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Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies
that has an unfavorable outcome and a high rate of relapse. Autophagy plays a vital role in
the development of and therapeutic responses to leukemia. This study identifies a
potential autophagy-related signature to monitor the prognoses of patients of AML.
Transcriptomic profiles of AML patients (GSE37642) with the relevant clinical information
were downloaded from Gene Expression Omnibus (GEO) as the training set while TCGA-
AML and GSE12417 were used as validation cohorts. Univariate regression analyses and
multivariate stepwise Cox regression analysis were respectively applied to identify the
autophagy-related signature. The univariate Cox regression analysis identified 32
autophagy-related genes (ARGs) that were significantly associated with the overall
survival (OS) of the patients, and were mainly rich in signaling pathways for autophagy,
p53, AMPK, and TNF. A prognostic signature that comprised eight ARGs (BAG3,
CALCOCO2, CAMKK2, CANX, DAPK1, P4HB, TSC2, and ULK1) and had good
predictive capacity was established by LASSO–Cox stepwise regression analysis. High-
risk patients were found to have significantly shorter OS than patients in low-risk group.
The signature can be used as an independent prognostic predictor after adjusting for
clinicopathological parameters, and was validated on two external AML sets. Differentially
expressed genes analyzed in two groups were involved in inflammatory and immune
signaling pathways. An analysis of tumor-infiltrating immune cells confirmed that high-risk
patients had a strong immunosuppressive microenvironment. Potential druggable OS-
related ARGs were then investigated through protein–drug interactions. This study
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provides a systematic analysis of ARGs and develops an OS-related prognostic predictor
for AML patients. Further work is needed to verify its clinical utility and identify the
underlying molecular mechanisms in AML.
Keywords: acute myeloid leukemia, autophagy, signature, tumor immune microenvironment, prognosis
INTRODUCTION

AML is one of the most aggressive blood malignancies that is
characterized by a heterogeneity of molecular abnormalities and
the accumulation of immature myeloid progenitors in the bone
marrow and peripheral blood (1, 2). An estimated 19,940 new
cases of AML were diagnosed in the US in 2020, with 11,180
deaths (3). The mainstream treatment for AML patients is
chemotherapy, but most patients relapse or succumb to the
disease after initial remission. Although extensive efforts have
been made to develop targeted therapy and/or combined therapy
for it (4), the 5-year survival rate of patients of AML is still less
than 30%. Thus, it is critical to identify novel prognostic
biomarkers to monitor patients’ prognoses and better
understand the pathogenesis of AML.

Autophagy is a complex multistep self-digestive cellular
process that is essential for the survival, differentiation, and
homeostasis of cells (5). It sequesters damaged organelles/
proteins, invading pathogens, and macromolecules in an
autophagosome coated with a double membrane. Following the
fusion of the autophagosome with lysosome, these materials are
degraded to maintain the recycling balance between the synthesis
and the consumption of the cellular components (6). In normal
conditions, autophagous activity is too low to require essential
nutrients of the cell by removing unfolded and excessively aged
proteins, while the dysregulation of autophagy is involved in a
diversity of pathologies, including tumorigenesis, infections,
aging, and heart disease (7). Autophagy can be a double-edged
sword for organisms in that it can prevent the formation of
tumors but can also promote the survival and proliferation
of cancer cells by providing them with nutrients (8). A variety
of roles of autophagy have been identified in hematopoietic
disease. It is required for maintaining the functions of
hematopoietic stem cells (9) and T-lymphoid lineages (10, 11),
and for responses to extracellular cytokine stimuli (12).
Increasing evidence has shown that autophagy is a key
mechanism in leukemogenesis and chemoresistance, and this
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has made it an attractive therapeutic target in research in recent
years (13, 14). A number of autophagy-inducing agents, such as
arsenic trioxide, vitamin D3, eupalinin A, APO866, and platonin,
have been developed to initiate the death of leukemic cells (15). A
variety of essential genes are involved in the machinery of
autophagy to control the balance of catabolic processes (16).
Research on the role of autophagy in the progression of AML and
responses to the treatment of patients has focused on one or
more autophagy-related genes (ARGs) (15), and few studies have
sought to systematically clarify the potential roles of expressions
of these ARGs in predicting the prognoses of AML patients.

