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A deterministic mathematical model for brucellosis that incorporates seasonality on direct and indirect transmission parameters for
domestic ruminants, wild animals, humans, and the environment was formulated and analyzed in this paper. Both analytical and
numerical simulations are presented. From this study, the findings show that variations in seasonal weather have the great impact
on the transmission dynamics of brucellosis in humans, livestock, and wild animals. Thus, in order for the disease to be controlled
or eliminated, measures should be timely implemented upon the fluctuation in the transmission of the disease.

1. Introduction

Brucellosis is a bacterial zoonosis that causes potential loss of
production in livestock and undulant fever in humans in
many countries all over the world [1]. The infection is caused
by the genus Brucella with B. melitensis, B. suis, and B. abortus
being predominant in domestic animals and also infecting
humans [2–4]. International organizations like the World
Organisation for Animal Health (Office International des Epi-
zooties (OIE)), the World Health Organization (WHO), and
the Food and Agriculture Organization (FAO) identify brucel-
losis as one of the most prevalent zoonoses in the world along-
side bovine tuberculosis and rabies [5].

In most parts of the developing world, brucellosis is
endemic and leads to devastating losses in the livestock indus-
try especially to smallholder keepers and to international mar-
ket [6]. The disease results in huge financial losses by causing
abortions, sterility, decreased milk production, veterinary fees,
and cost of replacing animals. In many countries of sub-

Saharan Africa, the control of the disease had proven to be a
challenge because of different farming systems, low commu-
nity awareness about the disease, poor health network systems,
weak surveillance programmes, and limited vaccinations [7].
In animals, brucellosis is transmitted when a susceptible ani-
mal ingests contaminated materials such as pastures or dis-
charges from infected animals while in humans, the bacteria
are transmitted through ingestion of contaminated raw blood,
meat, dairy products, and unpasteurizedmilk. Brucellosis is an
occupational disease to abattoir workers, farmers, veterinar-
ians, and laboratory personnel through direct contact with
aborted materials and discharges, handling of suspected sam-
ples, and handling of livestock during deliveries [8]. Although
traditionally Brucella species are host specific, recent studies
revealed that cattle are also susceptible to B. melitensis [9–11].

Infected animals exhibit clinical signs like reduced fertility,
late-term abortion, considerable drop in milk production,
retained placenta, metritis, and hygromas in chronic cases in
cattle [6, 12]. Symptoms in humans include headache,
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weakness, continuous or intermittent fever, chills, joint pains,
profuse sweats, weight loss, aches, and devastating complica-
tions that may lead to miscarriage during the first trimester
in pregnant women. Endocarditis, bone abscesses, or testicular
and neurological complications can also occur [1, 13]. Human
brucellosis is debilitating and needs prolonged treatment using
a combination of antibiotics [14]. Furthermore, the clinical
signs of the disease in humans are not pathognomonic; hence,
patients were clinically misdiagnosed with malaria, rheumatic
fever, typhoid fever, elapsing fever, and joint diseases [15].

Globally, the burden of human brucellosis remains huge;
more than 500,000 new cases per year are reported [8]. Brucel-
losis exists throughout the sub-Saharan African region, it is
poorly understood with fluctuating records from one country
to another, and its prevalence is still unclear [16]. In many
parts of Tanzania, brucellosis is a highly prevalent disease.
However, very limited data is available regarding its distribu-
tion, affected host species, and impact. In addition, it has been
demonstrated that the cattle seroprevalence level in various
production systems, zones, and regions varies from 1 to 30%
while in humans, the average prevalence is from 1 to 5%
[17]. A study by Carugati et al. [18] shows that brucellosis inci-
dences are moderate in the northern part of Tanzania and that
it is a common human health problem since it is endemic in
the region. Human brucellosis cases have also been reported
in parts of eastern, lake, and western regions of Tanzania with
seroprevalences varying from 0.7 to 20.5% [19, 20].

The incidence and prevalence of most infectious diseases
are directly linked to seasonal weather variations. The under-
standing of seasonal patterns in infectious disease occurrences
dates back to the Hippocratic era [21]. The seasonal weather
variations influence the dynamics of infectious diseases by
affecting the host-pathogen interactions which alters the com-
ponents of the reproduction number [22]. In particular, cold or
wet seasons are associated with high disease incidences due to
the abundance, survival, and virulence of pathogens and the
fact that most people spend their time in poorly ventilated
houses. On the other hand, warm or dry seasons are associated
with decreased disease incidences due to increased outdoor
activities and exposure of the pathogens to UV light. In addi-
tion, the survival of pathogens outside their hosts depends on
other environmental factors such as humidity, salinity, temper-
ature, and soil pH, abundance of vectors and nonhuman hosts,
host immune function, and host behavior [23].

Mathematical models can give insight into how the
mechanisms and strength of seasonality affect the persistence
and spreading of communicable diseases. In this view, under-
standing the impact of seasonality and timing offers impor-
tant intuitions on parasite-host system operation, how and
when the parasite control measures should be applied, and
the response of disease risks to anthropogenic climate change
and patterns of seasonality.

Seasonal variations are exhibited in brucellosis incidences
where a large number of new cases are expected in months
with wet or dry seasons of the year in both developing and
developed countries [19]. The disease incidence is higher
during the wet season; breeding is synchronized for animals
to give birth during the wet season when pastures are avail-
able. Pastoral and agropastoral settings depend on natural

pastures. During this time, infected animals shed pathogens
into the environment through birth fluids and tissues that
contaminate pastures and the surroundings. In addition,
during the wet season, it is anticipated that the cold weather
favours survival of Brucella pathogens in the environment
compared to the hot dry season hence influencing the trans-
mission rate [24]. For instance, high transmission rates
between domestic and wild animals are expected during the
dry season due to sharing of pastures and water points,
while the within-herd transmission is expected during
the wet season due to a high birth rate and abortion
storms [25]. According to the WHO [8], in countries with
cold or temperate climates, there are notable seasonal var-
iations in brucellosis incidences with most occurring cases
in the summer and spring. This concurs with the peak
period for parturitions and abortions in animals and con-
sequently the highest level of exposure to other animals
and people consuming their products or attending the ani-
mals. Seasonality in transmission dynamics of the disease
is also attributed to seasonal livestock movements due to
the availability of water and grasslands. This is the com-
mon practice in sub-Saharan Africa countries; for instance,
during the dry seasons, 83.1% of the cattle owners in
Northern Tanzania move their cattle away from homes
for pasture and water needs [25]. This changes the disease
dynamics since the concentration of animals is expected
near water bodies and wildlife parks and increases the
contact rates between susceptible and infected animals.

