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Abstract

Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-
dependent elevation of myosin Il light chain phosphorylation. To characterize this mechanism further, we studied
myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin Il light chains. We anticipated that
increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we
find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells.
Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells.
Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and
cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D
inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these
projections. These data suggest that myosin Il phosphorylation is dispensable in regulating the mechanical properties
of tumors.
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Introduction

Many types of tumors can be detected by palpation because
they are stiffer or harder than the surrounding tissue. The
mechanical properties of a tumor are determined by the
combined effects and interactions of multiple parameters [1].
The stroma, the composition and stiffness of the extracellular
matrix, integrin ligation, increased vascularization, fluid
accumulation and the presence of immune cells such as
macrophages contribute to the overall stiffness of the tumor
[1-3]. The physical characteristics of the transformed cells,
which can be affected by the genetic signature of the tumor
cells [4] and the microenvironment [5,6] also play a part in
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determining tumor stiffness. Cell stiffness is primarily
determined by actin-myosin Il interactions [7,8]. The actin-
myosin |l interaction in non-muscle cells is regulated by the
phosphorylation of myosin light chains (MLC) [9]. Actin and
phospho-myosin Il comprise the molecular motor that converts
ATP into mechanical work in smooth muscle and non-muscle
cells [9-11] and an increase in MLC phosphorylation has been
implicated in determining tumor stiffness [1,2].

There are two major pathways that regulate MLC
phosphorylation. One pathway involves myosin light chain
kinase (MLCK). MLCK is a calcium-calmodulin dependent
enzyme that phosphorylates the regulatory light chain of
smooth muscle and non-muscle myosin Il [9,10]. Unlike other
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protein kinases that phosphorylate multiple substrates, MLC
appear to be the sole substrate for MLCK. MLC
phosphorylation/dephosphorylation regulates smooth muscle
contraction [9] and many other energy-dependent processes,
including cell division [10] and cell motility [11,12]. Because cell
proliferation and metastatic colonization are two of the most
pernicious aspects of cancer, it is reasonable to predict an
important role for MLCK in tumor growth and metastatic
colonization. In support of this idea, MLCK has been implicated
in cell survival [13,14] and inhibiting MLCK has been shown to
induce apoptosis [13,15] and to decrease tumor growth [15].
Decreased MLC phosphorylation has also been implicated in
cytokinesis failure in cancer cells [16].

The second pathway involves the Rho A GTPase mediated
the activation of Rho kinase or ROCK. While the
phosphorylation of MLC by ROCK has been reported, ROCK
appears to increase MLC phosphorylation mainly by
phosphorylating and inactivating a myosin phosphatase [17].
Because the level of MLC phosphorylation represents a
balance between the enzymes that phosphorylate and
dephosphorylate MLC, inhibiting myosin phosphatase
increases the intracellular level of MLC phosphorylation [17].
The Rho/ROCK pathway plays a crucial role in communicating
extracellular signals that affect the nature of the cytoskeleton,
especially signals from the extracellular matrix that result in
increased cell tension [18]. This pathway is also central in
regulating cell motility and cancer metastasis [12]. Blocking
ROCK has been shown to inhibit tumor growth and progression
[2] and, even though Rho A is not an oncogene, an increase in
Rho A expression is detected in cancer and the Rho A/ROCK
pathway is implicated in Ras-mediated transformation [4].

Thus, there is a wealth of data demonstrating that MLC
phosphorylation is a focal point in the transformation process,
the response of cancer cells to the extracellular matrix and the
proliferation and migration of cancer cells. To understand the
importance of the two major signaling pathways that regulate
MLC phosphorylation, we investigated the expression of MLCK
in cancer cells. Our hypothesis was an increase in MLCK
expression in cancer cells would result in increased
cytoskeletal tension and cellular contractile responses. To our
surprise, we have found that cancer tissues and cells express
less MLCK than their normal counterparts and normal cells
contract 3D collagen gels more rapidly than cancer cells.
Furthermore, blocking MLCK or ROCK has no effect on 3D gel
contractions whereas cytochalasin D, which disrupts actin
filaments, blocked these contractions.

