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Abstract

Identification of cell phenotypic states within heterogeneous populations, along with elucida-

tion of their switching dynamics, is a central challenge in modern biology. Conventional sin-

gle-cell analysis methods typically provide only indirect, static phenotypic readouts.

Transmitted light images, on the other hand, provide direct morphological readouts and can

be acquired over time to provide a rich data source for dynamic cell phenotypic state identifi-

cation. Here, we describe an end-to-end deep learning platform, UPSIDE (Unsupervised

Phenotypic State IDEntification), for discovering cell states and their dynamics from trans-

mitted light movies. UPSIDE uses the variational auto-encoder architecture to learn latent

cell representations, which are then clustered for state identification, decoded for feature

interpretation, and linked across movie frames for transition rate inference. Using UPSIDE,

we identified distinct blood cell types in a heterogeneous dataset. We then analyzed movies

of patient-derived acute myeloid leukemia cells, from which we identified stem-cell associ-

ated morphological states as well as the transition rates to and from these states. UPSIDE

opens up the use of transmitted light movies for systematic exploration of cell state hetero-

geneity and dynamics in biology and medicine.

Author summary

The human body contains hundreds of different cell types, each with distinctive identities

and functions. Identifying these cellular identities and functional states is one of the great

challenges in contemporary biology. We have addressed this challenge by developing
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UPSIDE, a machine learning approach for discovering cell types and cell states from time-

resolved live cell imaging data, which provides a richly detailed source of information.

Key distinguishing features of UPSIDE include the ability to directly learn cell type-defin-

ing features from brightfield images without prior knowledge; and an ability to visualize

and interpret these machine-learned features to understand why they were chosen.

UPSIDE can distinguish different human blood cell types despite their visual similarity

and can use morphologic clues to identify and follow cell states. In a disease-relevant

example, we used UPSIDE to identify stem-like and more mature cell subpopulations in

patient-derived acute myelogenous leukemia cells, and to determine the speed at which

these cell types inter-convert. UPSDIDE provides a general-purpose tool for the unbiased

identification and analysis of cell types and state transitions in heterogeneous cell

populations.

This is a PLOS Computational BiologyMethods paper.

Introduction

Cells maintain and switch between distinct phenotypic states in a dynamic manner. Identify-

ing these states and understanding the basis for and dynamics by which they interconvert is a

central challenge in biology. Modern single-cell analysis methods, such as single cell RNA

sequencing and multiparameter flow cytometry or mass cytometry [1–5], are widely used to

define cell states in heterogeneous populations; while powerful, these methods provide incom-

plete readouts of cell phenotypes, and typically do not report on stability or transition dynam-

ics. Transmitted light microscopy images directly reveal cell morphology and have historically

formed the basis for identifying cell types and cell states in diverse fields, ranging from cell

biology to neuroscience [6,7]. These images can then be acquired at successive timelapse inter-

vals and over long times, with minimal phototoxicity and without prior labeling or genetic

manipulation. The resultant live cell movies can reveal additional information about the

dynamics of these cell phenotypic states.

Cell phenotypes have traditionally been identified by the visual inspection and interpreta-

tion of transmitted light or electron micrographic images. The advent of modern machine

learning, however, is enabling high-throughput automated analysis of cell morphology, and is

opening possibilities for using deep learning for systematic, unbiased extraction of dynamic

cell morphological states from these imaging data sets [8,9]. However, current tools are still

limited in their ability to perform such analyses. First, current deep learning pipelines for cell

image analysis rely heavily on predetermined knowledge to generate classification training

datasets, or on large sets of heuristic formulations to capture the diversity of cell shapes and

morphologies [10–13]. When examining novel biological processes with minimal to no pre-

conceived information, it can be difficult for investigators to determine what the important

labels are without manual intervention and feature selection. Second, current machine learn-

ing pipelines generate features that are often not readily interpretable. A variety of unsuper-

vised methods can generate reduced dimensionality representations from complex data,

including principal component analysis (PCA), adversarial autoencoders [14], generative

adversarial network [15,16], and self-supervised deep learning approaches [9,17]. However,

these methods are limited in their ability to generate interpretable morphological features that
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allow for further investigation and understanding of the machine-identified cell states. Finally,

current movie analysis methods cannot infer state transition dynamics from live cell movies in

an automated, systematic manner [18]. Cell state transitions are typically observed from trajec-

tories of single cells; however, despite recent advances [19], current tracking algorithms still

typically require considerable parameter adjustment and manual error correction for genera-

tion of cell trajectories [20].

