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ABSTRACT: Near-infrared spectroscopy has been widely used to characterize the chemical composition of tobacco because it is
fast, economical, and nondestructive. However, few predictive models perform ideally when applied to large spectral libraries of
tobacco and its various chemical indicators. In this study, the just-in-time learning-integrated partial least-squares (JIT-PLS)
modeling strategy was applied for the first time to quantitatively analyze 71 chemical components in Chinese tobacco. Approximately
18000 tobacco samples from China were analyzed to find appropriately similar measurements and propose suitable and flexible
similar subsets from the calibration for each test sample. In total, 879 representative aged tobacco leaf samples and 816 cigarette
samples were used as external instances to evaluate the practical predicting ability of the proposed method. The most suitable similar
subsets for each test sample could be selected by limiting the Euclidean distance and number of similar subsets to 0−3.0 × 10−9 and
10−300, respectively. The majority of the JIT-PLS models performed significantly better than traditional PLS models. Specifically,
using JIT-PLS instead of traditional PLS models increased the R2 values from 0.347−0.984 to 0.763−0.996, and from 0.179−0.981
to 0.506−0.989 for the prediction of 67 and 71 components in aged tobacco leaf and cigarette samples, respectively. Good
prediction ability was demonstrated for routine chemical components, polyphenolic compounds, organic acids, and other
compounds, with the mean ratios of prediction to deviation (RPDmean) being 7.74, 4.39, 4.05, and 5.48, respectively). The proposed
methodology could simultaneously determine 67 major components in large and complicated tobacco spectral libraries with high
precision and accuracy, which will assist tobacco and cigarette quality control in collecting as well as processing stages.

1. INTRODUCTION
Tobacco (Nicotiana tabacum) is one of the most extensively
cultivated nonfood crops. It is currently cultivated in more
than 125 countries1 and has become a major economic force in
several developing countries.2 Approximately 8400 compounds
have been identified in tobacco leaves and cigarette smoke,
many of which contribute to the unique flavor, aroma, and
physiological effects of tobacco.3 The chemical composition of
tobacco dictates its quality and flavor and is influenced by its
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variety, growing conditions, and processing parameters.
Therefore, qualitative and quantitative analyses of the chemical
components present in tobacco leaves and cigarettes are critical
for quality control.4,5 However, traditional quantitative analysis
methods, such as chromatographic analysis and continuous-
flow analysis, are time-consuming and expensive and require
complex sample pretreatment procedures.6,7

Owing to its rapidity, high efficiency, and nondestructivity,
near-infrared (NIR) spectroscopy has been used widely in
biological,8,9 petrochemical,10 pharmaceutical,11 agricultur-
al,12−14 and food-processing15,16 applications. NIR spectrosco-
py is also effective in the quantitative analysis of tobacco
components.4,17,18 Chemical models for components having
high contents, such as total sugar (TS), reducing sugar (RS),
total nitrogen (TN), nicotine (NIC), and chlorine (Cl), are
relatively robust.4,18−20 However, the performance of trace-
component models may be subideal.4,21 Furthermore, models
of organic acids, amino acids, and Amadori compounds have
rarely been reported, although these compounds critically
influence the unique style of tobacco. The prediction of
tobacco components requires the creation of a spectral library
that relates recorded spectra with reference data. Such a library
should be designed to represent variations in the tobacco
components of interest. However, the majority of existing
spectral libraries are limited to small areas, and few large-scale
spectral libraries for tobacco have been developed to date.