Brucella is a robust pathogen, and it can persevere outside
and inside the mammalian hosts for a long time despite the
unfriendly conditions; it remains in food for up to 15 months
given adverse conditions such as acidity and temperature
between 14°C and 11°C or for two to three days under 37°C.
When Brucella is exposed directly to sunlight, it may survive
for few hours while its survival in contaminated manure and
aborted foeti is more than 2 months during the winter season
[26]. Furthermore, in an ideal environment, the survival of
Brucella spp. is reported to last up to 135 days [27]. Therefore,
to estimate the impact of seasonality on brucellosis transmis-
sion in animals and humans using mathematical modeling
becomes imperative to device timely interventions. Despite
the fact that the WHO, FAO, and OIE efforts and interven-
tions are available, brucellosis continues to pose great eco-
nomic threats and it affects livelihoods and food security
mostly in developing countries. Thus, there is need to assess
the impact of the current control strategies if we are to control
or eradicate the disease. So far, a few studies [28–34] analyzed
the dynamics and spread of brucellosis in homogeneous/he-
terogeneous populations. However, none of these studies have
considered the mathematical approach to analyze the impact
of seasonal weather variations on the transmission of brucello-
sis in human, livestock, and wildlife populations. In this paper,
the impacts of seasonal weather parameters on the transmis-
sion of brucellosis are studied using a mathematical model.

2. Model Formulation

A deterministic mathematical model that illustrates the
transmission of brucellosis in humans and domestic and wild
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animals is formulated and analyzed under this section.
More importantly, in incorporating the variations on sea-
sonal weather in both direct and indirect transmission
routes of the disease, we follow the approach presented
in [33, 35, 36]. The stimuli of seasonal variations on the
direct transmission of brucellosis in domestic ruminants,
humans, and wild animals are, respectively, modeled by
the periodic continuous functions βaðtÞ = b1ð1 + a1 sin ωtÞ,
βhðtÞ = b2ð1 + a2 sin ωtÞ, and βwðtÞ = b3ð1 + a3 sin ωtÞ while
the indirect transmission in the three populations is captured
by αaðtÞ = c1ð1 + r1 sin ωtÞ, αhðtÞ = c2ð1 + r2 sin ωtÞ, and αw
ðtÞ = c3ð1 + r3 sin ωtÞ, respectively.

Furthermore, we consider the pathogen shedding rate by
the infective livestock and wild animals to be represented by
the periodic functions of the form ρðtÞ = ρ0ð1 + ρ1 sin ωtÞ
and ρwðtÞ = ρ2ð1 + ρ3 sin ωtÞ, respectively. The decaying rate
of the pathogens in the environment is also represented by
the periodic continuous function εðtÞ = ε0ð1 + ε1 sin ωtÞ.
The constants b1, b2, b3, c1, c2, c3, ρ0, ρ2, and ε0 are the base-
line values of the parameters βa, βh, βw, αa, αh, αw, ρa, ρw, and
ε, respectively, whereas 0 < a1, a2, a3, r1, r2, r3, ρ1, ρ3, ε1 < 1
are the strength of seasonal forcing in transmission
(amplitudes of seasonal variations) for each of the seasonal
parameters, and ω = π/6 corresponds to a one-year period
of time.

2.1. Model Assumptions. The following assumptions are con-
sidered in the formulation of the brucellosis model:

(i) Mixing of individuals in each population is
homogeneous

(ii) Infected animals shed Brucella in the environment

(iii) Domestic and wild animals’ seropositivity is lifelong

(iv) Immunized livestock cannot be infected unless their
resistance to infection wanes

(v) The natural mortality rate in each of the species is
constant

(vi) The birth rate for each population is greater than the
natural mortality rate

The variables and parameter values per year incorporated
in this model are summarized in Tables 1 and 2, respectively.

The interactions between humans, animals, and patho-
gens in the environment are shown in Figure 1, and the
resulting model system is shown by equation (1).

dVa
dt

= ϕSa − ψ + μað ÞVa,

dSa
dt

= πaNa + ψVa − βa tð ÞIa + αa tð ÞB + ϕ + μað ÞSa,
dIa
dt

= βa tð ÞIa + αa tð ÞBð ÞSa − μa + dð ÞIa,
dSh
dt

= πhNh + γRh − βh tð ÞIa + βhIh + αh tð ÞB + μhð ÞSh,
dIh
dt

= βh tð ÞIa + αh tð ÞBð ÞSh − σ + μhð ÞIh,
dRh
dt

= σIh − γ + μhð ÞRh,

dSw
dt

= πwNw − βw tð ÞIw + αw tð ÞB + μwð ÞSw,
dIw
dt

= βwIw + αw tð ÞBð Þ − μwIw,

dB
dt

= ρ tð ÞIa + ρw tð ÞIw − τ + ε tð Þð ÞB:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

2.2. Model Properties. In this section, we use the box invari-
ance method proposed by [40] to assess the well-posedness
of the model (1) (existence and feasibility of its solution). In
other words, we investigate whether the solutions of system
(1) that have nonnegative initial values remain nonnegative
for all times t ≥ 0. The compact form of system (1) can be
expressed as

dX
dt

= AX + F, ð2Þ

where X = ðVa, Sa, Ia, Sh, Ih, Rh, Sw, Iw, BÞ and F is a column
vector given by

F = 0, πcNc, 0, πhNh, 0, 0, πwNw, 0, 0ð ÞT ,

A =

− ψ + μað Þ ϕ 0 0 0 0 0 0 0
ψ −λ1 0 0 0 0 0 0 0
0 λ1 − μa + d tð Þð Þ 0 0 0 0 0 0
0 0 0 λ2 + μh 0 γ 0 0 0
0 0 0 λ1 − σ + μhð Þ 0 0 0 0
0 0 0 0 σ − γ + μhð Þ 0 0 0
0 0 0 0 0 0 − λ3 + μwð Þ 0 0
0 0 0 0 0 0 λ3 −μw 0
0 0 ρ 0 0 0 0 ρw −λ