Methods

Cells and Tissue Culturing

Mononuclear cells (MNC) (<1.077 g/ml) were obtained by
density centrifugation on Ficoll-Paque PLUS (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden) as described previously
[19]. Human uterine fibroblasts (HUF cells) were isolated as
previously described [20]. The following human cells, obtained
commercially (source and catalog number included), were also
used: Hela cervical cancer cells (ATCC, CCL-2), ECC-1
endometrial  epithelial adenocarcinoma cells (ATCC,
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CRL-2923), primary prostate epithelial cells (1° prostate) from
disease-free men, LNCaP prostate cancer cells (Lonza,
CC-25555), HCT116 colon cancer cells (ATCC, CCL-247),
MCF10A non-transformed mammary epithelial cells (ATCC,
CRL-10317), MCF-7 (ATCC, HTB-22) and T47D (ATCC,
CRL-2865) mammary cancer cells, H520 squamous lung
cancer cells (ATCC, HTB-182), Hec-1A endometrial
adenocarcinoma cells (ATCC, HTB-113), HEK293T
immortalized kidney cells (ATCC, CRL-11268), Beas-2B
transformed lung bronchial epithelial cells (ATCC, CRL-9609),
human umbilical vein endothelial cells (HUVEC) (Lonza,
CC-2517), human pulmonary artery endothelial cells (HPAEC)
(Lonza, CC-2530), human normal pulmonary artery smooth
muscle cells (HPASMC) (Lonza, CC-2581) and human normal
lung microvasculature endothelial cells (HLMEC) (Lonza,
CC-2527). We used MCF10A and Beas-2B cells as controls
because, while they grow continuously in culture, they do not
form tumors when injected into immunodeficient mice [21,22].
Five pairs of human cancer tissues (bladder, colon, lung, ovary,
and uterus) and surrounding normal tissue were obtained from
the Cooperative Human Tissue Network, Midwest Division
(Columbus, OH) and stored frozen at liquid nitrogen. Each pair
of tissues was from the same patient.

RNA Isolation and PCR

Total RNA was isolated from cells and tissues using Trizol as
recommended by the manufacturer (Invitrogen, Carlsbad, CA).
RNA was reverse transcribed with SuperScript Il reverse
transcriptase (Invitrogen, Carlsbad, CA) and RT-PCR was
performed using 2 pl of cDNA and 0.5 pM, each, of the 3bf
forward primer and the 3ar backward primer described by
Brand-Arpon et al. [23]. Quantitative PCR was performed using
SYBR Green PCR Master Mix (Applied Biosystems, Foster
City, CA) according to manufacturer’s directions. The primers
for total MLCK P4610 (5 AGG AGC CCG AGG TTG ATT AC
3’) and R4762 (5° ACT TCC CTG CCC AGA CTT TT 3’) target
exons 26 and 27. The specificity of primers was validated by a
dissociation curve analysis and the fold change in expression
of each gene was calculated using the AACt method, with
H3F3A as an internal control.

Western Blot Analyses

Pieces of each of the frozen tumor and normal tissue were
excised while frozen, homogenized in 10X w/v hot SDS sample
buffer and heated in a boiling water bath for 5 min. The
supernatants were collected by centrifugation and 10 ul of each
sample were applied to 4-20% polyacrylamide gradient SDS
gels and transferred to nitrocellulose. The top half of each blot
was probed with a rabbit, affinity purified antibody to MLCK [24]
and the bottom was probed with an antibody to GAPDH. Cells
were harvested, suspended in PBS, incubated with 2 mM
diisopropylfluorophosphate for 10 mins at room temperature
and extracted in 9M urea, 50 mM DTT, 50 mM Tris, pH 6.8.
The supernatants were collected by centrifugation, protein
concentrations were determined using a Bradford Assay and
10 pg of protein per sample were applied to 4-20%
polyacrylamide gradient SDS gels and transferred to
nitrocellulose.
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Measurement of MLC Phosphorylation

MLC phosphorylation was quantified in HUF and HelLa cells
using urea/glycerol gels as described by Chew et al. [25] with
slight modifications. Cells were treated with inhibitors for 2
hours, washed in isotonic sucrose 2X and extracted in 9M
urea, 5 mM DTT, 20 mM Tris, pH 6.8. The supernatants were
collected by centrifugation, protein concentrations were
determined and 100 pg of HUF cell extract and 225 pg of HeLa
cell extract were separated using glycerol-urea PAGE. The
proteins were transferred to nitrocellulose, the un- and
phosphorylated forms of MLC were identified using an antibody
to MLC and the stoichiometry of phosphorylation (mol PO,/mol
MLC,,) was calculated as previously described [26].