Soares et al. quantified 22 components in over 640 samples
using NIR hyperspectral imaging, of which 20 were considered

satisfactory (R2
CV ranged from 0.67 to 0.86).17 Zhou et al. used

87 NIR spectra of dark sun-cured tobacco samples from six
provinces in China to predict six heavy metals (R2

CV ranged
from 0.788 to 0.948).22 Duan et al. collected 500 samples from
Yunnan province to quantitatively analyze 27 chemical
components using NIR spectroscopy; results showed remark-
able correlation between predicted and measured values of the
15 indices, in which the correlation coefficients of these PLS
models were all greater than 0.85.4 Jiang et al. analyzed the
nicotine composition in tobacco leaves collected from Guizhou
Province in China using NIR spectroscopy analyzed by cloud
computing, in which the correlation coefficients of one-
dimensional fully convolutional network model reached to
0.997.23 Owing to the immense differences between tobacco
planting regions and environments, as well as differences
between the parts of tobacco plants, large variances exist in the
chemical composition of tobacco. Models established using
tobacco samples from one particular region may not be
suitable for analyzing samples from other regions.

While creating large and complex data sets, tobacco samples
may be collected from throughout the country, introducing
large heterogeneities in the spectral library. The relationships
derived from such a library between the properties and spectra
of tobacco may be complex and nonlinear. Therefore, the
prediction accuracy achieved by a model calibrated from a
large spectral library may deteriorate because the underlying
assumption of the model�e.g., linearity for partial least-
squares regression (PLSR)�may be invalid.24 Traditional

Figure 1. Sampling information: (A) Locations of dataset1 and dataset2; (B) classification of samples in dataste2; (C) average reflectance spectra
and their standard deviations of original spectra in all data sets; (D) average reflectance spectra and their standard deviations of derivatived spectra
in all data sets.
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global modeling methods generally require the creation of
highly complex models when strong nonlinearities are present
in the process and its local characteristics are difficult to
capture. Furthermore, as model maintenance continues and
the modeling sample size increases, a global model may not be
available because it incurs considerable computational costs
and time.11 Therefore, building local models may be a
reasonable solution for modeling large spectral libraries of
complex samples.

Just-in-time (JIT) learning facilitates local modeling to
prevent the degradation of prediction accuracy, and the output
of each test sample is predicted by the similarities between a
test sample and calibration samples.25 Un-informative or
unrelated calibration samples can be effectively removed, and
the advantages of having a spectral library covering a large
domain can be combined with the accuracy obtained by local
calibration models.26 PLSR integrated with the JIT modeling
(JIT-PLS) has been successfully applied to various industrial
processes. For the pharmaceutical industry, JIT-PLS has been
employed to estimate the content of active pharmaceutical
ingredients27 and rapidly measure residual drug substances
(specifically, ibuprofen and magnesium) without sampling.
The prediction error in the real-time monitoring of active
pharmaceutical ingredient concentration during blending using
NIR has also been improved by implementing JIT-PLS.28 In
addition, JIT-PLS has been successfully applied to determine
four clinical parameters in human serum samples (total
protein, triglyceride, glucose, and urea) by Fourier transform
infrared spectroscopy,29 and local regression approaches
exhibited superior performance compared to those of global
approaches. However, few studies have employed local
modeling methods for complex systems with large spectral
libraries. No JIT-PLS model has been reported for the
quantitative analysis of chemical constituents in tobacco leaves.

This study attempts to establish JIT-PLS models for multiple
components in tobacco samples acquired from different
locations in China. The accuracy of prediction depends
critically on the selection of the most similar subsets from
calibration. The similarity measurements, size of similar
subsets, and distance between each test sample and similar
subsets were optimized using approximately 18000 NIR
spectra of Chinese tobacco leaves and their total nitrogen
(TN), nicotine (NIC), total sugar (TS), and reducing sugar
(RS) contents. The proposed method was applied to predict
the contents of 71 chemical components in sample sets of 879
representative aged tobacco leaf samples and 816 cigarette
samples.

2. MATERIALS AND METHODS
2.1. Sample Preparation. Tobacco samples were acquired

from various locations having different soil characteristics and
climates. They were randomly selected from 14 main planting
provinces in China (Figure 1A). Dataset1 included flue-cured
tobacco leaf samples and aged tobacco leaf samples purchased
by a tobacco company in China from 2010 to 2014. Aged
tobacco leaf samples (denominated dateset2) were collected
from aged leaf warehouses of 14 cigarette companies from
2015 to 2020 and included different varieties and grades.
Cigarette samples (denominated dateset3) covered all valence
classes (Classes I, II, III, IV, and V) that were produced in
November 2018, March 2020, and March 2021 by all cigarette
companies in China (Figure 1B).