2
666666666666666666664

3
777777777777777777775

,
ð3Þ
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where

λa = βa tð ÞIa + α tð ÞB + ϕ + μað Þ,
λ2 = βh tð ÞIa + βh tð ÞIh + αhB,
λ3 = βw tð ÞIw + αw tð ÞB,
λ = τ + ε tð Þð Þ:

ð4Þ

It can be noticed that A is the Metzler matrix for all X
∈ℝ9

+. Therefore, based on the fact that F ≥ 0, model (1) is
positively invariant in ℝ9

+. This implies that an arbitrary tra-

jectory of the system starting inℝ9
+ forever remains inℝ9

+. In
addition, F is Lipschitz continuous. Thus, a unique maximal
solution exists, and so

D = Va, Sa, Ia, Sh, Ih, Rh, Sw, Iw, Bð Þ ≥ 0f g ∈ℝ9
+ ð5Þ

is the feasible region for the model (1). Thus, model (1) is epi-
demiologically and mathematically well-posed in the regionD.

2.3. Brucellosis-Free Equilibrium. The brucellosis-free equi-
librium solution for system (1) is computed and found to be

Table 1: Model variables.

Variable Description

Sh tð Þ Number of susceptible humans at time t

Ih tð Þ Number of infected humans at time t

Rh tð Þ Number of recovered humans at time t

Sa tð Þ Number of susceptible animals at time t

Ia tð Þ Number of infected animals at time t

Va tð Þ Number of vaccinated animals at time t

B tð Þ Number of Brucella load per unit volume in the environment at time t

Table 2: Parameters of the model and their description.

Parameter Description Value Source

πa Per-capita livestock birth rate 0.1 [37]

ϕa Livestock vaccination rate 0.7 [37]

πh Per-capita human birth rate 0.02 [38]

σ Human recovery rate 0.25 [37]

μh Per-capita human natural death rate 0.02 [38]

ψ Livestock vaccine efficacy waning rate 0.4 [31]

βa Within-livestock transmission rate 0.0011 [31]

d Gradual culling of seropositive livestock 0.35 [31]

μa Per-capita livestock natural mortality rate 0.25 [31]

πw Per-capita wild animal birth rate 0.08 [39]

βw Within-wild animal transmission rate 0.05 [39]

αw Brucella from B to wild animal transmission rate 0.00035 [3]

μw Per-capita natural death rate of wild animals 0.07 [39]

α Brucella from B to livestock transmission rate 0.00035 [3]

αh Brucella from B to human transmission rate 0.002 [37]

ρ Brucella shedding rate of infected livestock 0.5 [37]

ρw Brucella shedding rate of infected wild animals 15 [30]

βh Livestock to human transmission rate 0.0002 [37]

ε Decaying rate of Brucella in the environment 8 [31]

τ Environmental hygiene and sanitation rate 12 [3]

V0
a, S0a, I0a, S0h, I0h, R0

h, S0w, I0w, B0� �
= ϕπaNa

μa ϕ + ψ + μað Þ ,
ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ , 0,
πhNh
μh

, 0, 0, πwNw
μw

, 0, 0
� �

, ð6Þ
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where Na, Nh, and Nw are, respectively, the initial total pop-
ulations of the livestock, humans, and wild animals.

2.4. The Reproduction Number. A heterogeneous population
with individuals which can be grouped into n homogeneous
compartments is considered in this section. Let x =
ðx1,⋯, xnÞT , with xi ≥ 0, be the state of individuals in each
compartment. It is assumed that the compartments can be
divided into the following: infected designated as i = 1,⋯,
m and uninfected designated as i =m + 1,⋯, n. We also
define Xs to be the set of all disease-free states:

Xs = x ≥ 0 : xi = 0,∀i = 1,⋯,mf g: ð7Þ

Let F iðt, xÞ be the input rate of newly infected individ-
uals in the ith compartment, V +

i ðt, xÞ be the input rate of
individuals by other means (for example, births and immi-
grations), and V −

i ðt, xÞ be the rate of transfer of individuals
out of compartment i (for example, deaths, recovery, and
emigrations). Henceforth, the disease transmission model is
governed by a nonautonomous ordinary differential system:

dxi
dt

=F i t, xð Þ −V i t, xð Þ ≜ f i t, xð Þ, i = 1,⋯, n, ð8Þ

where V iðt, xÞ =V −
i ðt, xÞ −V +

i ðt, xÞ:
Succeeding the approach by [41] and that of [42] for epi-

demic models, we look at conditions (A1)–(A7) for the bru-
cellosis model. The model (1) is equivalent to periodic
ordinary differential system (8), we can easily see that condi-
tions (A1)–(A5) stated below are satisfied.

(A1) For each 1 ≤ i ≤ n, the functions F iðt, xÞ, V +
i ðt, xÞ,

and V −
i ðt, xÞ are nonnegative and continuous on ℝ ×ℝn

+
and continuously differential with respect to x. This is based
on the fact that each function denotes a directed nonnegative
transfer of individuals

(A2) There is a real number ω > 0 such that for each
1 ≤ i ≤ n, the functions F iðt, xÞ, V +

i ðt, xÞ, and V −
i ðt, xÞ

are ω-periodic in t. This biologically describes a periodic
environment due to seasonality

(A3) If xi = 0, then V −
i ðt, xÞ = 0. In particular, if x ∈ Xs,

then V −
i ðt, xÞ = 0 for i = 1,⋯,m. That is, if a compartment

is empty, then there is no transfer of individuals out of it
(A4) F i = 0 for i >m. This means that the infection inci-

dence for uninfected compartments is zero
(A5) If x ∈ Xs, then F i =V +

i = 0 for i = 1,⋯,m. This
implies that if the population is disease-free in the beginning,
it will remain so