Collagen Gel Contraction Assay and Drug Treatment

To prepare the collagen gel solution, cell growth medium
was supplemented with 1 mg/ml collagen Type 1 rat tail collage
(BD Biosciences), neutralized with 1 N NaOH to pH 7.5 and
buffered with 10 mM HEPES, was combined with tissue culture
media and kept on ice. Cells were collected, counted and
5X10°% cells were resuspended in 200 ul of collagen solution
and applied to individual wells of a 48-well plate (Fisher
Scientific, Pittsburg, PA). The gels were incubated at 37 °C in a
CO, incubator for 15-20 min until they solidified and then
detached from the walls of the wells with pipette tips. Growth
medium (200 pl) was added to each well and the gels were
allowed to contact for 18 hours or as specified. All the gels
were photographed before and after contraction. The areas of
the gels were measured in Image J and the percentage of the
gel size after contraction, normalized to the cross-sectional
area of the well, was calculated.

Drug Treatments of Collagen Cells

ML-7, Y 27632 and blebbistatin were purchased from EMD
Biosciences and cytochalasin D was purchased from Enzo Life
Sciences. Drugs were diluted in growth medium and added to
the gels. Drug concentrations were calculated based on the
total volume of media and collagen gel. Untreated cells and
cells treated with DMSO were used as controls.

Live-Cell Imaging of 3D Collagen Gels

HelLa cells were transiently transfected by electroporation
using a BioRad Gene Pulser Xcell with either with pLL7.0
mCherry-LifeAct (gift of Dr. Robert Wysolmasky) or pEGFP-
LifeAct (gift from Alexander Bershadsky), which binds to F-
actin [27]. Briefly, a 10 cm dish of 95% confluent Hela cells was
trypsinized and resuspended in 10 ml growth media. Cells were
spun down at 2000 Xg for 5 minutes and resuspended in 400 ul
Opti-MEM® | Reduced Serum Medium supplemented with 4 ul
of 1 M Hepes, 1ug of either LifeAct plasmid and 10ug of
Sheared Salmon Sperm DNA. Electroporation was done in a 4
mm cuvette (BioRad using the following setting (Voltage=240
V, capacitance=950uF, resistance=«). A 1:1 ratio of mCherry-
LifeAct and EGFP-LifeAct transfected HelLa cells were mixed
together and a total of 2.5 x 106 cells were mixed with 1 ml 1
mg/ml collagen [28]. Collagen-cells solution was added to the
well of a glass bottom Mat Tek imaging dish (P35G-1.5-14-C),
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solidified for 20 minutes at room temperature and 2 ml growth
media was added to cover the cell-gel matrix and placed in the
5% CO2 incubator. Appropriate inhibitors was added to the
media and cells were imaged on Nikon A1 laser scanning
confocal microscope, using Apo 100x1.45 N.A. objective,
equipped with Tokai environmental chamber.

Ethics Statement

Tissues were obtained from the Cooperative Human Tissue
Network, Midwest Division (The Ohio State University,
Columbus, OH), a NCI funded tissue repository (https://
htrn.osu.edu). Other investigators may have received
specimens from the same subjects. Human umbilical cord
blood was obtained from the New York Blood Center (New
York, NY, http:/nybloodcenter.org) according to Institutional
Review Board (IRB) guidelines. Protocols for isolation of
human CB CD34+ cells by NM were approved by the IRB of
the University of lllinois at Chicago. HUF cells were isolated
from the decidua peritalis dissected from placental membranes
after normal vaginal delivery at term by ZS with prior approval
from the IRB at the University of lllinois at Chicago. No animals
were used.