All tobacco samples were dried in a drying room at 40 °C for
1−3 days, ground to a certain granularity using a whirlwind
grinding mill, and sieved through a 60-mesh sieve. The
moisture content of the samples ranged between 6 and 8% and
was analyzed by the oven-drying method. The contents of
routine chemicals, polyphenolic compounds, organic acids,
amino acids, Amadori compounds, and other constituents were
tested using different analytical methods, as listed in Table S1
(Supporting Information).
2.2. Spectrum Recording and Pretreatment. NIR

spectra were recorded for all tobacco samples using an Antaris
II NIR spectrophotometer (Thermo Electron Co., USA).
Measurements were performed in triplicate, and each measure-
ment comprised 64 co-added scans recorded at a resolution of
8 cm−1 in the wavenumber range of 4000−10000 cm−1.

Multiplicative scatter correction (MSC) was performed prior
to modeling to eliminate the uneven distribution of sample
particles and reduce the effect of particle size on the spectra.
The constant difference in the spectra was eliminated by taking
the first derivative�because the calculation of the derivative
tended to increase the noise�and performing Savitzky−Golay
convolution smoothing prior to derivative preprocessing.
2.3. Just-in-Time Learning-Integrated Partial Least-

Squares Regression. A JIT-PLS model was implemented to
predict the chemical contents of tobacco leaves (Y) using the
spectral matrix (X). Given a set of n reference samples (Xcal,
Ycal):

= { } =X Y x y( , ) , j
M

cal cal cal cal 1j j (1)

(i.e., a spectral library) and a set of m samples to predict (Xval,
Yval),

= { }=X Y x y( , ) , i
N

val val val val 1i i (2)

where Xval is measured and Yval has to be estimated, a basic JIT-
PLS algorithm can be described by the following pseudocode:

1 For each sample to predict vali (i = 1, 2, ..., N), do
2 Compute di, the distance vector between xvaldi

and Xcal

3 Find the most similar samples in Xcal as a subset of the
calibration for each test sample

4 Fit a multivariate model with the subsets of calibration
5 Select the optimal model parameters for the prediction

of vali, e.g., the appropriate number of latent variables
(LVs) for a PLS model or the size of subsets

6 Predict samples vali and compute the squared error
7 Compute the model performance using the coefficient of

determination (R2) between the measured and predicted
values, the root mean squared error (RMSE) of the test
set, and the ratio of prediction to deviation (RPD).

2.3.1. Spectral Similarity Measurement. Spectral similarity
measurements are typically used to measure the similarities
between test samples and calibration samples. Considering the
efficiency of calculation, Euclidean distance measurement30

(EDM), locally weighted Euclidean distance measurement31

(LW-EDM), spectral information divergence32 (SID), and
spectral correlation measurement33 (SCM) were selected to
compute di from different perspectives.
2.3.2. Local Multivariate Model. For step 4 of the

pseudocode, PLSR was used for regression analysis, wherein
the latent variables (LVs) were selected as new predictor
variables of the response Y. PLS models were established by
10-fold cross-validation with the maximum number of latent
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variables limited to 10, as the ones producing a model having
the smallest value within one standard error of the minimal
RMSE of cross-validation, to avoid overfitting.
2.4. Model Evaluation. The following evaluation

indicators were used: the coefficient of determination (R2)
between d and the predicted values, the RMSE of the test set,
and the ratio of prediction to deviation (RPD). The smaller the
RMSE and bias or the larger the RPD and R2 (<1), the better
the performance of the model.

=
=

yp yp NRMSE ( ) /
i

N

i i
1

2

(3)

where ypi is the observed value of sample i and ỹpi is the
predicted value of sample i.