We know that model (8) has a disease-free periodic solu-
tion, so we define a 5 × 5 matrix for the nontransmitting
compartments as

M tð Þ =

− ψ + μað Þ ϕ 0 0 0
ψ − ϕ + μað Þ 0 0 0
0 0 −μh γ 0
0 0 0 − γ + μhð Þ 0
0 0 0 0 −μw

2
666666664

3
777777775
:

ð9Þ

Let ΦMðtÞ be the monodromy matrix of the linear ω
-periodic system dz/dt =MðtÞz. Then, ρðΦMðωÞÞ < 1
implying that E0ðtÞ is linearly asymptotically stable in the
disease-free subspace Xs; that is,

(A6) ρðΦMðωÞÞ < 1, where ρðΦMðωÞÞ is the spectral
radius of ΦMðωÞ, is satisfied

For convenience purposes and easy presentation of the
results, we let C denote all continuous functions on the real
line. If f is a periodic function in C, then we use �f for the
average value of the time interval ½0T� defined by

�f = 1
T

ðT
0
f tð Þdt, ð10Þ

𝜋aNa

𝜋hNh

𝜋wNw

𝜙Sa
Livestock Va

𝜆1Sa

𝜆3Sw

𝜆2Sh
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Sw

Sh Ih

Iw

𝜇aVa 𝜇wIw

𝜇wSw

𝜇hSh
𝜇hIh 𝜇hRh𝛾Rh

𝜎Ih

𝜇aSa (𝜇a+d)Ia

𝜌(t)Ia

𝜌w(t)Iw

(𝜏+𝜀(t))B

Rh

𝜓Va

Wild animals

Humans

B

Figure 1: Flow diagram for brucellosis dynamics in animals, environment, and humans.
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for continuous T periodic function f ðtÞ: Inspired by the
approach of [41, 43], we obtain

F =

ψ + μað Þ�βa tð ÞπaNa
μa ϕ + ψ + μað Þ 0 0 ψ + μað Þ�αa tð ÞπaNa

μa ϕ + ψ + μað Þ
�βh tð ÞπhNh

μh

�βh tð ÞπhNh
μh

0 �αh tð ÞπhNh
μh

0 0
�βw tð ÞπwNw

μw

�αw tð ÞπwNw
μw

�ρa tð Þ 0 �ρw tð Þ 0

2
6666666666664

3
7777777777775

,

ð11Þ

V =

μa + d 0 0 0
0 σ + μh 0 0
0 0 μω 0
0 0 0 τ + �ε tð Þð Þ

2
666664

3
777775

ð12Þ

and observe that F is nonnegative and ð−VÞ is cooperative
because its off-diagonal elements are nonnegative.

It follows that the effective reproductive number of the
time-averaged autonomous system is

Re½ � =
R11 + R33 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R11 − R33ð Þ2 + 4R13R31

q
2 , ð13Þ

where

R11 =
�βa tð Þ τ + �ε tð Þð Þ + �αa tð Þ�ρ tð Þ� �

ψ + μað ÞπaNa
μa ϕ + ψ + μað Þ μa + dð Þ τ + �ε tð Þð Þ ,

R33 =
�βw tð Þ τ + �ε tð Þð Þ + �αw tð Þ�ρw tð Þ� �

ψ + μað ÞπwNw
μ2w τ +�ε tð Þð Þ ,

R13 =
�αa tð Þ�ρw tð Þ ψ + μað ÞπaNa

μaμw τ + �ε tð Þð Þ ϕ + ψ + μað Þ ,

R31 =
�αw tð Þρ tð ÞπwNw

μw μa + dð Þ τ + �ε tð Þð Þ :

ð14Þ

Generally, the time-averaged effective reproduction
number is computed as the dominant eigenvalue of FV−1

using the Maple package and is found to be

ρ FV−1� �
= Re½ � = 1

T

ðT
0

R11 + R33 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R11 − R33ð Þ2 + 4R13R31

q
2 ds:

ð15Þ

If no interventions are administered, the time-averaged
basic reproductive number for model system (1) is found
to be

R0½ � = 1
T

ðT
0

R0
11 + R0

33 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0
11 − R0

33
� �2 + 4R0

13R
0
31

q
2 ds, ð16Þ

where

R11 =
�βa tð Þ�ε tð Þ + �αa tð Þ�ρ tð Þ� �

πaNa
μ2a�ε tð Þ ,

R33 =
�βw tð Þ�ε tð Þ + �αw tð Þ�ρw tð Þμa
� �

πwNw
μ2w�ε tð Þ ,

R13 =
�αa tð Þ�ρw tð ÞπaNa

μaμw�ε tð Þ ,

R31 =
�αw tð Þρ tð ÞπwNw

μwμa�ε tð Þ :

ð17Þ

½R0� may be interpreted as the average number of sec-
ondary cases arising from the introduction of a single
infected person into a completely susceptible population
at a random time of the year. The condition ½R0� < 1 is
sufficient and necessary for long-term disease extinction.
Furthermore, let Yðt, sÞ, t ≥ s, be the evolution operator of
the linear ω-periodic system:

dy
dt

= −V tð Þy: ð18Þ

That is, for each s ∈ℝ, the 4 × 4 matrix Yðt, sÞ satisfies

d
dt

Y t, sð Þ = −V tð ÞY t, sð Þ, ∀t ≥ s, Y s, sð Þ = I, ð19Þ

where I is a 4 × 4 identity matrix. Therefore, the mono-
dromy matrix ΦVðtÞ of (18) equals Yðt, 0Þ, t ≥ 0. Thus,
condition (A7) below is satisfied.