Results

The MYLK gene is located on chromosome 3q21 (GenBank
Accession Number U48959) in humans. The MYLK gene
spans >272 kb, contains at least 34 exons and codes for 3
proteins [29]: nmMLCK (~210 kD), smMLCK (~150 kD) and a
small protein called telokin. Human nmMLCK and smMLCK are
transcribed by exons 1-34 [23] and 18-34 [30], respectively.
Analysis of the exon-intron structure in the human MYLK gene
has revealed splice variants of nmMLCK that have unique
localization patterns in epithelial cells [30]. At least four non-
muscle MLCK isoforms (MLCK2, 3a, 3b and 4) that are the
result of alternatively spliced variants of a mRNA precursor
have been described [31]. In contrast, smMLCK, encoded by
exons 18-34 [29], is expressed mainly in smooth muscle cells
and low levels of smMLCK are detected in epithelial and
endothelial cells (see below). Although smMLCK and nmMLCK
are structurally different, both apparently only phosphorylate
the regulatory light chain of smooth muscle and non-muscle
myosin Il [9].

We used primers described by Brand-Arpon et al. [23] to
analyze the expression of MYLK in human tissues and cells.
We obtained tissue from human tumors and the surrounding
tissue so that we could compare the expression of MYLK.
Quantitative PCR, using primers that target sequences in
exons 26 and 27 and recognize all forms of MLCK, revealed
MLCK mRNA levels are markedly decreased in bladder, colon,
lung, ovary and uterine cancer tissues compared to the normal
tissue (Figure 1A). Similarly, gPCR on a broad range of normal
human (human uterine fibroblasts, endothelial cells, prostate
epithelia and mononuclear cells), non-transformed or
transformed cells also revealed lower levels of total MLCK
mRNA (Figure 2A) in cancer cells. The data in Figure 2A were
normalized to the level of MYLK expression in HeLa cells. Most
normal cells (HUF, HPAEC, HUVEC, 1° prostate) and non-

November 2013 | Volume 8 | Issue 11 | e79776


https://htrn.osu.edu
https://htrn.osu.edu

Tumor Stiffness and Cell Contractility

A: Total MLCK in Tissues

145
135 @ Cancer

125 I'I'I
115 3 Normal
25
20+
154

104

:ﬂ-ﬂi [

Bladder Colon Lung Ovary Uterus

Relative mRNA Quanitity

B: MLCK Protein Expression in Tissues
N N N [Q
g > [ o
§ & S & & &I S
O N & £ o o £ ©
< O 00 S O & <
O & < O S v
T 9 2 @ < O
5 0 £ & & £
S 5 9 9 § & &0
e T o ¢ L g 5 §
Q @ O O IS 39 JI 39
207 kDa = — s = nmMLCK
117 kDa =— p— =5 i - = —smMLCK
— —— ——
95 kDa =— - — G '
—
49 kDa —— —y oo S -
GAPDH— Sl an a» scoaP@ — —

Figure 1. Analysis of MLCK expression in normal and cancer tissues. Quantitative PCR (A) and western blot (B) analyses of
normal and cancer tissues. RNA was isolated from various normal and cancer tissues and total MLCK (A), including all splice
variants of nmMLCK and smMLCK, was detected using primers targeting exons 26 and 27. The gene for H3F3A was used as an
internal control in all experiments. The data in Panel A depict the averages of gPCR analyses performed in triplicate and the error
bars show the standard deviation. Panel B shows a western blot analysis using affinity purified antibodies to MLCK. GAPDH was
used as a loading control.

doi: 10.1371/journal.pone.0079776.g001

tumorigenic Beas-2B cells are above while most cancer cells, We next determined if protein expression correlated with
with the exception of ECC-1 cells, are below the level of MYLK mRNA levels. MLCK protein expression in normal and cancer
expression in Hela cells. tissues and cells was determined by performing western blots
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Figure 2. Analysis of MLCK expression in normal and cancer cells in culture. Quantitative PCR to detect total MLCK (A) and
western blot (B) analyses of normal and cancer cells in culture. RNA and protein were isolated from various cells and analyzed as
described in Figure 1. The data in panel A depict the averages of qPCR analyses performed in triplicate.