=RPD SD /RMSEy (4)

where SDy is the standard deviation of observed values.
2.5. Software. All computations were performed using

MATLAB R2013b (Mathworks, USA). The programs were
written in-house.

3. RESULTS AND DISCUSSION
3.1. Model Tuning. Dataset1 (included 1880 samples) was

used for method optimization, and these samples were split by
the Kennard−Stone method34 (17801 calibration sets and
1000 validation sets). The averaged original and preprocessed
spectra of each data set and their corresponding standard
deviations are shown in Figure 1C,D. The peaks and valleys of
the original and preprocessed spectra for all samples appeared
in identical positions. The spectra of tobacco leaves are
complex, as can be observed, showing many bands which
reflect the complex composition of the tobacco leaves. The
chemical compounds commonly present in tobacco leaves such
as carbohydrates (e.g., reducing sugar and starch), nicotine,
polyphenolic compounds, organic acids, amino acids, Amadori
compounds, etc., have already specific bands assignment in the
NIR spectra.35 However, obtaining chemical information from
first-derivative spectra remained challenging.

The contents of TN, NIC, RS, and TS from all data sets are
summarized in Figure 2A. The contents of TN, NIC, RS, and
TS in dataset1 were varied from 1.3 to 3.1% (w/w) with a
standard deviation (SD) of 0.36%, from 1.01 to 4.5% (w/w)
with an SD of 0.76%, from 9.02 to 35.62% (w/w) with an SD
of 4.16%, and from 10.45 to 40.98% (w/w) with an SD of
5.94%, respectively. The contents of TS and RS varied

Figure 2. (A) Chemical values of TN, NIC, RS, and TS; (B) results of models of five distance measures in local modeling; (C) R2 of all models as a
function of the number of nearest subset for TN, NIC, RS, and TS; (D) R2 of all models as a function of distance range between each test sample
and nearest subsets in calibration for TN, NIC, RS, and TS.

Table 1. Compositional Characteristics of Dateset1 Used for the Calibration and Validation of the Spectral Models

calibration set validation set

component n range (%) mean (%) SD n range (%) mean (%) SD

TN 17801 1.3−3.1 2.26 0.365 1000 1.32−3.12 2.26 0.373
NIC 17801 1.01−4.5 3.14 0.762 1000 1.11−4.52 3.18 0.767
TS 17801 10.4−40.9 26.2 5.94 1000 10.9−40.7 25.80 5.96
RS 17801 9.02−35.6 20.8 4.15 1000 9.11−33.4 20.55 4.103
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significantly, whereas those of the other constituents remained
stable, as presented in Table 1.

There are no prior guidelines for defining the parameters of
the JIT-PLS algorithm, such as the appropriate similarity
measurement, number of nearest neighbors, or distance
metrics. Therefore, these parameters were optimized via a
grid search approach using dataset1. The JIT-PLS algorithm
was run successively over the following model parameters:
similarity measurements, number of nearest subsets, and
distance range of the nearest subset.
3.1.1. Optimization of Similarity Measurement in Local

Modeling. The prediction performance of different similarity
measures in just-in-time learning on a large tobacco NIR
spectral library (specifically, SCM, SID, EDM, and LW-EDM)
was evaluated. An identical number of nearest neighbors (e.g.,
300) was selected from the calibration set for each validation
sample to build the JIT-PLS model. Figure 2B shows the
RMSE of the TN, NIC, TS, and RS models based on different
similarity measurements. All JIT-PLS models except SCM
performed better than global PLSR, which indicates that it is

inappropriate to evaluate the similarity of the two spectra
solely on the basis of the correlation coefficient. EDM
exhibited the highest accuracy of measurement for TN, NIC,
and TS, while SID was the most accurate method for RS. The
model performance of SID and EDM for RS was similar (the
difference in R2 was lower than 0.0009). Therefore, EDM was
selected for the follow-up studies.
3.1.2. Optimization of the Number of Nearest Subsets.