Here, we present an end-to-end deep learning method for elucidating cell phenotypic states

and their dynamics from brightfield movies of living cells. This method, termed UPSIDE (for

Unsupervised Phenotypic State IDEntification), is designed to facilitate unsupervised discov-

ery of cellular phenotypic states, elucidation of morphological features that define these states,

and inference of state transition dynamics. UPSIDE segments cells directly from brightfield

images, then utilizes the variational autoencoder architecture (VAE) [21] to learn intuitive

latent features that can be clustered to reveal distinct morphological states, and also decoded to

extract human-interpretable meaning. In order to demonstrate use and versatility of UPSIDE,

we first analyzed static images of a collection of distinct blood cell types, to identify morpho-

logical features that distinguish these different cell types. We then analyzed live imaging mov-

ies of leukemic cells from an acute myeloid leukemia (AML) patient to identify

morphologically-distinct cell states associated with stemness, and determined the rates of tran-

sition to and from these states. These results demonstrate the utility of UPSIDE as a tool for

unbiased exploration of cellular states and their dynamics from large, time-resolved imaging

datasets.

Results

Description of the UPSIDE platform

UPSIDE is designed to be a versatile machine-learning pipeline for unsupervised exploration

of cell morphological states in transmitted light images, and subsequent elucidation of their

transition dynamics from movies (Fig 1A, seeMethods section for detailed description of the

pipeline). In this pipeline, cells are first segmented using a convolutional neural network that

converts brightfield images of unlabeled cells into synthetic fluorescent images of cytoplasm

for segmentation [22]. This neural network is trained using a set of images of cells stained for

their cytoplasm (S1 Fig). This approach allows the network to autonomously tailor its parame-

ters, and to accommodate a wide range of different cell types in order to optimize performance

without human input. Dead cells and other debris are eliminated from identified cell sub-

images through a convolutional classifier trained on cells from the same data set that were

manually identified as being dead or alive (S2 Fig).

UPSIDE then learns morphological features of identified live cells using a variational auto-

encoder (VAE) architecture. To enhance the sensitivity of UPSIDE towards learning true cell-

state or cell-type defining morphological features, we incorporated two computational proce-

dures into our analysis pipeline. First, we rotated cells to align their major axes vertically, then

reflected them to ensure an identical left-right skewing, to ensure cell encodings are invariant

to rotation and reflectional transformations. Second, we trained two VAEs in parallel, one that

takes a binary cell mask, and another that takes a normalized grayscale image containing cell

textural features (see methods). We did so to ensure that both shape and textural morphologi-

cal features of imaged cells are adequately utilized for feature encoding. The learned mask and

textural encodings were then weighed using a coefficient, O, then concatenated for subsequent

clustering and dimensionality reduction. We note that O can be adjusted depending on appli-

cation to capture the relative importance of shape and textural features to underlying cell

heterogeneity.
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Latent representations of cells are then clustered using the Louvain method [23] and repre-

sented on a 2D plane using the uniform manifold and projection algorithm (UMAP) [24].

Finally, mask and texture vectors are subject to decoding through variation of magnitudes of

specific features or groups of features, followed by generation of synthetic images in observable

image space (Fig 1B). This approach allows latent features to be visually displayed for human

inspection and interpretation.