In this study, we identified survival-related ARGs in the
context of AML and develop a prognostic signature for AML
patients to profile their expressions. Transcriptomic datasets of
AML were downloaded from publicly accessible databases, and
were divided into training and validation sets. Univariate Cox
regression analysis was used to assess the prognostic effects of
these ARGs for AML. Least absolute shrinkage and selection
operator (LASSO) Cox regression were performed to determine
the key variables and construct an ARG-related risk signature for
the AML patients. The predictive accuracy of the risk signature
was analyzed on the validation set, and the results suggest that it
is an effective predictor of patient outcomes that is independent
of the clinical parameters used to monitor them. The abundance
of tumor-infiltrating immune cells defined by the signature
reflected the distinct microenvironmental landscape of the
tumor, and potential druggable ARGs were identified. A
general analysis workflow is diagrammed in Figure S1.
MATERIALS AND METHODS

Data Collection and Processing
The transcriptomic profiles of three AML cohorts along with
detailed clinicopathological information on them were
downloaded from public databases. Raw microarray datasets of
GSE37642 (17) and GSE12417 (18) were downloaded from the
GEO (https://www.ncbi.nlm.nih.gov/geo/) and normalized by
the robust multiarray average (RMA) algorithm using the affy
package (19) between arrays. Batch effects were removed by the
combat algorithm in the sva package (20). The AML RNA-seq
dataset was downloaded from the UCSC Xena database (https://
xenabrowser.net/datapages/). The available clinical information
of samples used in this study was shown in Table S1.

Acquisition of ARGs
A total of 232 autophagy-related genes (ARGs) were derived
from the Human Autophagy Database (HADb, http://
autophagy.lu/clustering/index.html). The HADb provides a
May 2021 | Volume 12 | Article 695865
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complete and an up-to-date list of human genes and proteins
involved in the biological processes of autophagy reported in the
literature (21). A total of 187 ARGs were available in the
expression profiles obtained from GSE37642 (Table S2).

Identification of Overall Survival
(OS)-Related ARGs
The GSE37642 (n=553) was used as the training set to clarify the
potential prognostic significance of these ARGs in the AML
patients. OS-related ARGs with P < 0.05 were identified using
univariate Cox hazard regression analysis.

Functional Enrichment Analysis of
OS-Related ARGs
Functional enrichment analysis, including gene ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG),
was performed to unravel the main functions of OS-related
ARGs in AML by using the clusterProfiler package (22). The
Benjamin–Hochberg adjusted P < 0.05 was regarded as
statistically significant.

Molecular Characteristics of
OS-Related ARGs
To investigate potential regulatory interactions among these
ARGs, a protein–protein interaction (PPI) network was
formulated using the STRING database (23) and displayed in
Cytoscape (version 3.8.0) (24). To identify the hub modules in
the network, the Molecular Complex Detection (MCODE)
plugin (25) in Cytoscape was used to extract densely connected
modules with the default parameters “Degree Cutoff = 2,” “Node
Score Cutoff = 0.2,” “K-Core = 2,” and “Max.Depth = 100.” The
CytoNCA plugin (26) was used to calculate the nodes with the
highest degree scores.

The key regulatory factors (TFs) of these OS-related ARGs
were identified using the Transcriptional Regulatory
Relationships Unraveled by Sentence-based Text mining
(TRRUST) database, which is an online tool curated to explore
transcriptional regulatory interactions in humans and mice (27).

Construction and Validation of
ARG-Related Prognostic Signature
for AML Patients
To avoid overfitting the prognostic risk signature, we used the
least absolute shrinkage and selection operator (LASSO)-based
Cox regression (28) on the training dataset to identify the most
significant features within the OS-related ARGs. These
candidates were subjected to a multivariate Cox proportional
hazards regression with the stepwise selection of variables based
on the Akaike information criterion (29). The risk score of final
optimized prognostic signature was calculated as follows:

Risk score ¼on
i Coefi� Ai

where Coef is the regression coefficient, “i” represents the ARG
that comprised of the signature, A represents the relative value of
the expression of the individual ARG in the signature, and n
represents the number of genes in the signature. The patients
Frontiers in Immunology | www.frontiersin.org 3
were divided into high- and low-risk groups based on median
risk score as cutoff value. The differences in the OS of patients
were assessed by Kaplan–Meier analysis and the log-rank test.
The time-dependent receiver operating characteristic (ROC)
curve (30) was employed to evaluate the predictive capacity of
the ARG-based signature.

To test the predictive accuracy of the signature, two external
AML cohorts—TCGA-LAML (n=149) and GSE12417 (n=242)—
were downloaded and used as validation sets. The risk score for each
patient was calculated by using the signature, and the Kaplan–Meier
curve was used to reflect its discrimination-related performance.

Identification and Enrichment Analysis of
Differentially Expressed Genes (DEGs)
The differentially expressed genes (DEGs) between the high- and
low-risk groups were identified using the limma package (31). To
better understand the functions of the DEGs in AML, we used
the clusterProfiler package (22) for enrichment analysis,
including the GO terms, including biological process (BP),
molecular function (MF) and cellular component (CC), and
KEGG pathways. The DEGs were clustered and a heatmap for
them was generated via ClustVis (32).