(A7) The internal evolution of individuals in the infec-
tious compartments due to deaths and movements is dissipa-
tive and decays exponentially in many cases. This is because
of loss of infective members from natural and disease-
induced mortality. Thus, ρðΦVðωÞÞ < 1

Based on the assumptions (A1)–(A7), we are now able to
analyze the reproduction ratios for the epidemic model sys-
tem (1). For this purpose, we always assume that the popula-
tion is near the disease-free periodic state E0ðtÞ. By the
standard theory of linear periodic systems [44], there exist
K > 0 and α > 0 such that

Y t, sð Þk k ≤ Ke−α t−sð Þ, ∀t ≥ s, s ∈ℝ: ð20Þ

Consequently,

Y t, t − að ÞF t − að Þk k ≤ K F t − að Þk ke−αa, ∀t ∈ℝ, a ∈ 0,∞½ Þ:
ð21Þ

In the computation of the basic reproduction number for
the nonautonomous model system (1), we follow the method
by [42]. Suppose ΓðsÞ is the initial distribution of infectious
individuals in this periodic environment; then, FðsÞΓðsÞ is
the rate of new infectious individuals produced by the
infected individuals who were introduced at time s. Yðt, sÞF
ðsÞΓðsÞ represents the distribution of the newly infected at
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time s and remains in the infected compartment at time t ≥ s.
It follows that the cumulative distribution of new infections
at t produced by all infected ΓðtÞ individuals introduced
prior to t = s is given by

Ψ tð Þ =
ðt
−∞

Y t, sð ÞF sð ÞΓ sð Þds

=
ð∞
0
Y t, t − að ÞF t, t − að ÞΓ t − að Þda, ∀t ∈ℝ, Γ ∈ Cω:

ð22Þ

Let Cω be the ordered Banach space of all ω-periodic
functions from ℝ to ℝn, which is equipped with the maxi-
mum norm, k:k∞, and the positive cone C+

ω = fΓ ∈ CωΓðtÞ
≥ 0, t ∈ℝg. We define the linear operator L : CωCω by

LΓð Þ tð Þ =
ð∞
0
Y t, t − að ÞF t, t − að ÞΓ t − að Þda, ∀t ∈ℝ, Γ ∈ Cω,

ð23Þ

where L is the next infection operator. Then, the basic repro-
duction number is given by

Rω = ρ Lð Þ, ð24Þ

where ρðLÞ is the spectral radius of L. By direct calculation,
the evolution operator Yðt, sÞ for the system (1) is found to be

Y t, sð Þ =

e− μa+dð Þ t−sð Þ 0 0 0
0 e− σ+μhð Þ t−sð Þ 0 0
0 0 e−μω t−sð Þ 0
0 0 0 �Y t, sð Þ

2
666664

3
777775
,

ð25Þ

with

�Y t, sð Þ = e− τ+ε0ð Þ t−sð Þ+ 6ε0ε1/πð Þ cos πt/6ð Þ−cos πs/6ð Þð Þ: ð26Þ

Motivated by [45], the next infection operator can be
numerically evaluated as

Lφð Þ tð Þ =
ð∞
0
Y t, t − að ÞF t, t − að ÞΓ t − að Þda

=
ðω
0
G t, að ÞΓ t − að Þda,

ð27Þ

where

G t, sð Þ ≈ 〠
M

k=0
Y t, t − s − kωð ÞF t − sð Þ

≈ 〠
M

k=0

m11 0 0 m14

m21 m22 0 m24

0 0 m33 m33

m41 0 m43 0

2
6666664

3
7777775
,

ð28Þ

for positive integers M which are large enough, and

m11 =
βa t − sð Þ ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ e− μa+dð Þ t−sð Þ,

m14 =
αa t − sð Þ ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ e− μa+dð Þ t−sð Þ,

m21 =
βh t − sð ÞπhNh

μh
e− σ+μað Þ t−sð Þ,

m22 =
βh t − sð ÞπhNh

μh
e− σ+μað Þ t−sð Þ,

m24 =
αh t − sð ÞπhNh

μh
e− σ+μað Þ t−sð Þ,

m33 =
βw t − sð ÞπhNh

μh
e−ω t−sð Þ,

m34 =
αw t − sð ÞπwNw

μw
e−ω t−sð Þ,

m41 = ρ t − sð Þe− τ+ε0ð Þ t−sð Þ+ 6ε0ε1/πð Þ cos πt
6ð Þ−cos πs

6ð Þð Þ,
m43 = ρw t − sð Þe− τ+ε0ð Þ t−sð Þ+ 6ε0ε1/πð Þ cos πt

6ð Þ−cos πs
6ð Þð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð29Þ

2.5. Global Stability of the Brucellosis-Free Solution. In this
section, we establish the conditions for global stability of a
disease-free periodic solution.

Theorem 1. The disease-free solution of system (1) is globally
asymptotically stable if the basic reproduction number inD is
less than one.

Proof. Consider the matrix function:

F tð Þ − V tð Þ =

βa tð ÞS0a − μa + dð Þ 0 0 αa tð ÞS0a
βh tð ÞπhN

0
h

μh
βh tð ÞS0h − σ + μhð Þ 0 αh tð ÞπhN

0
h

μh

0 0 βw tð ÞS0w − μw
αw tð ÞπwNw

μw

ρ tð Þ 0 ρw tð Þ − τ + ε tð Þð Þ

2
6666666664

3
7777777775
:

ð30Þ

We verify that matrix function (30) is continuous, coop-
erative, irreducible, and ω-periodic. Let ΦðF−VÞð:ÞðtÞ be the
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fundamental solution matrix of the linear ordinary differen-
tial system:

_x = F tð Þ −V tð Þ½ �x, ð31Þ

and ρðΦðF−VÞð:ÞðωÞÞ be the dominant eigenvalue of ΦðF−VÞð:Þ
ðωÞ. From Theorem 2.2 in [42], we have R0 < 1 if and only
if ρðΦðF−VÞð:ÞðωÞÞ < 1.

Lemma 2. Let v = 1/ωlnρðΦðF−VÞð:ÞðωÞÞ. Then, there exists a
positive ω-periodic function vðtÞ such that evtvðtÞ is a solution
to equation (31).