The number of nearest subsets strongly influenced the
prediction accuracy of TN, NIC, TS, and RS. The following
numbers of nearest neighbors were tested: 20, 30, 50, 100, 200,
300, 400, and 500. For each indicator, as the number of nearest
subsets increased, the R2 (Figure 2C) of the model gradually
increased and stabilized after the number of nearest subsets
reached 100. Models having 300 predictors yielded the best
results for all chemical indicators. Therefore, the number of
nearest subsets was set at 300 for further studies.
3.1.3. Optimization of the Distance Range of Nearest

Subset. After sorting the calibration samples in ascending
order of similarity, some of the most relevant samples were

Figure 3. Relationship between the test sample and the most similar samples in calibration. Different distributional forms of the similar samples:
(A) Uneven distribution of samples; (B) uniform distribution of samples; (C) similar model performance with (137 orange points) and without
(300 blue points) the limit of the Euclidean distance range for the same test sample; (D) similar model performance with (12 orange points) and
without (300 blue points) the limit of the Euclidean distance range for the same test sample.
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selected as the training samples of the JIT-PLS model. The
Euclidean distance distribution of the nearest 300 similar
subsets corresponding to the 1000 query sample has been
counted using the histogram in Figure S1A. Because the
distribution of the calibration samples was irregular, there were
two types of situations in which a query sample was related to
relevant samples:

(1) The query sample is closely surrounded by its relevant
samples, indicating that the similarity between the query
sample and the group of relevant samples is relatively
high. As shown in Figure 3B, the red point is closely
surrounded by the group of blue points, indicating that
the local model does not need to generalize a query
sample that is significantly beyond the scope of the

training samples. Less information is required to
construct a local model to predict the output of this
query sample.

2 The query sample is distant from the group of relevant
samples. The red point in Figure 3A is distant from the
group of blue points, which implies that the similarity
between the query sample and the relevant samples was
lower than that of Figure 3B.

The Euclidean distance distribution of the four query
samples and their similar subsets also show that the range of
Euclidean distances varies widely for different query samples
(Figure S1B), so limiting the number of similar subsets may
not be appropriate in some cases. The loadings spectra of the
above four query samples are placed in Figure S2; they are very

Table 2. Results of Models of TN, NIC, TS, and RS used PLS in Dataset1

validation calibration

component wave band (cm−1) LVs no. of outliers no. R2 RMSEP (%) no. R2 RMSECV (%)

TN 9005.9−8153.6 16 116 1000 0.9842 0.06 17685 0.9822 0.058
7011.9−6525.9
6298.4−4096.1

NIC 9005.9−8153.6 11 98 1000 0.9908 0.112 17703 0.9878 0.093
7011.9−6525.9
6298.4−4096.1

TS 9005.9−7791.0 13 109 1000 0.9947 0.463 17692 0.9954 0.471
7011.9−6525.9
6298.4−4096.1

RS 9005.9−7791.0 13 113 1000 0.9961 0.375 17688 0.9941 0.351
7011.9−6525.9
6298.4−4096.1

Figure 4. Residuals of the optimized EDM-PLS and traditional PLS models for TN(A), NIC(B), RS(C), and TS(D).
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similar. In addition, to having access to larger numbers of
training samples, sufficient valid information is required from
the most relevant samples to improve the prediction accuracy.
The Euclidean distance between similar subsets and each
validation sample was restricted to (0−2.0) × 10−9, (0−2.5) ×
10−9, (0−3.0) × 10−9, (0−4.0) × 10−9, (0−5.0) × 10−9, and
(0−4.0) × 10−8. It is inadvisible to select too few or too many
similar samples for modeling. Therefore, we considered that a
validation sample cannot be predicted if the number of similar
subsets is lower than 10. The first 300 calibration samples were
selected when the number of subsets satisfying the
aforementioned conditions exceeded 300.