Gene Set Enrichment Analysis (GSEA)
The patients were divided into high- and low-risk groups
according to the median risk score, as mentioned above. GSEA
was performed to identify the primarily enriched pathways using
GSEA 4.02 (http://www.broad.mit.edu/gsea/) (33). Pathway with
the nominal P < 0.05 and FDR < 0.25 were considered
statistically significant.

Development of Autophagy
Clinicopathologic Nomogram
To predict the OS of each AML patient, an autophagy
clinicopathologic nomogram that incorporated the prognostic
signature into the clinicopathologic parameters available in the
training set was conducted through the rms package (34). The final
nomogram was extracted using the Akaike information criterion
(AIC) for variable selection. The calibration curve was used to assess
the predictive discrimination of the signature for AML patients (35).

Tumor-Immune Microenvironment
Landscape and Potential Implications for
Immunotherapy Defined by the Signature
CIBERSORT was used to calculate the abundance of infiltration
of 22 immune cell types within a complex mixture of the gene
expression data of the AML patients (36), including seven types
of T cells, naïve and memory B cells, plasma cells, and NK cells,
in the high- and low-risk groups. Samples with P < 0.05 were
chosen for further analysis.

Recent years have witnessed a rise in immunotherapy and
targeted therapy for AML patients. We predict the potential
effect of treatment according to risk score here by analyzing the
correlation between risk score and therapeutic targets in clinical
trials or clinical practice using Pearson’s correlation analysis (37,
38). The targets of therapy were as follows: programmed cell
May 2021 | Volume 12 | Article 695865
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death ligand (PD-1), ASXL1, BCL2, CD33, CD47, CHEK1,
PLK1, DOT1L, FMS-like tyrosine kinase 3 (FLT3), Cytotoxic
T-Lymphocyte-associated Protein 4 (CTLA4), IDH1, IDH2,
MCL1, and MDM2.

To find potential drug targets, protein–drug interactions were
analyzed in the survival-related ARGs using NetworkAnalyst 3.0
(https://www.networkanalyst.ca/). Information on the protein
and drug contents of the targets were retrieved from DrugBank
(version 5.0, https://go.drugbank.com/) (39).
RESULTS

Identification and Functional Enrichment
Analysis of OS-Related ARGs in AML
To discover the potential prognostic significance of each
available ARG in the AML training set, a univariate Cox
proportional hazard regression analysis was used to screen out
ARGs with a P-value less than 0.05. The expressions of 32 ARGs
were thus found to be significantly associated with the OS of the
AML patients (Table 1). GO functional analysis of the OS-
related ARGs showed that they were primarily active in processes
that utilized autophagy-related mechanisms (Figure 1A). These
ARGs were involved in autophagy, human cytomegalovirus
Frontiers in Immunology | www.frontiersin.org 4
infection, the p53 signaling pathway, AMPK signaling
pathway, and apoptosis (Figure 1B).

To discover interactions among these OS-related ARGs, two
significant modules were identified, using PPI network analysis,
with more than four nodes: CASP3 and BECN1 (Figure 1C). The
BECN1 module contained eight nodes with 28 edges, whereas
GAPDH, CDKN2A, and P4HB were the three nodes of the
CASP3 module. These ARGs might have important implications
for the pathogenesis of AML.

To identify the transcriptional regulators of the OS-related
ARGs, 16 TFs were identified in the TRRUST database
(Table S3), including nuclear transcription factors (NFYC,
NFYB, NFYA, SP1, HSF1, E2F1), a signal transducer and an
activator of transcription (STAT1, STAT3), TP53, and key
members of NF-kB signaling (NFKB1, RELA). The gene
expressions of several ARGs were significantly regulated, such
as those of the important nodes CASP3, BECN1, ATG7, BAG3,
and UKL1.

Development and Validation of
ARG-Related Prognostic Signature
To avoid potential overfitting, LASSO Cox regression analysis
was used to select the key OS-related ARGs for modeling
(Figures S2A, B). Eight ARGS were identified and used to
develop an optimal prognostic signature for the OS of patients
by multivariate Cox proportional hazards regression analysis by
using forward and backward algorithms (Figure 2A). The
patients’ risk scores were defined as follows:

Risk score ¼ Expression level of BAG3*(0:1084)
h i

+ Expression level of CALCOCO2 * ( − 0:3836)
h i

+ Expression level of CAMKK2 * ( − 0:5617)
h i

+ Expression level of CANX * ( − 0:2402)
h i

+ Expression level of DAPK1*(0:5119)
h i

+ Expression level of P4HB*(0:2899)
h i

+ Expression level of TSC2*( − 0:6286)
h i

+ Expression level of ULK1* −0:3645ð Þ
h i

The patients were divided into high- and low-risk groups
according to the median value of risk score. As the risk scores of
patients increased in both groups, the number of deaths increased
(Figures 2B, C). With regard to expressions of the eight ARGs,
BAG3 and DAPK1 were highly expressed in the high-risk group
(Figures 2D, S3A, B), and CALCOCO2, CAMKK2, CANX, P4HB,
TSC2, and ULK1 were expressed high in the low-risk group
(Figures 2D, S3C–H). This is consistent with evidence that blasts
in AML show reduced expressions for most ARGs, indicating that
low autophagy-related activity promotes leukemic development
(40). To determine the predictive performance of the signature,
the Kaplan–Meier analysis showed that patients in the high-risk
group had significantly shorter OS than patients in the low-risk
group (P < 1.0E-07, Figure 3A). To assess the predictive accuracy of
the signature, the AUC of our signature for a 5-year OS was 0.76. In
addition, the AUCs for 1-year and 3-year OS were 0.68 and 0.75,
respectively, and indicated high predictive capacity of the signature
(Figure 3B).

To calculate the predictive independence of the signature for
AML patients, univariate Cox regression analysis showed that
age, runx1 and runx1t1 fusion, mutations in runx1, and risk
score were significantly correlated with the OS of the patients
TABLE 1 | Overall survival-related ARGs in the AML patients (P < 0.05).

Gene symbol HR (95% CI) P value

TSC2 0.4072(0.2832 - 0.5856) 1.25E-06
CALCOCO2 0.6758(0.5680 - 0.8039) 9.69E-06
DAPK1 1.3835(1.1847 - 1.6157) 4.10E-05
BAG3 1.1503(1.0753 - 1.2305) 4.72E-05
CAMKK2 0.5397(0.3882 - 0.7504) 0.000244719
CANX 0.7301(0.6099 - 0.8739) 0.000606334
ULK1 0.7257(0.6025 - 0.8742) 0.000735293
P4HB 0.8215(0.7324 - 0.9215) 0.000790605
CCL2 1.1482(1.0510 - 1.2544) 0.002205099
GABARAP 0.7085(0.5667 - 0.8859) 0.002507313
GABARAPL1 0.8216(0.7213 - 0.9360) 0.003127288
EEF2 0.6578(0.4920 - 0.8793) 0.004684677
GAPDH 0.7715(0.6369 - 0.9345) 0.007994922
NCKAP1 1.6932(1.1345 - 2.5271) 0.009954145
CDKN1B 1.1991(1.0424 - 1.3793) 0.011027097
CAPNS1 0.8504(0.7469 - 0.9684) 0.014474617
SERPINA1 0.9062(0.8370 - 0.9811) 0.015041995
BECN1 0.7031(0.5283 - 0.9358) 0.015733367
ARSB 0.7888(0.6501 - 0.9571) 0.016217681
CDKN2A 0.7312(0.5641 - 0.9477) 0.017994775
DLC1 0.7460(0.5785 - 0.9619) 0.023876677
ERN1 0.6722(0.4728 - 0.9558) 0.026995358
CAPN1 0.8331(0.7073 - 0.9813) 0.028824089
ATG9A 0.8343(0.7059 - 0.9861) 0.03365361
EIF2AK2 1.2624(1.0181 - 1.5653) 0.03374212
WIPI2 0.7297(0.5453 - 0.9765) 0.034038805
ITGB4 0.5864(0.3552 - 0.9682) 0.036949174
CLN3 0.7788(0.6128 - 0.9897) 0.04089584
ATG7 0.8389(0.7072 - 0.9952) 0.043928123
HGS 0.8035(0.6488 - 0.9951) 0.044918193
FAS 0.8763 (0.7692 - 0.9982) 0.046832376
CASP3 0.8846(0.7838 - 0.9983) 0.046888189
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(Figure 3C). The multivariate Cox regression analysis showed
that the risk score was an independent predictor for AML
patients after adjusting for these clinical parameters
(Figure 3D), although age and mutations in runx1 were also
independent. A comparison of the capability of OS predictions
for AML patients based on the risk score and clinical factors
showed that the AUCs of 1-year, 3-year, and 5-year OS of the
clinical variables were inferior to those patients of the risk scores
(Figures S4A–C).