From the nondisease transmitting equations of system (1),
we obtain the following:

Va tð Þ ≤ ϕπaNa

μa ϕ + ψ + μað Þ ≜V0
a,

Sa tð Þ ≤ ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ ≜ S0a,

Sh tð Þ ≤ πhNh

μh
≜ S0h,

Sω tð Þ ≤ πwNw

μw
≜ S0w:

ð32Þ

Again, from the infectious and recovered classes of system
(1), we have the following:

d
dt

Ia tð Þ
Ih tð Þ
Iw tð Þ
B tð Þ

2
666664

3
777775
≤ F −Vð Þ

Ia tð Þ
Ih tð Þ
Iw tð Þ
B tð Þ

2
666664

3
777775
: ð33Þ

Based on Lemma 2, there exists vðtÞ such that xðtÞ = ð�Ia
ðtÞ,�IhðtÞ,�IwðtÞ, �BðtÞÞ = vðtÞevt is a solution to equation (31)
with v = 1/ωlnρðΦðF−VÞð:ÞÞ.

Based on the fact that R0 < 1, we have ρðΦðF−VÞð:ÞÞ < 1
and v < 0. Thus,

Ia tð Þ, Ih tð Þ, Iw tð Þ, B tð Þð Þ ≤ �Ia tð Þ,�Ih tð Þ,�Iw tð Þ, �B tð Þ� �
, ð34Þ

when t is very large which would imply that

lim
t→∞

Ia tð Þ = lim
t→∞

Ih tð Þ = lim
t→∞

Iw tð Þ = lim
t→∞

B tð Þ = 0: ð35Þ

Moreover, as t⟶∞, we have

d
dt

Va + Sað Þ⟶ πaNa − μa Va + Sað Þ, ð36Þ

which implies

dVa
dt

⟶ ϕ
πaNa
μa

− Va

� �
− ψ + μað ÞVa

= ψπaNa
μa

− ϕ + ψ + μað ÞVa,
ð37Þ

or ϕπaNa
μa ϕ + ψ + μað Þ = V0

a, ð38Þ

which leads to

Sa tð Þ⟶ πaNa
μa

−V0
a =

ψ + μað ÞπaNa
μa π + ψ + μað Þ = S0a: ð39Þ

Again,

dSh
dt

⟶ πhNh − μhSh,

dSw
dt

⟶ πwNw − μwSw,
ð40Þ

which gives

S0h =
πhNh
μh

,

S0w = πwNw
μw

:

ð41Þ

Therefore,

lim
t→∞

x tð Þ = V0
a, S0a, 0, S0h, 0, 0, S0w, 0, 0

� �
, ð42Þ

for each solution xðtÞ in system (1).

2.6. Endemic Equilibrium Solution. This section is aimed at
investigating the behavior of model system (1) when R0 > 1.
We show that if R0 > 1, brucellosis infection persists in
the animal and human populations and there exists a pos-
itive periodic solution. Following the approach in [46, 47],
we define

X =ℝ9
+ ;X0 =ℝ4

+ × Int ℝ+ð Þ5 ; ∂X0 =X \X0: ð43Þ

Let L : X ⟶X be the Poncaré map associated with
model system (1) such that P ðx0Þ = uðω, x0Þ∀x0 ∈X ,
where uðt, x0Þ denotes a unique solution of the system
with uð0, x0Þ = x0:

Definition 3. The solutions of the model system (1) are said
to be uniformly persistent if there exists some ξ > 0 such
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that

lim
t→∞

InfVa tð Þ > ξ, lim
t→∞

InfSa tð Þ > ξ, lim
t→∞

Inf Ia tð Þ > ξ,

lim
t→∞

InfSh tð Þ > ξ, lim
t→∞

Inf Ih tð Þ > ξ, lim
t→∞

InfRh tð Þ > ξ,

lim
t→∞

InfSw tð Þ > ξ, lim
t→∞

Inf Iw tð Þ > ξ, lim
t→∞

InfB tð Þ > ξ,

ð44Þ

whenever

Va 0ð Þ > 0, Sa 0ð Þ > 0, Ia 0ð Þ > 0, Sh 0ð Þ > 0, Ih 0ð Þ
> 0, Rh 0ð Þ > 0, Sw 0ð Þ > 0, Iw 0ð Þ > 0, B 0ð Þ > 0:

ð45Þ

Theorem 4. The solutions of the model system (1) are uni-
formly persistent, and the system admits at least one posi-
tive ω-periodic solution if R0 > 1.

Proof. We define

It is evident that ~H∂ ⊆H∂.
We first show that H∂ = ~H∂: Consider the initial values:

Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þ ∈ ∂X0 ~H:

ð47Þ

If Iað0Þ = 0, Ihð0Þ, Iwð0Þ = 0, and Bð0Þ > 0, then
based on the fact that there is a recruitment rate for
susceptible individuals, we have Ia′ > 0. Similarly, if Iw
ð0Þ = 0, Ihð0Þ, Bð0Þ = 0, and Iað0Þ > 0, then B′ð0Þ > 0,
Iað0Þ = 0, Ihð0Þ, Iwð0Þ = 0, and Bð0Þ > 0, and if Iað0Þ =
0, Ihð0Þ, Bð0Þ = 0, and Iwð0Þ > 0, then B′ð0Þ > 0. It fol-
lows that ðVaðtÞ, SaðtÞ, IaðtÞ, ShðtÞ, IhðtÞ, RhðtÞ, SwðtÞ, IwðtÞ
, BðtÞÞ ∉ ∂X0 for 0 < t≪ 1: The positive invariance of
X0 implies that H∂ = ~H∂.

Again, if we consider the fixed point:

H0 =
ϕπaNa

μa ϕ + ψ + μað Þ ,
ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ , 0,
πhNh
μh

, 0, πwNw
μw

, 0, 0
� �

,

ð48Þ

we define

WS H0ð Þ = x0 : L
m x0ð Þ⟶H0, x⟶∞f g: ð49Þ

It can be deduced from system (1) that if Ia = Ih = Iw =
B = 0 and t⟶∞,

Va tð Þ⟶V0
a =

ϕπaNa
μa ϕ + ψ + μað Þ ,

Sa tð Þ⟶ S0a
ψ + μað ÞπaNa

μa ϕ + ψ + μað Þ ,

Sh tð Þ⟶ S0h =
πhNh
μh

,

Sw tð Þ⟶ S0w = πwNw
μw

:

