underlying this difference in affinities
is unknown. On the other hand, the PDZ domain of Tiam1 binds
to a peptide corresponding to the last eight residues of syndecan-1
and -3, but not to those of syndecan-2 and -4 (Liu et al., 2013).

PDZ domain-containing proteins play essential roles in
most aspects of cellular homoeostasis and are implicated in
diverse aspects of tumor development and metastasis (Subbaiah
et al., 2011). A number of studies have established that MDA-
9/syntenin has a pivotal role in cancer development and
progression, and suggest that it could be a tumor marker
(Philley et al., 2016). Recent data indicate that in addition to its

FIGURE 2 | (A) Structural definition of syndecan binding to the PDZ domain. Ribbon diagram of the syntenin PDZ2 bound to the syndecan-4 peptide TNEFYA (pdb
code 1 OBY, Kang et al., 2003), (B) Surface charge (blue positive and red negative) representation of the PDZ2 domain with syndecan-4 (magenta) peptide
displayed as ball-and-stick. (C) Similar representation of PDZ2 with a model of syndecan-1 tyrosine phosphorylated peptide (yellow) showed as ball-and-stick.
(D) Phosphorylation of Tyr and Ser residues within syndecan cytoplasmic tails and their effects on PDZ protein binding: (−) no interaction; (+) interaction; (++)
enhanced interaction. The conserved (C1 and C2) and variable (V) domain organization is from Couchman et al. (2015).
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involvement in the migration and growth of tumor cells, syntenin
appears to be involved in controlling the plasma membrane
localization of active β1-integrin (Kashyap et al., 2015). A recent
study showed that co-upregulation of CASK and syndecan-2 in
colorectal cancer is associated with an unfavorable prognosis
(Wei et al., 2014), suggesting that CASK could be a prognostic
factor for colorectal cancer metastasis. Synbindin was shown to
contribute to the aggressiveness of gastric cancer by activating
the ERK signaling pathway (Kong et al., 2013), while synectin
was shown to participate in pancreatic cancer growth (Muders
et al., 2006). As a guanine exchange factor for Rac1, tiam1
involvement in cancer biology may be linked to its pivotal
function in cytoskeletal dynamics (Vigil et al., 2010). One
study reported that syndecan-2 regulates colon carcinoma cell
migration through Tiam1-dependent Rac activation (Choi et al.,
2010).

REGULATION OF PDZ BINDING BY
PHOSPHORYLATION OF THE
SYNDECAN CYTOPLASMIC TAIL

The phosphorylation of Ser, Thr, or Tyr residues in the syndecan
cytoplasmic tail appears to be a key mechanism that regulates
its interactions with PDZ domains (Figure 2B). We reported
that the formation of membrane protrusions in cells plated
on immobilized laminin α3 chain LG45 domain required the
dephosphorylation of tyrosine residues in the cytoplasmic tail
of syndecan-1 (Sulka et al., 2009; Rousselle and Beck, 2013).
Further experiments demonstrated that phosphorylation of the
Tyr residue in its EFYA sequence abolished its interaction
with syntenin-1 (Figure 2C, Sulka et al., 2009). In contrast,
phosphorylation of this Tyr residue did not affect the binding
of the PDZ domain of Tiam1 (Figure 2D, Shepherd et al., 2010;
Liu et al., 2013). It is not known whether this holds true for
phosphorylated syndecan-3 as well. Based on the examination
of other syndecan-binding PDZ domains, the PDZ domains
of CASK and synectin are predicted to interact with Tyr-
phosphorylated syndecan-1 in a manner similar to that seen
in the Tiam1 PDZ-phosphorylated syndecan-1 complex. This
mechanismmay support syndecan signaling specificity (Liu et al.,
2013).

Other regulatory mechanisms involving the phosphorylation
of a Ser residue in the carboxyl terminus of PDZ-binding
proteins may either disrupts or enhances interactions with
PDZ domains (Figure 2D, Cohen et al., 1996; Matsuda et al.,
1999; Hegedüs et al., 2003). Studies of syndecan-4 revealed that
phosphorylation of the Ser residue in the C1 region induces
a conformational change in the C2 domain, even though the
phosphorylation site is 20 residues away and impedes the PDZ
binding ability of syntenin-1 (Horowitz and Simons, 1998;
Koo et al., 2006). Furthermore, phosphorylation of the Tyr
residue of the syndecan-4 C1 region was shown to enhance
syntenin-1 binding and to function as a molecular switch to

regulate specific integrin recycling and coordinate focal adhesion
dynamics (Morgan et al., 2013).

These findings reinforce the importance of residues
upstream of the EFYA motif in the regulation of PDZ domain
interactions with syndecans. To date, there are no reports of
the phosphorylation of Thr residues in terms of regulation of
syndecan binding to PDZ domains. The phosphorylation of Tyr
versus Ser residues depends upon which enzymes are involved.
For example, Src family kinases and Elk kinases are widely
reported to be the enzymes responsible for the phosphorylation
of the Tyr residues (Asundi and Carey, 1997; Morgan et al., 2013).
In contrast, PKCs are the only enzymes that have been reported
to be involved in Ser residue phosphorylation (Prasthofer et al.,
1995; Oh et al., 1997; Koo et al., 2006). Moreover, PKC can only
recognize the Ser residue in syndecan-2 and syndecan-3, but not
those in syndecan-1 and syndecan-4 (Prasthofer et al., 1995).
Similarly, endogenously phosphorylated Tyr residues were only
found on syndecan-1 and sydecan-4 in B82 fibroblasts, although
this cell line also expresses syndecan-2 (Ott and Rapraeger,
1998).

Since phosphorylation is a key mechanism in modulating
the interactions of syndecans with cytoplasmic proteins, the
process is expected to be tightly regulated and some proportion
of syndecans in a cell are expected to be in a phosphorylated
state. Indeed, studies have found endogenously phosphorylated
syndecans in cultured cells (Asundi and Carey, 1997; Ott and
Rapraeger, 1998; Bass and Humphries, 2002;Morgan et al., 2013).
These results illustrate the high level of complexity underlying the
syndecans “turn on and off” signals.

CONCLUSION

The study of both the structural and biological aspects of the
mechanisms underlying PDZ protein binding to syndecans is an
exciting field of research. Due to their high level of complexity,
the physiological significance of these interactions is not yet fully
clarified; however, ongoing and future work will undoubtedly
shed light on these important molecular complexes and their
roles in cytoplasmic signaling pathways.
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