UPSIDE uncovers distinguishing morphological features between

heterogeneous blood cell types

We first tested UPSIDE’s ability to learn cell type-defining morphological features in a mixed

dataset consisting of multiple blood cell types. To test the limits of UPSIDE’s ability, we chose

four cell types that, despite having distinct size, shape and textural features, were similar in

their gross morphologies (Figs 2A and S3A): a mouse T cell leukemia line (Scid.ADH2), a

mouse macrophage cell line (Raw246.7), a human acute myeloid leukemia cell line (Kasumi-

1), and primary patient-derived human acute myeloid leukemia stem cells (CD34+CD38-

AML LSC). Brightfield images from each cell population were captured, and cells were seg-

mented using the neural network described above. Image crops of segmented cells were then

mixed together and encoded into the latent space using UPSIDE’s VAE (S4A Fig). To quantify

UPSIDE’s performance, we devised a cell type homogeneity score, which reflects how closely

Fig 1. Description of the UPSIDE workflow. (A) Single cells are segmented directly from brightfield images and deep

learning UNET architecture to predict synthetic fluorescent images [23]. Segmented cells are then pre-processed to

generate separate mask and texture images, which are then used to concurrently train two variational autoencoders

(VAEs). The shape and texture encodings learnt by these two VAEs are then concatenated and used for downstream

data analysis. (B) Encoded latent vectors are then decoded into a shape and texture image to aid the interpretation of

the encoded features.

https://doi.org/10.1371/journal.pcbi.1009626.g001
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cells of the same type cluster together in their latent space (seeMethods section). We ran the

VAE for this dataset for different values of O, to optimize the relative weights of the learned

mask and texture encodings to achieve a maximal mean homogeneity score across the four cell

types (S5A and S5B Fig and Methods section). This parameter specifies the relative importance

of shape and texture to phenotypic state identification, and thus provides the ability to adapt

UPSIDE to analyses of cell types and questions that rely on different types of distinguishing

features. To compare the performance of the VAE to other deep learning methods, we

repeated this analysis with several alternative architectures such as a vanilla autoencoder (AE)

[25], an adversarial autoencoder with latent dimension encoding trained to fit a normal distri-

bution or mixed gaussian distribution [14] (1xAAE and 4xAAE, respectively), and the Cluster-

GAN architecture [26] (ClusGAN) (seeMethods section).

Fig 2. UPSIDE distinguishes morphologically-distinct blood cell types in a heterogeneous population. (A) Images

of four different blood cell types were mixed together and passed through the UPSIDE workflow. Resultant shape and

texture images were used to train concurrent VAEs. Output latent encodings were weighted relative to each other,

concatenated, then projected onto a 2D plane using UMAP. (B) Dot plots show distribution of each cell type projected

on 2D UMAP space made by UPSIDE. (C) 2D UMAP projection of the VAE-generated encodings that have been

grouped into different morphological clusters using Louvain clustering algorithm. Representative brightfield cell crop

images from the different clusters were listed. Scale bar represents 5 μm. (D) Cell type fractional composition within

each cluster. A fixed number of cells from each cell type were sampled, and the cluster-wised cell type composition was

calculated from this pooled population.

https://doi.org/10.1371/journal.pcbi.1009626.g002
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The VAE outperformed these other approaches, generating approximately 6% higher

homogeneity scores compared to the adversarial autoencoders, 9% higher compared to PCA,

and 26% higher than the ClusterGAN architecture (S5C Fig). Adversarial autoencoders per-

formed better than the vanilla encoder though worse than the VAE, possibly because of diffi-

culties in training the discriminator to fit the latent encoding to the desired distribution

perfectly. Surprisingly, the ClusGAN architecture performed the worst, likely due to an inabil-

ity to consistently generate direct, regularized encoded representations. Despite its superior

performance compared to other architectures, the VAE achieved a maximal homogeneity

score that was still significantly less than unity (~0.7, S5C Fig), indicating some degree of cell

type mixing in latent space after learning. This was not unexpected given that some cell

types – particularly AML LSCs and SCID.adh2C2 cells – appear visually similar or even indis-

tinguishable in some cases, and cannot be separated by morphological characteristics observed

from brightfield images alone. Nonetheless, these comparisons suggest that the VAE architec-

ture is particularly well suited for learning morphological features for cell type discrimination.