ð50Þ

We prove that WSðH0Þ ∩X0 =∅.
Let k:k denote a norm on ℝ9

+. Based on the continuity of
solutions with respect to the initial conditions, for every ε > 0,
there exists δ > 0 but small such that for all

Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swð
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞ ∈ ∂X0, ð51Þ

with

Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swðk
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞ −H0k ≤ δ,

ð52Þ

we have

u t, Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þð Þk
− u t,H0ð Þk ≤ ε, ∀t ∈ 0, ω½ �:

ð53Þ

H∂ = Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þf
∈ ∂X0 : P

m Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þ ∈ ∂X0, ∀m ≥ 0g,
~H = Va 0ð Þ, Sa 0ð Þ, 0, Sh 0ð Þ, 0, 0, Sw 0ð Þ, 0, 0ð Þ: Va 0ð Þf
≥ 0, Sa 0ð Þ ≥ 0, Sh 0ð Þ ≥ 0, Sw 0ð Þ ≥ 0g:

ð46Þ
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So we claim that

and prove by contradiction as follows:
Suppose

lim
t→∞

sup Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swðk
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞ −H0k < δ,

ð55Þ

for some

Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swð
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞ ∈X0:

ð56Þ
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Figure 2: Seasonal variations in the number of infective and susceptible animals.

lim
t→∞

sup Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þ −H0k k ≥ δ, 
∀ Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þ ∈X0

ð54Þ
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In addition, we assume without loss of generality that

P m Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iwðk
� 0ð Þ, B 0ð ÞÞ −H0k < δ, ∀m ≥ 0:

ð57Þ

Therefore, ∀t ∈ ½0, ω�,m ≥ 0, we have

u t, Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swððk
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞÞ − u t,H0ð Þk ≤ ε:

ð58Þ

Furthermore, for any nonnegative t, we can write t =
t0 + nω with t0 ∈ ½0, ω� and n being the greatest integer less
than or equal to t/ω. Then, we get

u t, Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Swððk
� 0ð Þ, Iw 0ð Þ, B 0ð ÞÞÞ − u t,H0ð Þk = u t0, Va 0ð Þ, Saððk
� 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð ÞÞÞ
− u t0,H0ð Þk ≤ ε,

ð59Þ

for any t > 0.
Let

Va tð Þ, Sa tð Þ, Ia tð Þ, Sh tð Þ, Ih tð Þ, Rh tð Þ, Sw tð Þ, Iw tð Þ, B tð Þð Þ
= Va 0ð Þ, Sa 0ð Þ, Ia 0ð Þ, Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sw 0ð Þ, Iw 0ð Þ, B 0ð Þð Þ:

ð60Þ
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Figure 3: Seasonal variations in the number of infective and susceptible humans.
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It follows that

ϕπaNa
μa ϕ + ψ + μað Þ − ε <Va tð Þ < ϕπaNa

μa ϕ + ψ + μað Þ + ε, ψ + μað ÞπaNa
μa ϕ + ψ + μað Þ

− ε < Sa tð Þ < ψ + μað ÞπaNa
μa ϕ + ψ + μað Þ + ε, πhNh

μh

− ε < Sh tð Þ < πhNh
μh

, πwNw
μw

− ε < Sw tð Þ

< πwNw
μw

, 0 < Ia tð Þ < ε, 0 < Ih tð Þ < ε, 0

< Iw tð Þ < ε, 0 < B tð Þ < ε:

ð61Þ

Then, we have

dIa
dt

= β1 tð ÞIa + α1 tð ÞBð ÞSa − μa + dð ÞIa

≥ β1 tð ÞIa + α1 tð ÞBð Þ ψ + μað ÞπaNa
μa ϕ + ψ + μað Þ − ε

� �
− μa + dð ÞIa

= β1 tð ÞIa + α1 tð ÞBð Þ ψ + μað ÞπaNa
μa ϕ + ψ + μað Þ

� �
− μa + dð ÞIa

− ε β1 tð ÞIa + α1 tð ÞBð Þ:
ð62Þ

0 2 4 6 8 10 12 14 16 18 20
Time (years)

Su
sc

ep
tib

le
 w

ild
 an

im
al

s

200

180

160

140

120

100

80

60

40

20

0

(a)

0 2 4 6 8 10 12 14 16 18 20
Time (years)

In
fe

ct
ed

 w
ild

 an
im

al
s

250

200

150

100

50

0

(b)

Figure 4: Seasonal variations in the number of infective and susceptible wild animals.
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Similarly,

dIh
dt

≥ β2 tð ÞIh + α2 tð ÞBð Þ πhNh
μh

� �
− σ + μhð ÞIh

− ε β2 tð ÞIh + α2 tð ÞBð Þ,
dIw
dt

≥ βw tð ÞIw + αw tð ÞBð Þ πwNw
μw

� �
− μwIw

− ε βw tð ÞIw + αw tð ÞBð Þ:

ð63Þ

Thus, we obtain

d
dt

Ia tð Þ
Ih tð Þ
Iw tð Þ
B tð Þ

2
666664

3
777775
≥ F −V − εKð Þ

Ia tð Þ
Ih tð Þ
Iw tð Þ
B tð Þ

2
666664

3
777775
: ð64Þ

But R0 > 1 if and only if ρðΦðF−VÞð:ÞÞ > 1: Thus, for ε > 0
whenever small, we have ρðΦðF−VÞð:ÞÞ > 1. Using Lemma 2
and the comparison principle, we get

lim
t→∞

Ia tð Þ = lim
t→∞

Ih tð Þ = lim
t→∞

Iw tð Þ = lim
t→∞

B tð Þ =∞, ð65Þ
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Figure 5: Variations in the effective reproduction number with respect to changes in environmental hygiene and human treatment.
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which contradicts our original assumption.