For a more accurate evaluation of the signature, a nomogram
that integrated the risk score, age, runx1_runx1t1 fusion, and
Frontiers in Immunology | www.frontiersin.org 5
runx1 mutations, was constructed (Figure 3E). The calibration
curves showed that it could accurately predict the utility of 1-
year, 3-year, and 5-year OS for AML patients (Figures 3F–H).
This indicates that combining our risk scores and the clinical
variables can improve OS prediction.
Gene Set Enrichment Analysis
The distinct OS rates of patients in the high- and low-risk group
were observed, and GSEA was used to investigate the potential
molecular functional difference between them. mTOR-related
A B

C

FIGURE 1 | Significantly enriched GO terms and KEGG pathways of OS-related autophagy-related genes (ARGs) (adjusted P < 0.05). (A) Significantly
enriched GO terms of OS-related ARGs. (B) Significantly enriched pathways of OS-related ARGs. (C) Two modules (CASP3 and BECN1 modules) identified
through protein–protein interaction network analysis of OS-related ARGs. The color of the node in each module reflects its degree score.
May 2021 | Volume 12 | Article 695865
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signaling, AKT1 signaling, and relapse prognosis for AML
relapse were significantly abundant in the low-risk group
(Figure S5). Previous studies have shown that mTOR regulates
cell growth and proliferation by controlling the biological
processes of mRNA translation, autophagy, and metabolism, or
dual interactions with AKT family signaling to activate or
deactivate mTOR-dependent processes (41). These data
Frontiers in Immunology | www.frontiersin.org 6
highlight that autophagy-related events were mainly implicated
in low-risk AML patients.

Validation of Prognostic Signature in
External AML Cohorts
To test the predictive utility of the prognostic signature of the
patients’ OS in the external AML cohorts (GSE12417 and
A

B

C

D

FIGURE 2 | Development of the prognostic signature based on OS-relevant ARGs. (A). The hazard ratio of model genes. (B) Distribution of the patients’ risk scores.
(C) Patients’ survival times along with their risk scores. (D) The expressions of the eight model genes in the high- and low-risk groups.
May 2021 | Volume 12 | Article 695865
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A B

C

E

F G H

D

FIGURE 3 | Evaluation of prognostic signature to predict the OS of AML patients. (A). Patients in the high-risk group had significantly shorter OS than those in the
low-risk group. (B) The AUC curves of the signature for 1, 3, and 5 years. (C) Univariate Cox regression analysis of the risk scores and clinical parameters.
(D) Multivariate Cox regression analysis of the risk scores and clinical parameters. (E) Development of autophagy clinicopathologic nomogram for predicting 1-, 3-,
and 5-year OS for AML patients by incorporating risk score, age, runx1 and runx1t1 fusion, and mutations in runx1. (F–H) Calibration curves of the autophagy
clinicopathologic nomogram-predicted and observed 1-, 3-, and 5-year survival of AML patients. The dashed line represents the ideal performance, and the actual
performance of the signature is represented by the blue lines.
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TCGA-LAML), the risk score for each patient was calculated
based on the formula for the signature. The patients were divided
into high- and low-risk groups according to median risk score.
The OS times of patients in the high-risk group were significantly
shorter than patients in the low-risk group (P = 3.797E-03,
Figure 4A) in the GSE12417 cohort. The AUC of the 3-year OS
for this cohort was 0.66 (Figure 4B). In addition, the prognosis
of patients in the high-risk group was worse than that of patients
in the low-risk group in the TCGA-LAML set (P = 8.864E-03,
Figure 4C). Similarly, the AUC of the 3-year OS was 0.612
(Figure 4D). Overall, these data show that the signature could be
used to independently predict the OS for AML patients.

Identification and Enrichment of
Differentially Expressed Genes (DEGs)
We noted the differences in OS between patients in the high-
and low-risk groups. To delineate the DEGs of the two
Frontiers in Immunology | www.frontiersin.org 8
groups, 34 DEGs were identified using the limma package,
with 15 up-regulated genes and 19 down-regulated genes
(Figure 5A). A distinct pattern of gene expression was
observed in patients in the high- and low-risk groups
(Figure 5B). The GO term analysis showed that these DEGs
were significantly involved in the biological processes of
neutrophil-related activities (activation, degranulation, and
response to immunity), the cellular components that occur in
secretory and cytoplasmic lumen and lysosome, and various
peptidase activities (Figure 5C). The pathways referenced
from the KEGG database showed that the DEGs highly
expressed in the high-risk group were mainly involved in
acute myeloid leukemia while the DEGs down-regulated in
the low-risk group were markedly involved in signaling
pathways for IL-17, viral protein interactions with cytokine
and cytokine receptor, NF-kappa B signaling, and the TNF
signaling pathway (Figure 5D). The data indicate that these
A B

C D

FIGURE 4 | Validation of the autophagy-related prognostic signature on external AML cohorts. (A) Kaplan–Meier curve of the prognostic signature in the GSE12417
cohort. (B) The AUC curve of the signature for 3 years in the GSE12417 cohort. (C) Kaplan–Meier curve of the prognostic model in the TCGA cohort. (D) The AUC
curve of the signature for 3 years in the TCGA cohort.
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DEGs might play important roles in AML progression and
immune response.