To further visualize and analyze the representation of cells in latent space, we projected the

encodings from the VAE into two dimensions using the UMAP algorithm [24] (Fig 2B). From

the UMAP projection, we found that the cell types largely segregated into distinct regions in

this two-dimensional space (Fig 2B). Raw264.7 macrophages occupied a region that was

largely distinct from regions occupied by other three cell types, reflecting their markedly differ-

ent size and shape distribution. The three other cell types occupied partially overlapping

regions, reflecting greater similarities in morphology among these cells (S3A Fig). Interest-

ingly, primary human AML stem cells (identified by their CD34+CD38- surface marker pheno-

type) overlapped parts of the Scid.ADH2 region, suggesting some of Scid.ADH2 cells look

quite similar to their AML counterparts. Despite these overlaps, there are substantial areas in

the two-dimensional space occupied by these regions containing only one cell type, indicating

the presence of morphological features that distinguish each of these three cell types from

another and allow them to be identified in mixed populations.

To understand the morphological features driving cell type separation in this latent space,

we clustered cell representations in the latent space using the Louvain method, then visualized

cells and the morphological attributes that defined each cluster. Eight clusters were identified,

with each enriched for different cell types (Figs 2C, 2D and S3B). Clusters C1-3 were highly

enriched for Raw264.7 macrophages, phagocytic cells that are larger than their progenitor

cells. Clusters C4 and C8 were highly enriched for Kasumi-1 cells, circular profile cells that

contain dark granules, a unique distinguishing, observable feature of these cells. Cluster C5

was enriched for Scid.ADH2 cells, which are also circular, but lacked granules. Clusters C6

and C7 were enriched for both LSCs and Scid.ADH2 cells, both of which were small and

lacked granules. Cells in Cluster C7 have darker interiors and less well-defined cell boundaries

compared to Cluster C6 cells, indicating that they are flatter and may be more substrate-adher-

ent. The morphological differences within these clusters indicate the existence of distinct mor-

phological sub-states within individual cell types.

To interpret and visualize the morphological features that separate cells into distinct groups

in latent space, we performed hierarchical clustering on the averaged latent space representa-

tion for cells from different clusters (Fig 3A). This analysis revealed that each morphological

cluster of cells is associated with a specific set of latent features, with magnitudes that are

higher than population average. To decode these latent features, we transformed them back

into synthetic images in visual space (Fig 3B and 3C, top). First, we generated a mean mask or

texture vector by averaging over all cells in the dataset. From these mean vectors, we then

selectively increased the magnitudes of the feature (or groups of features) of interest to
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generate a new vector. Using the VAE decoder module, we then transformed the feature-exag-

gerated vector and the mean vector into synthetic images for interpretation.

We first examined the synthetic decoded images from the five most enriched mask features

for each morphology-defined cluster (Fig 3B, bottom). Clusters C1-4 contained large cells with

large, round profiles. As expected, cluster C2 contained elongated cells with numerous elon-

gated mask features. Clusters C5-8, in contrast, contained smaller cells enriched in features

representing small, round profile cell shapes. These mask features are in general agreement

with sizes and shapes for cells found within individual clusters (Fig 2C).

Unlike mask latent features, individual texture features in the latent space were not readily

interpretable for this dataset. However, because magnitudes of the projections along individual

texture dimensions correlated strongly with each other in distinctive groups (Fig 3C insets) –

Fig 3. Cell-type specific morphological features can be interpreted by decoding the latent space cell

representation. (A) Clustergram of average z-scores for latent shape and texture features for different cell clusters (see

Methods section for how z-scores values were calculated). (B) Five mask features with highest z-scores for each

morphological cluster are decoded and visualized. Clustergram shows matrix of correlation coefficients for forty mask

features having the highest standard variation in the dataset. Scale bar represents 5 μm. (C) Individual texture features

were clustered into eight groups (T1-T8) according to their correlation with each other from the clustergram of texture

features. Each group was decoded into brightfield difference images for interpretation (see Methods). Scale bar

represents 5 μm.

https://doi.org/10.1371/journal.pcbi.1009626.g003
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in contrast to those for individual mask dimensions (Fig 3B, inset) – observable texture fea-

tures in the image space might be encoded not by individual latent features, but by groups of

correlated latent features. Therefore, to visualize these observable features, we generated fea-

ture-dominated vectors by concurrently increasing groups of correlated latent features. We

also calculated images representing the difference between feature-exaggerated decoded

images compared to the mean texture decoded image for better visualization. From these syn-

thetic difference images, we observed two overall texture pattern groups: one with darker cell

interiors (T3, T6), indicative of a flatter morphology; and the other with lighter cell edges (T1,

T2, T4, T5), indicative of a less flattened morphology (Fig 3C). The darker cell interior feature

group is strongly enriched in Clusters C7 and C8, while the lighter cell edge group is signifi-

cantly present in Clusters C1 and C3. Clusters C2, C4, C5, and C6 appear to have moderate

enrichment in all these groups.