doi: 10.1371/journal.pone.0079776.9002

using an affinity-purified antibody to MLCK [24]. Normal
bladder, colon and uterine tissues expressed both non-muscle
and smooth muscle isoforms of MLCK whereas normal lung
tissue only expressed smMLCK (Figure 1C). Uniformly, all of
the cancer tissues mainly expressed smMLCK and nmMLCK
was difficult to visualize in these tissues. Interestingly, the
pattern of MLCK protein expression is very similar in normal
and lung cancer tissues, although the level of mRNA is
decreased in lung cancer tissue (Figure 1). Analysis of tissue
culture cells showed that human uterine fibroblasts (HUF cells)
express large amounts of both forms of MLCK while human
non-muscle cells (endothelial, epithelial and cord blood
mononuclear cells) express mostly the larger, nmMLCK (Figure
2B). The expression pattern in cancer cells, however, is
complex. Cancer cells (HeLa cervical cancer cells, T47D breast
cancer cells, LNCaP prostate cancer cells and HL60
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promyelocytic cells), express smMLCK. Interestingly, the
increase in smMLCK expression in cancer cells appears to
accompany a decrease in the expression of nmMLCK
compared to their normal counterparts (eg: compare LNCaP
and 1° prostate). Consistent with the PCR data, it is apparent
from Figure 2B that the total level of MLCK expression is
decreased in cancer cells compared to the control (ie: normal)
cells.

We explored the functional consequences of decreased
MLCK expression by growing normal and cancer cells in 3D
gels and comparing their ability to contract the gels. Liquid
collagen containing equal numbers of cells were applied to 24
well dishes and allowed to harden at 37°C. They were then
released from the sides of the wells and photographed at
defined intervals. Figure 3 shows that HUF and 1° prostate
cells contract the gels rapidly. Increasing the collagen
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Figure 3. Contraction of 3D collagen gels. HelLa, LNCaP, MCF7, MCF10A, HUF and primary prostate cells were seeded in 24
well dishes in liquid collagen. After the collagen hardened, the gels were released from the sides of the wells and allowed to contract
for 24 hrs. The wells were photographed from above at the times shown. Note that the HUF and primary prostate cells contract the
gels to a greater extent than HeLa and LNCaP cells and that MCF 10A cells contract more than MCF-7 cells. Scale bar = 2 mm.

doi: 10.1371/journal.pone.0079776.9g003

concentration to 2 mg/ml decreased the rate and extent of
contraction and 3 mg/ml prevented contraction (Figure S1).
HelLa cells and MCF10A cells contracted gels to intermediate
level whereas MCF7, T47D and LNCap cells barely contracted
the gels (Figure 3 and Figure S1).

We then investigated whether the contractions could be
blocked by small molecule inhibitors of the cytoskeleton. We
studied HUF and Hela cells because they contracted the gels.
Cells were treated with ML-7, a MLCK inhibitor [32], Y27632, a
Rho kinase inhibitor [33], blebbstatin, a myosin Il inhibitor [34]
and cytochalasin D, which blocks actin polymerization [35].
ML-7 had no effect on contraction of gels containing HUF or
HelLa cells (Figure 4). Y27632 and blebbistatin had minimal,
albeit statistically-significant, effects on contraction of gels
containing HUF cells. Y27632 did not have a statistically
significant effect on HelLa cell contraction while blebbistatin had
a more pronounced, statistically significant effect on gels made
of HelLa cells. Interestingly, cytochalasin D had the most
pronounced effect on the gel contractions and almost
completely inhibited contractions by both cell types (Figure 4).

PLOS ONE | www.plosone.org

Washing out the cytochalasin D resulted in a rapid contraction
of the gels by both cell types (not shown).

To establish that ML-7 and Y27632 were in fact inhibiting
MLCK and Rho kinase and decreasing MLC phosphorylation,
we used glycerol gels to quantify the changes in MLC20
phosphorylation. They showed that MLC20 phosphorylation is
decreased in HelLa cell compared to HUF cells and that ML-7
and Y27632 decrease MLC20 phosphorylation (Figure 5).
Surprisingly, blebbistatin and cytochalasin D also decrease
MLC20 phosphorylation somewhat.