Potential Relevance of Signature in
Tumor-Immune Microenvironment
Tumor-infi ltrating lymphocytes (TILs) in the tumor
microenvironment (TME) are involved in cancer progression,
drug resistance, and clinical outcomes. As displayed in Figure 6,
an analysis of immune cell-infiltration in the TME as defined by
our signature in training set showed that CD8 T cells, resting and
activated NK cells, monocytes, and mast resting cells had
significantly increased in the low-risk group, while CD4 T
memory resting and activated cells, T cells gamma delta,
regulatory T cells, and dendritic cells had been activated at
high levels in the high-risk patients. Similar trends of tumor
immune infiltration have been found in the two external
validation sets (Figure S6). In addition, the expression analysis
Frontiers in Immunology | www.frontiersin.org 9
of exhausted cytotoxicity T cells markers indicated that GZMB
and Interferon gamma are significantly increased in patients
in high-risk group than those patients in low-risk group (Figure
S7). This suggests a strong immunosuppressive TME that might
weaken the capacity to defend against cancer in the high-
risk group.

Emerging molecules for immunotherapy and targeted
therapy, such as immune checkpoint inhibitors, were recently
identified and tested in pre- or clinical trials for the treatment of
patients with AML. As shown in Figure 7, a Pearson correlation
analysis showed that the risk score was significantly negatively
correlated with the mRNA expressions of CD33 (cor = -0.2573,
P < 0.0001), CD47 (cor = -0.1518, P = 0.0003), DOT1L (cor =
-0.2451, P < 0.0001), and IDH2 (cor = -0.2718, P < 0.0001), and
was positively related with those of CTLA4 (cor = 0.2222, P <
0.0001), FLT3 (cor = 0.1043, P = 0.0142), and MDM2 (cor =
0.1170, P = 0.0059). This suggests that patients with high risk
A B

C D

FIGURE 5 | Differentially expressed genes (DEGs) between the high-risk and the low-risk groups. (A) Volcano plot of the DEGs. (B) Heatmap of the DEGs.
(C) Significantly enriched GO terms of the DEGs. (D) Significantly enriched pathways of the DEGs.
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scores might better respond to therapies targeting CTLA4,
FLT3, and MDM2.

Multiple Survival-Related ARGs Are
Potential Druggable Targets
To determine whether any of the available survival-related ARGs
were druggable targets, a protein–drug interaction analysis of
these ARGs was conducted through NetworkAnalyst 3.0, using
data from the DrugBank database. The protein products of eight
ARGs were identified as drug targetable (Table 2). A majority of
Frontiers in Immunology | www.frontiersin.org 10
these ARGs have been demonstrated to be implicated in
tumorigenesis, including CASP3 (Caspase 3) (42), EEF2
(eukaryotic translation elongation factor 2) (43), GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) (44), CAPN1
(Calpain 1) (45), DAPK1 (death-associated protein kinase 1)
(46), SERPINA1 (serpin family A member 1) (47), and CCL2
(C-C motif chemokine ligand 2) (48). Caspase-3 controlled
AML1-ETO-induced leukemogenesis through autophagy
modulation in a ULK1-dependent pattern, which indicates that
the balance and selectivity among its substrates regulated disease
A

B

FIGURE 6 | Tumor-immune microenvironment analysis of the high- and low-risk groups. (A) Correlation heatmap of the ratio of tumor-infiltrating
immune cells. (B) Difference between tumor-infiltrating immune cells. The blue violin reflects the low-risk group and the red violin represents the
high-risk group.
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A B C

D E F

G H I
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L

FIGURE 7 | Pearson correlation of the risk scores of the targets of immunotherapy and targeted therapy. (A) ASXL1. (B) BCL2. (C) CD33. (D) CD47. (E) CHEK1.
(F) PLK1. (G) CTLA4. (H) DOT1L. (I) FLT3. (J) IDH1. (K) IDH2. (L) MCL1. (M) PD-1. (N) MDM2.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 69586511

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fu et al. Immune Microenvironment in Myeloid Leukemia

Frontiers in Immunology | www.frontiersin.org 12
progression (42). Eleven candidate drugs targeting Caspase-3
were identified. Caspase-3 inhibitors may be carboxylic acids
and derivatives , such as 2-hydroxy-5-(2-mercapto-
ethylsufamoyl)-benzoic acid and (1S)-2-oxo-1-phenyl-2-
[(1,2,3,4-tetrahydroisoquinolin-5-yl)amino]ethyl acetate.
DISCUSSION