Taken together, these results reveal how UPSIDE separates cells into distinct morphological

clusters by their size, shape and distinct textural features. This ability can be seen readily in

Clusters C3 and C4, where cells of similar size and profile can be discriminated based on their

cell edge texture features. Cells with similar textural features can also be discriminated using

other features, e.g., Custers C7 and C8 are both enriched with dark cell interior textures, but

differ in size with Cluster C7 cells larger on average than those in Cluster C8. These results

demonstrate that UPSIDE can generate meaningful learned morphological features in an

unsupervised manner, and these features can be effectively decoded into images to aid

interpretability. This ability allows UPSIDE to extract valuable morphological properties by

simply observing cells over time without prior manipulation or human annotations.

UPSIDE uncovers morphologically distinct cell states in patient-derived

leukemic cells

LSCs play critical roles in AML disease propagation and drug resistance [27,28]. LSC and

other AML cell subpopulations are typically identified and characterized by a combination of

cell staining for granule content and cell surface markers as well as by their gene expression

signatures [29,30]. All of these classification approaches can be further extended by transmit-

ted light imaging and analyses to provide complementary information about leukemic cell

types and states that is not readily obtainable through more conventional classification

approaches. In particular, live cell movies that resolve phenotypic states over time and in

response to pharmacological treatment could provide unique insights into cellular heterogene-

ity and responses that could better inform therapeutic decision-making.

Towards this end, we employed UPSIDE to profile primary human LSCs cultured under

cytokine conditions promoting expansion and differentiation, and filmed using brightfield

imaging (Fig 4A, left). We directly isolated CD34+CD38- leukemic stem cells from an adult

AML patient [27,31,32]. This population is associated with chemotherapy resistance and per-

sistent disease32, and likely serves as a reservoir of drug resistant cells that fuel relapse after che-

motherapy treatment. To profile the self-renewal and differentiation dynamics of these sorted

cells, we then cultured LSCs with either IL-6 and thrombopoietin (TPO) to induce differentia-

tion, or with Aryl hydrocarbon receptor inhibitors (AhRi) UM729 and SR1 to maintain stem-

ness and suppress differentiation [33–35]. We then filmed these cells in the brightfield channel

for ~4 days at high temporal resolution (3 minute intervals, Fig 4A). To determine the associa-

tion between observed cell morphological states, stemness and differentiation, we also added

fluorescently-labeled anti-CD34 and anti-CD38 antibodies in culture, and took fluorescent

images every hour to follow expression of these markers in imaged cells (Fig 4A, top right).

Such in situ antibody labeling allows real-time visualization of cell surface marker protein
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Fig 4. UPSIDE identifies stem cell-associated morphological states from patient-derived AML leukemic cells. (A) LSCs

(CD34+CD38-) from an acute myeloid leukemia patient were cultured in cytokines with or without AhR inhibitors (UM729 and

StemRegnin1) filmed for ~5 days (left). Brightfield images were captured once every 3-5 minutes. αCD34-APC and αCD38-PE

antibodies were added in situ, and fluorescent images were captured once every hour (top right). Still frames show representative time

lapse images of AML cells (bottom right). Scale bar represents 10 μm. (B) UMAP 2D projection of the UPSIDE generated latent space
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expression with minimal effects on cell viability [36]. UPSIDE is well-suited to facilitate these

types of time course analyses and image-based profiling: the use of brightfield imaging obviates

the need for genetic engineering of fluorescent reporters to allow a wider range of analyses to

be performed on primary patient-derived cell samples. It also minimizes cellular phototoxicity,

thus enabling long-term cell observation at high temporal resolution.