Among the 1000 validation samples, 735, 865, 925, 965, 982,
and 1000 samples were valid when the Euclidean distance was
set in the ranges of (0−2.0) × 10−9, (0−2.5) × 10−9, (0−3.0)
× 10−9, (0−4.0) × 10−9, (0−5.0) × 10−9, and (0−4.0) × 10−8,
respectively. Some boundary test samples were rejected
because insufficient numbers of similar samples were found
in the calibration set.

To evaluate the influence of a similar distance range on the
same validation set, 735 validation samples satisfying the
Euclidean distance range of (0−2) × 10−9 were selected as the
validation set for all subsequent ranges. As shown in Figure 2D,
modeling was most accurate when the Euclidean distance was
maintained in the range of (0−3.0) × 10−9 for all indicators.

The model performance with and without the Euclidean
distance range limit was compared for the same calibration
sample. Figure 3C shows that the prediction bias decreased

from 0.0118 (300 subsets, depicted as blue points) to
0.000303 (137 subsets, depicted as orange points). Figure
3D illustrates that the prediction bias decreased from 0.0315
(300 subsets, blue points) to 0.0000234 (12 subsets, orange
points). Therefore, limiting the distance range to (0−3.0) ×
10−9 and similar subsets in the range of 10−300 were critical.

The model performances of the optimized EDM-PLS and
traditional PLS were compared. The optimization of regression
for chemical indicators with traditional PLS is presented in
Table 2. Evidently, EDM-PLS performed better than tradi-
tional PLS (Figure 4).
3.2. External Instance. Dataset2 and dataset3 were used

as external instances to evaluate the practical predictive ability
of the final prediction model. The average absorbance
spectrum of each data set and its corresponding standard
deviation (Figure 1C,D) clearly demonstrated that the spectral
drift was improved by pretreatment, and the standard
deviations decreased significantly, except for several absorption
peaks. Two external models were constructed in this study. For
each subset, 70 and 30% of the data points were used as
calibration and validation sets, respectively, by the Kennard−
Stone method following appropriate spectral preprocessing.
Some outliers were eliminated because insufficient numbers of
suitable similar samples were selected from the calibration set
when the distance range was limited to (0−3.0) × 10−9.

Seventy-one chemical models were built using EDM-PLS
and PLS methods. Routine chemical components, including
NIC, RS, TS, TN, potassium, and Cl, are significant indices for

Figure 5. Box plot of the RPD of 71 component models in data set2 (A) and data set3 (B). Each chemical component is represented by a different
colored data point.
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evaluating the quality of tobacco. However, the aforemen-
tioned indices do not reflect the taste and aroma of tobacco.
Polyphenolic compounds, such as neochlorogenic acid,
chlorogenic acid, cryptochlorogenic acid, scopoletin, rutin,
and neophytadiene, are directly transferred from tobacco to
smoke by distillation and directly influence the flavor of the
smoke. Thirteen organic acids that add organoleptic character-
istics to tobacco smoke, such as smoothness and waxy taste,
were included. Twenty-one amino acids and 17 Amadori
compounds were tested; although the amounts of the amino
acid and Amadori compounds varied widely, which is
significant for the Maillard reactions. Dichloromethane
extracts, starch, magnesium, calcium, sulfate, phosphate,
lycopene, and pH were analyzed because these factors can
also influence the quality of tobacco from different
perspectives.
3.2.1. Aged Tobacco Leaves Samples. The spectral

distribution of the aged tobacco samples was highly similar
to that of dataset1 (Figure 1C). The amounts of TN, NIC, RS,
and TS in aged tobacco leaves were in the ranges of 1.29−3.14,
0.84−5.08, 7.12−35.99, and 8.49−43.83% with SDs of 0.34,
0.70, 5.05, and 6.14%, respectively. The TN and NIC contents
differed slightly between dataset1 and dataset2, while the RS
and TS contents increased more significantly in aged tobacco
compared with dataset1.