Acute myeloid leukemia (AML) is one of the most prevalent
hematological cancers that is characterized by the accumulation
of immature clones of myeloid progenitors (49). Patients with
AML have benefited from advances in targeted molecular and
immunotherapy, but the 5-year prognosis for AML remains
unsatisfactory owing to high relapse rates. An accurately
predicted prognosis improves the decision-making capacity of
the physician to select personalized treatment by stratifying the
patient into a high- or low-risk group based on a reliable
signature. In this study, OS-related ARGs were identified by
using profiles of AML patients, and a signature comprising eight
ARGs that can accurately predict the OS of patients was
developed. The results of external validation suggest that this
signature is a steady and independent predictor for the risk
stratification of AML patients. In addition, distinct tumor-
immune infiltrating landscapes between the high- and low-risk
patients as well as potential druggable ARGs were identified
through computational biology.

The complex autophagy-related machinery assembled by dozens
of known proteins plays a critical role in maintaining essential
cellular homeostasis by removing unfolded, excessive, or aged
proteins as well as and organelles damaged through stress (50).
The dysregulation of autophagy can be a driver of oncogenic
transformation (51). Increased activities related to autophagy in
cancer cells, resulting from large ratios of compromised cytosol and
organelles that can cause the irreversible collapse of vital cellular
functions, have been used in anti-cancer therapies. Many
autophagy-related genes and signaling pathways have been shown
to be key regulators in tumorigenesis and progression, and have
been used to target rapamycin complex 1 (mTORC1) and AMP-
activated protein kinase (AMPK) signaling pathways that control
the induction of phases in mammals (52). The loss of functional
mutations in negative regulators, TSC1, TSC2, and PTEN, are
recognized for these signaling pathways. The heterozygosity of
Beclin1, a key autophagy gene, can significantly promote the
possibility of canceration owing to genomic instability in the
context of reduced autophagy (53). Autophagy-related processes
have been highlighted in AML, and represent an attractive
druggable target. Various molecular targets and chemotherapeutic
inhibitors of autophagy have been identified (8). The profiling of
autophagy-related genes in AML contributes to finding additional
prognostic biomarkers, and stratifying high- and low-risk patients.

In this study, 32 ARGs were found to be significantly
associated with the OS of patients using univariate Cox
proportional hazards regression, and further protein–protein
T
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interaction analysis showed that CASP3 and BECN1 were the
leading modules correlated with the other ARGs. Previous
studies have shown that some of these nodes are involved in
the progression of AML through autophagy modulation (42).
For example, CASP3 can control AML1-ETO-driven
leukemogenesis in a ULK1-dependent pattern (42), and
BECN1 plays a vital role in the initiation and progression of
autophagy. Consistently with our observations, the reduced
expression of BECN1 was correlated with unfavorable
prognoses of AML patients (54). TSC2 has been reported to
suppress mTOR signaling via phosphorylation and inhibition by
AKT (55), while mTOR signaling is associated with neoplastic
leukemic proliferation by mediating cellular energy response
(56). The roles of some OS-related ARGs, such as BAG3,
CANX, ERN1, EEF2, CAPN1, P4HB, CCL2, ITGB4, and FAS,
in the regulation of autophagy in AML have not been reported.
These ARGs may be important markers in AML as they have
been implicated in different cancers (57, 58), while further work
is needed to examine the underlying molecular mechanisms.
Consistent with previous studies (52), we identified autophagy,
p53 signaling, AMPK signaling, and apoptosis as significantly
enriched pathways. As an intracellular energy sensor, multiple
sites of ULK1 were directly phosphorylated by activated AMPK,
and the enhanced activity of ULK1 activated the TSC2, a negative
regulator of mTORC1 activity (59). This was in line with the fact
that the AMPK signaling pathway plays a crucial role in the
positive regulation of autophagic processes.

The identification of gene signatures based on transcriptomic
profiles is a promising approach to monitor the prognostic risk of
cancers (60). We developed an autophagy-related risk signature
here consisting of eight OS-related ARGs to predict patients’
outcomes using LASSO Cox regression analysis. Patients in the
high-risk group had significantly shorter OS than those in the low-
risk group, even when adjusted for clinical variables by using
univariate and multivariate Cox regression analyses. In addition,
the signature was validated as an independent predictor on two
external AML datasets. The AUC values of the ROC curves for 3-
year and 5-year OS were 0.75 and 0.76, respectively. The
calibration curve also confirmed its capacity for efficient
prediction of patient’s outcome. A nomogram that incorporates
risk scores and accessible clinical parameters provided the
possibility of individual personalized utility to monitor patient’s
prognosis. The predictive performance of our signature is
comparable to that of a signature related to six autophagies (61),
although it can better reveal the potential landscape for
immunoregulatory and promotes the discovery of druggable
targets for AML patients.