Resultant timelapse images revealed considerable heterogeneity in the morphologies of

observed cells, with these cells differing in their sizes, shapes and textures, as observed by their

contrast from transmitted light images (Fig 4A, right; S1 Movie). To better understand this

morphological heterogeneity, we fed these images into the UPSIDE pipeline. To minimize

batch effects, we analyzed cells from all time points both with and without AhRi treatment in a

single encoding run. We segmented cells, then encoded using UPSIDE’s separate shape and

texture VAEs (S4B Fig). We then clustered representations of cells in latent space using the

Louvain method (S6 Fig). Based on proximity in the latent space, we further combined some

of the clusters we obtained into larger clusters. To visualize these clusters in two-dimensional

space, we then projected these latent representations onto a two-dimensional plane using the

uniform manifold approximation and projection algorithm (UMAP). This projection revealed

the locations of the discrete clusters, along with their overlap regions. In this two-dimensional

visualization, some cell clusters showed considerable boundary overlap with others, reflecting

the continuous nature of the latent features encoded by the VAE. Additionally, imaged cells

occupied all clusters both with or without AhRi treatment (S7 Fig), though the distribution of

cells in these populations varied between the two conditions, likely reflecting the result of

AhRi treatment on the cellular state.

In order to gain insight into the features that drive the separation of the cell encodings into

distinct clusters, we performed hierarchical clustering on averaged cell encodings from each

group (Fig 4C), then decoded the specific mask or textural features with the highest z-scores in

each group to generate feature-exaggerated synthetic images, as described above (Fig 3B and

3C). These synthetic images highlight significant morphological features that display coher-

ence across cells within a cluster, but differ between cells in different clusters (Figs 4D and S7

and S8). Examples of coherent morphological features include size, with some having smaller

cells (Clusters C1,C2) and others having larger cells (Clusters C6,C7,C8); cellular elongation or

eccentricity, with some clusters displaying rounder cell profiles (Clusters C1,C8) and others

have more elongated cells (Clusters C2 and C7); and the presence of finer morphological fea-

tures, such as cytoplasmic protrusions from the cell body (Clusters C6 and C7). Another

important morphological feature was the degree of contrast at the cell edge observed from

brightfield images, an indication of the degree of cell flattening on its culture surface. Some

clusters had cells with weak contrast at edges (C1, C2 and C6), indicative of a flattened mor-

phology, whereas others had cells with stronger edge contrast (C3, C8), consistent with a

rounder, less-flattened appearance (S7 Fig). Together, these results reveal the distinct, defining

morphological features of cells that are found in different morphological states.

cell representations. Individual morphological clusters were identified using the Louvain Clustering algorithm, then grouped manually

based on their proximity to each other in the latent space (See S6B Fig). Representative cell images from each cluster were also shown.

Scale bar represents 10 μm. (C) Clustergram shows Z-scores of the latent mask and texture encodings for each morphological cluster.

(D) Decoded images of the four most enriched features for each morphological state. Texture features were visualized using difference

maps that were zoomed in around the decoded cells. (E) Area, eccentricity, and edge strength for each cell were calculated and mapped

to the UMAP latent space representation. (F) CD34 and CD38 levels were mapped onto the UMAP. (G) Violin plots show

distributions of CD34 and CD38 expression levels in different morphological clusters (left). (H) Histograms showing log CD34 levels

against CD38 levels for each morphological cluster (right).

https://doi.org/10.1371/journal.pcbi.1009626.g004
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To verify that these differences in decoded features indeed reflect systematic morphological

differences between cells in different clusters, we calculated cell area, eccentricity, and edge

strength – defined by the maximum value of the cell’s gradient image – and then plotted these

quantities onto the 2D projection of the latent space (Fig 4E). Indeed, regions occupied by the

different cell clusters had area, eccentricity, and edge strength values consistent with what was

generally observed in the decoded cell images: Clusters C1-3 resided in the region with small

cell areas, whereas Clusters C6, C7 and C8 resided in the region with larger cell areas. Elon-

gated cells in Clusters C2 and C7 resided in regions with high eccentricity, whereas cells with

darker cell edges in Clusters C3 and C4 resided in regions with high edge strength. Together,

this analysis shows that UPSIDE can elucidate defining shape and textural features of cells that

can vary across a population.