Thus, H0 is acyclic in H∂, and P is uniformly persistent
with respect to ðX0, ∂X0Þ, which implies the uniform persis-
tence of the solutions to the original system [47]. Conse-
quently, the Poincaré map p has a fixed point:

�Va 0ð Þ, �Sa 0ð Þ,�Ia 0ð Þ, �Sh 0ð Þ,�Ih 0ð Þ, �Sw 0ð Þ,�Iw 0ð Þ, �B 0ð Þ� �
∈X0,
ð66Þ

with Vað0Þ, Sað0Þ, Shð0Þ, Swð0Þ ≠ 0: Thus,

�Va 0ð Þ, �Sa 0ð Þ,�Ia 0ð Þ, �Sh 0ð Þ,�Ih 0ð Þ, �Sw 0ð Þ,�Iw 0ð Þ, �B 0ð Þ� �
∈ Int ℝ+ð Þ9,

ð67Þ

and

~Va 0ð Þ, ~Sa 0ð Þ,~Ia 0ð Þ, ~Sh 0ð Þ,~Ih 0ð Þ, ~Sw 0ð Þ,�Iw 0ð Þ, ~B 0ð Þ
� �

= u t, ~Va 0ð Þ, ~Sa 0ð Þ,~Ia 0ð Þ, ~Sh 0ð Þ,~Ih 0ð Þ, ~Sw 0ð Þ,�Iw 0ð Þ, ~B 0ð Þ
� �� �

ð68Þ

is a positive ω-periodic solution of the system.

3. Numerical Simulations

In this part, we perform numerical simulations for model
system (1) for the purpose of verifying some of the analytical
findings. The baseline parameter values used in our compu-
tations are mainly from literature similar to this work, and
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Figure 6: Relationship between Brucella spp. and susceptible and infected subpopulations.
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unavailable parameter values are assumed for illustration.
The parameter descriptions and values per year are shown
in Table 2. Figures 2–5 illustrate the variations in human,
wild animal, and livestock subpopulations while Figure 6
shows the existence of a globally stable disease-free periodic
solution. Additionally, Figures 7–9 highlight the impact of
temperature variations on the transmission dynamics of bru-
cellosis. Figure 2 shows that the number of infective livestock
decreases seasonally with an increase in time while
Figure 2(a) illustrates a decrease in the susceptible animal
subpopulation as time increases. The decrease in the number
of infective livestock is due to proper implementation of vac-
cination and gradual culling of seropositive animals as con-

trol strategies. On the other hand, the sharp decrease in the
susceptible animal subpopulation can be associated with the
large number of infective animals and consequently high
transmission rate in less than a one-year period of time while
the gradual decrease in the next two years is due to vaccina-
tion programmes and decreased infection rate. Figure 3
shows a strong relationship between the number of infective
and susceptible humans. For instance, at t = 0, Sa = 5000 and
Ia = 0 while at t = 3, Sa = 2555 and Ia = 1850. The seasonal
increase in the individuals in Figure 3(a) is associated with
the low human treatment rate and poor control of the disease
from infective livestock as well as contaminated environ-
ment. Besides, the decrease in the number of susceptible
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Figure 7: Variations in the effective reproduction number with seasonal changes in temperature for the year 1979 in Mpwapwa District,
Dodoma.
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humans in Figure 3(b) is due to the high transmission rate
from both infective animals and their products while the
increase may be associated with proper implementation of
the control strategies such as environmental hygiene, animal
vaccination, and gradual culling of seropositive animals [24].
Figure 4 shows that the number of susceptible wild animals
decreases with the increase in infective wild animals. In par-
ticular, the introduction of 200 susceptible wild animals in
the contaminated environment produces more than 200
infective wild animals. This is based on the fact that both
infective and susceptible animals have free movements and
interactions within their parks. Besides, lack of wild animal
brucellosis control measures and the fact that the disease
does not kill keep the number of infected wild animals sea-

sonally increasing. This implies that, in order to control the
transmission dynamics of brucellosis in livestock and
humans, interactions between domestic and wild animals
should be restricted. Figure 5(a) shows that the number of
Brucella bacteria in the environment decreases seasonally as
the time increases while Figure 5(b) illustrates the variations
in the number of recovered humans with respect to increase
in time. These variations are associated with the regular
implementation of the control strategies like environment
hygiene and sanitation, human treatment, and gradual cul-
ling of infective animals. Furthermore, the recovered human
population in the first six years increases due to effective
treatment of the infective animals, and its decrease is associ-
ated with the decrease in the number of infected humans as
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Figure 8: Variations in the effective reproduction number with seasonal changes in temperature for the year 2014 in Ngorongoro District,
Arusha.
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well as proper control of the disease from livestock and their
products. Figure 6 shows the existence of a stable periodic
solution between the animal subpopulations and the number
of Brucella bacteria in the environment. Figure 7(a) shows
the seasonal variations in the effective reproductive number
with respect to maximum daily temperature while
Figure 7(b) illustrates the changes in the effective reproduc-
tion number with respect to seasonal variations in minimum
daily temperature. Figure 8(a) illustrates the variations in the
effective reproduction number versus maximum daily tem-
perature while Figure 8(b) depicts the changes in the effective
reproduction number with respect to seasonal variations in
minimum daily temperature. Figure 9 presents the compari-
son between direct and indirect routes of brucellosis trans-

mission. In particular, high strength of seasonal forcing
shown in Figure 9(a) is due to seasonality in both direct
and indirect routes of disease transmission while the curve
with low amplitude shows the impact of lack of seasonality
on the direct disease transmission. Moreover, Figure 9(b)
indicates that seasonality in direct transmission has a signif-
icant contribution to the brucellosis transmission than that in
indirect transmission; the graph in red is for seasonality in
both direct and indirect transmission while the one in blue
is for seasonality in both.

Generally, findings from this study advocate that, when
the weather condition favours the increase in the transmis-
sion rates of brucellosis in livestock, humans, wild animals,
and the environment, the incidence of the disease
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Figure 9: Variations in the effective reproduction number with seasonal changes in temperature for the year 2014 in Ngorongoro District,
Arusha.
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increases significantly and vice versa. This implies that in
order to effectively prevent, control, eliminate, or eradicate
brucellosis from the community, measures should be
timely taken in accordance with the fluctuation in the dis-
ease transmission rates as a result of daily temperature
variations. Thus, to avoid underestimation or overestima-
tion of the resources when dealing with brucellosis, the
aspect of seasonal weather variation should be taken into
account when planning for prevention, control, elimina-
tion, or eradication of brucellosis infections.

Data Availability

The data supporting the findings in the article were derived
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