The differentially expressed genes analyzed in the high- and low-
risk groups were significantly enriched in the regulation of immune
responses, including neutrophil activation, receptor ligand activity,
and chemokine activity, and the main immunity-related pathways,
such as acute myeloid leukemia, IL-17 signaling pathway, NF-kappa
B, and TNF signaling pathways, confirmed that differentiated
immune regulators were involved in these two groups. IL-17
induced the sustained production of inflammatory cytokines, such
Frontiers in Immunology | www.frontiersin.org 13
as TNF-a and IL-6, and chemokines (CXCL1, CXCL2) to promote
the pathogenesis of AML (62). Furthermore, IL-17 has been shown
to activate some common pro-inflammatory signaling pathways,
including NF-kB, JNK/P38/ERK, and PI3K. Inflammation can
cause immune cells to assemble at the site of a tumor to fight
against leukemic cells. An increasing number of pre-clinical studies
have shown that tumor-infiltrating lymphocytes (TILs) have a
major influence on disease progression and therapeutic response
in many cancers (63, 64). The increased infiltration by cytotoxic T
cells, memory T cells, and T helper cells is associated with extended
predicted survival (65). An analysis of the tumor-infiltrating
immune cells showed significantly decreased abundance of CD8+
T cells, resting and activated NK cells, and enhanced rates of resting
and activated CD4+ T cells, regulatory T cells, and gamma delta T
cells in the high-risk group. This suggests that a strong
immunosuppressive microenvironment, featuring immune
checkpoint inhibitors, in high-risk patients might lead to a poor
response to immunotherapies.

Most patients with AML exhibit resistance to conventional
chemotherapy, especially older patients who cannot endure
intensive chemotherapy. In such cases, targeting molecular
inhibitors combined with therapy offers promising prospects
for treatment (66). The levels of expression of CD47, CD33,
DOT1L, and IDH2 were negatively correlated with the signature-
defined risk score, and patients might respond poorly to
inhibitors targeting these genes but might benefit from the
blockade of CTLA4 and MDM2. Thus, the autophagy-related
signature can reflect the status of immunity of patients with AML
and highlight potential immunotherapeutic implications while
the underlying mechanisms need to be investigated.

Drug repurposing contributes to the identification of
additional uses for approved or experimental chemicals that
can accelerate the development of new drugs (67). OS-related
ARGs were employed here to explore potential therapeutic
candidates by calculating protein-drug interactions in the
DrugBank database. A total of 32 druggable chemicals were
retrieved to target eight ARGs. The results showed that a
Caspase-3 deficiency impairs the self-renewal of leukemic
stem cells and delays AE9a-induced leukemogenesis through
autophagy by regulating the cleavage of ULK1. This suggests
that Caspase-3 has multiple roles in the hematopoietic
development and pathogenesis of AML (40). Eleven drugs
were obtained to potentially target Caspase-3. For example,
minocycline has been reported to induce apoptosis in patients
of acute lymphoblastic leukemia, and alleviate harm to human
peripheral blood lymphocyte cells (68). This indicates that it
might have an effect on AML. Resistant AML cells frequently
have deficiencies in the diphthamide synthesis pathway that
impairs the ability of tagraxofusp to ADP-ribosylate cellular
targets. This is owing to the reduced expression of DPH1,
which encodes a diphthamide pathway enzyme, through DNA
CpG methylation (69). Diphthamide that targets eEF2 might
be a candidate drug for AML (70). The correlation between
these ARGs and drugs needed to be investigated in
future work.
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This study conducted a systematic analysis of autophagy-
related transcriptomic profiling and developed a risk prognostic
signature based on the survival-related ARGs in AML patients.
There remain several limitations that should be taken into
consideration when interpreting the findings, however. The
enrolled ARGs were identified from the available evidence of
their involvement in disease progression, but prospective data
are needed to verify their clinical value. The signature was
developed and validated by using retrospective, publicly
accessible datasets, and requires independent external
validation to assess its potential clinical relevance.
CONCLUSIONS

Our study established a prognostic autophagy-related signature
comprising eight ARGs for OS prediction in AML patients. The
signature was found to be independently associated with OS in the
training and validation cohorts. The distinct molecular landscape
defined by it, including the pathways, immune infiltration,
correlation between targeted therapies, and potential druggable
targets, was systematically explored. The underlying molecular
mechanisms require further experimental investigation.
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