We also used live cell imaging to observe the cells within the
gels. These gels were not released from the side of the wells
because the motion introduced by the contraction of the gel
made it impossible to image the cells. Figure 6 and the movie
S1 show that untreated cell are well spread and extend
filopodia, which are rich in actin, that reach out and touch each
other. Cells treated with ML-7 or Y27632 remained spread and
continued to extend filopodia. Cells treated with cytochalasin D
remained spread and extended much larger, pseudopodia-like
structures rather than filopodia. Importantly, the actin in these
cells seemed to coalesce into large aggregates inside the cells.
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Figure 4. Effect of inhibitors on 3D gel contractions. HUF (left) and Hela (right) cells were grown in 3D cultures and treated
with inhibitors as described. The gels were photographed 24 hrs later and the surface area of the individual gels was quantified. The
data represent the mean +SEM. One way ANOVA * = p value < 0.05, *** = p value < 0.001.

doi: 10.1371/journal.pone.0079776.9g004

Discussion

Tumors can be palpated because they feel harder than the
surrounding tissue and many factors, as described in the
Introduction, can contribute to the stiffness of a tumor. One of
these factors is the contractile state of the cancer cells within a
tumor. One of our core assumptions when we began these
studies was that cancer cells would up-regulate components of
the contractile apparatus. This was based on reports that
actomyosin contractility [2] and the expression of rho proteins
[4], myosin Il [36,37] and MLCK [38] are increased in human
tumors relative to normal controls. In addition, when tumor cells
metastasize they have to make their way through a forest of
collagen fibers and it is reasonable that they would need more
activated contractile proteins to push through the extracellular
matrix.

However, a closer examination of the literature suggest
otherwise. Experiments using traction force microscopy have
found an inverse relationship between force production and
metastatic capacity [39]. Mechanical phenotyping using atomic
force microscopy [40-42] and other methods [43,44] have
consistently shown that cancer cells are softer than normal
cells. Moreover, a recent study has suggested that decreased
stiffnress may improve the survival of cancer cells in the
circulation [45]. We have previously shown that over-
expressing an active form of MLCK increases MLC
phosphorylation and stiffness in fibroblasts [46]. Thus, our
observation of a decrease in MLCK expression is very
consistent with a decrease in stiffness in transformed cells
reported by other laboratories [39-44].
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Figure 2 shows that MLCK expression is decreased in tumor
cells grown in culture. Nevertheless, tumors are not
homogeneous and, in addition to tumor cells, contain immune
cells, myofibroblasts and other types of stromal cells that could
have increased MLCK levels and thereby contribute to the
overall stiffness of the tumor. However, tumor tissues were
analyzed in Figure 1 and the data reflect the contributions of all
the cell types within each tumor. Although the data clearly
demonstrate decreases in MLCK expression compared to the
surrounding normal tissue, we cannot eliminate the possibility
that increased contractility of non-tumor cells contribute to the
stiffness of tumors. One approach for addressing this possibility
is to stain tumor tissue with antibodies to MLCK and to quantify
the level of staining in cancer cells compared to surrounding
normal tissue and non-cancer cells within the mass of the
tumor. We are currently establishing the methods to perform
such experiments.

The mechanism responsible for down-regulating MLCK
expression in cancer cells is not clear. Brand-Arpon et al. [23]
have reported the presence of a pseudogene (pMYLK) at
chromosome location 3p21 only found in humans, chimps,
gorillas and orangutans, but not gibbons or baboons or other
species. They also showed that the pMYLK contains a 73 bp
deletion and used PCR to differentiate between the expression
of MYLK (667 bp) and pMYLK (594 bp). Using the same
primers, Han et al. [47] have reported that the expression of
pMYLK is increased in cancer cells and the increase in
expression of pMYLK is responsible for the decreased
expression of MLCK. We used the same primers to analyze the
expression of MLCK and pMYLK in human tissues and cells.
While we clearly see a decrease in MLCK mRNA and protein
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Figure 5. Quantification of MLC phosphorylation of cells treated with inhibitors. The phosphorylated and unphosphorylated
MLC were separated by urea-glycerol gel electrophoresis, blotted to nitrocellulose and identified using an antibody the 20 kD MLC.

doi: 10.1371/journal.pone.0079776.g005

expression in cancer cells and tissues, we were not able to
consistently detect pMYLK expression in cancer cells or the
absence of expression in normal cells. Consequently, the
regulation of MLCK expression in transformed cells remains
unclear currently.