The JIT-PLS and PLS models of 71 indicators were built
using the previously optimized ranges of the model
parameters: The Euclidean distance and the number of similar
subsets were restricted to the ranges of (0−3.0) × 10−9 and
10−300, respectively. Sample sets were split according to the
Kennard−Stone (KS) algorithm (659 calibration sets and 155
validation sets), from which 65 samples were removed because
fewer than 10 similar calibration samples were found when
establishing a predictive model.

Figure 5A demonstrates that the performance of EDM-PLS
models exceeded that of PLS for the majority of the indicators,
particularly for routine chemicals including NIC, RS, TS, TN,
potassium, and Cl, with increased RPDs between 4.1 and 10.2
(Table S2, Supporting Information). Polyphenolic compound
models also exhibited good performance, with all RPDs
exceeding 4.7. The EDM-PLS models (RPDmean = 4.78)
performed better than the PLS models (RPDmean = 2.68) for
organic acids. The EDM-PLS model of amino acid and
Amadori compounds was credible, except for glycine (R2 =
0.346), cystine (R2 = 0.624), Fru-Amb (R2 = 0.68), and Fru-
Phe (R2 = 0.763).
3.2.2. Cigarette Samples. The spectral distribution of

cigarette samples was highly similar to those of aged tobacco
leaf samples, with smaller SDs (Figure 1C). The contents and
SDs of TN, NIC, RS, and TS were lower than those of the
aged tobacco leaf samples. A total of 201 validation sets and
612 calibration sets were created using the Kennard−Stone
method after removing 3 outliers. The JIT-PLS and PLS
models of 71 indicators were also built using the previously
optimized model parameters, including the Euclidean distance
and number of similar subsets ranges of (0−3.0) × 10−9 and
10−300, respectively.

All indicators exhibited superior performance when using
JIT-PLS than when using PLS in our cigarette sample study
(Figure 5B). The average R2 of routine chemicals, polyphenolic
compounds, organic acids, amino acids, Amadori compounds,
and other compounds for the EDM-PLS models were 0.949,
0.88, 0.862, 0.867, 0.945, and 0.891, respectively (Table S3,

Supporting Information). Significant linear correlations were
found between the predicted and measured values, except for
neophytadiene (R2 = 0.506), succinic acid (R2 = 0.694), and
Mg (R2 = 0.706).

In general, EDM-PLS outperformed traditional PLS in terms
of prediction ability, and generated the optimal results,
increasing the average RPDs from 2.89 to 4.81 and from
2.88 to 3.95 for aged tobacco leaf samples and cigarette
samples, respectively. The results demonstrated accurate
prediction ability for six routine chemical components (R2 =
0.89−0.996), six polyphenolic compounds (R2 = 0.749−
0.989), 13 organic acids (R2 = 0.773−0.99), 19 amino acids
(R2 = 0.706−0.985), 14 Amadori compounds (R2 = 0.793−
0.986), and eight other compounds (R2 = 0.873−0.989).
Predictions of glycine, cystine, Fru-Amb, and Fru-Phe were less
accurate, mainly because of their extremely low levels in the
samples.

4. CONCLUSIONS
This study investigated the feasibility of JIT-PLS for predicting
71 analytes of interest that influence tobacco quality, including
TN, NIC, TS, RS, potassium, and Cl with high precision in
aged tobacco leaf samples and cigarette samples. EDM
exhibited superior performance compared to SCM, SID, and
LW-EDM, and limiting the Euclidean distance range and
number of similar subsets to (0−3.0) × 10−9 and 10−300,
respectively, optimized the accuracy of finding the most
suitable similar subsets for each test sample by analyzing
approximately 18000 NIR spectra of Chinese tobacco samples
and their TN, NIC, TS, and RS contents. EDM-PLS
outperformed traditional PLS in terms of prediction ability.
The experimental results proved that it is feasible to directly
establish quantitative models of multiple compounds in large
and complicated spectral libraries using JIT-PLS. This method
can help analyze the spectra of complex plant samples from
national or larger sources, using multiple chemical indicators to
assist in the evaluation of plant quality on a large scale, which
will improve cash crops quality in the collecting and processing
stages.
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