The observation that the 3D gel contractions are not blocked
by ML-7 and Y27632 also warrants comment. An increase in
MLC phosphorylation is essential for activating the actin-
activated ATPase activity of smooth muscle and non-muscle
myosins [9-11]. The partial inhibition by blebbistatin suggests
that myosin |l cross-bridges play a role in these contractions.
However, the inability of ML-7 and Y27632 to block these
contractions  suggests that MLC phosphorylation is
dispensable. In contrast, actin dynamics appear to play a
central role in 3D gel contractions. This observation is
consistent with the report that the disruption of the actin
cytoskeleton blocks all types of collagen gel contractions [48].
Furthermore, the most prominent feature on live cell imaging of
cells in the collagen gels (Figure 6) is the presence of highly
dynamic actin filopodia. Vonna et al. [49] have studied
pathogen capture by macrophages and estimated that filopodia
can generate hundreds of pN of force over 10 ym distances.
Another study characterized filopodia as “phagocytic tentacles”
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that retract particles towards the cell body [50]. These authors
found the step size of the contractions was 36+13 nm, which
excludes myosin Il as the possible motor [50]. Although they
were not able to implicate any myosin in filopodial retraction,
depolymerization of actin filaments with latrunculin A also
blocked the filopodial contractions [50]. Taken together, the
literature and our data suggest that 3D collagen gel
contractions are mediated by actin via filopodia independently
of myosin 1.

In summary, our data unequivocally demonstrate that MLCK
expression, MLC phosphorylation and 3D gel contraction are
lower in cancer cells and tissues than in their normal
counterparts. Moreover, we find that decreasing MLC
phosphorylation, by inhibiting MLCK or rho kinase, has no
effect on 3D gel contractions by normal or transformed cells. In
contrast, inhibiting myosin Il had a partial effect and
depolymerizing actin virtually abolished the contraction.
Further, live cell imaging suggested that filopodia play a central
role in 3D contractions. These data strongly suggest that tumor
rigidity, the underlying basis of self-detection of tumors, is
independent of myosin Il phosphorylation. Our observations
are consistent with recent studies that have shown that cancer
cells are less stiff than non-transformed cells [40-44]. Lastly,
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A: Control

Figure 6. Micrographs of cells grown in collagen gels. Hela cells were transfected with Lifeact mCherry (red) or Lifeact-GFP
and grown in collagen gels. These gels were not released from the walls of the wells to prevent motion artifacts. Panel A shows
control (untreated) cells extending filapodia that contact neighboring cells (also see movie in Figure S2). Panels B & C show cells
that were treated with 20 yM ML-7 (B) or 6 uM cytochalasin D (C). Cells treated with ML-7 continue to actively extend filopodia.
Cells treated with cytochalasin D stop extending filopodia and the actin in these cells appears to collect in large aggregates. The
insets are blow ups of the boxed areas. Size bar = 10 ym.

doi: 10.1371/journal.pone.0079776.g006

we have previously shown that inhibiting MLCK induces Our current demonstration that MLCK expression is decreased

apoptosis in vitro and potentiates the effects of anticancer in tumor cells suggests a targeting window for specifically
drugs to induce apoptosis and inhibit tumor growth in vivo [17].
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inducing apoptosis in cancer cells and provokes further
investigation of MLCK as a potential therapeutic target.

Supporting Information

Figure S1.

Summary of collagen gel contraction assays.

The gels were incubated for 24 hours, photographed from
above and surface area calculated as described in methods.
Panel A shows that HUF and primary prostate cells contract
the gels more than HelLa and LNCap cells. MCF10A breast
cancer cells also contract the gels more than the more
aggressive MCF7 and T47D cancer cells. Panel B shows that
increasing the collagen concentration inhibits contraction dose
dependently. N = 2, +/- SD, * and *** equal p values of <0.05
and <0.001, respectively.
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