Distinct morphological states are associated with different degrees of

stemness

Cells in the different morphological states identified above may exhibit different degrees

of AML cell stemness or differentiation. To test this idea, we investigated the relationship

between these morphological states and the expression levels of CD34 and CD38, which

together specify the stemness of these cells. To do so, quantified CD34 and CD38 expres-

sion levels for each cell, and mapped them onto the 2D projection of AML cell’s learned

latent dimensions (Fig 4F and 4H). We also generated 2D heatmaps of these markers on a

log-log axis, both for cells within individual clusters and for all cells (Fig 4H, right; and

S8B Fig, left, respectively). From this analysis, we identified morphological clusters

enriched for cells in either a stem cell state (CD34+CD38-) or a more mature state

(CD34-CD38+). Specifically, morphological clusters C1 and C2 were enriched for the stem

cell population (CD34+CD38-). Cells in these clusters differed in their roundness, but were

uniformly small, consistent with the quiescent nature of the stem cells. Remarkably, these

cells were also flat on the 2D culture surface possibly reflective of the high expression levels

of cell adhesion proteins in hematopoietic stem cells [37]. In contrast, morphological clus-

ters C6, C7 and C8, were most enriched for the mature cell population (CD34-CD38+).

These cells were uniformly larger, consistent with the larger size of more differentiated

cells, but had varying shapes and degrees of flatness. This diversity in shape and substrate

adherence likely reflects the multiple differentiated cell types that can emerge under these

in vitro differentiation conditions. Consistently, when we gated cells in either a stem state

(CD34+CD38-) or a mature state (CD34-CD38+) and analyzed their morphological cluster

composition, we found that the more immature (CD34+CD38-) cell population had higher

C1 and C2 cell fraction compared to the mature state (CD34-CD38+), but a lower C6, C7

and C8 cell fraction (S8B Fig, right). Together, this analysis reveals distinct morphological

features associated with different degrees of stemness or maturity in AML.

Population dynamics of cell morphological states

To gain insight into the population dynamics of cells in different morphological states, we

examined how the numbers of cells in different clusters evolve over time, both with and with-

out suppressing differentiation with AhR inhibitors (AhRi; Figs 5A and S9A). In the absence

of AhRi, cell clusters enriched for stem cells states (Clusters C1 and C2) are progressively

depleted, while those enriched for more mature cells (Cluster C8) expand, consistent with the

maturation of LSCs into more differentiated cells over time. As expected, AhRi treatment

increases the sizes of the clusters enriched for stem cells (C1 and C2) relative to untreated con-

ditions, while decreasing the sizes of the clusters enriched for mature cells (Cluster 8). This
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reflects the known effects of AhRi in maintaining stem cell self-renewal. The fractions of cells

in intermediate morphological states (Clusters C3-7) remain largely unchanged, regardless of

the presence of AhRi, suggesting that AhR inhibition may affect intermediate state transitions

without driving specific outcomes. At the same time, CD34 levels decrease whereas CD38 lev-

els increased over time, with both these changes becoming less pronounced with the addition

of AhRi (Figs 5B and S9B). Together, these results provide insights into the population dynam-

ics of LSC self-renewal and differentiation, and how these dynamics are affected by pharmaco-

logical compounds that modulate self-renewal.

Parallel experiments were used to further explore morphological changes that reflect LSCs

maturation. We cultured LSCs (CD34+CD38-) in parallel with live imaging experiments, and

analyzed them after three days for the expression of CD34, CD38, and CD123, another com-

mon LSC marker [38] (S9C Fig). Compared to untreated samples, cells treated with AhRi

show higher expression of CD34 and CD123. On the other hand, CD38 expression magnitude

was higher in the untreated sample, indicating greater differentiation in this population. Of

note, a population of cells expressed both CD38 and CD34; this result indicates that expression

of these markers may not be mutually exclusive. Parallel live imaging experiments of AhRi-

treated cells showed slower expansion of large round cell morphology clusters compared to

their untreated counterparts (Figs 5A and S9A). Together, these results demonstrate that dis-

tinct cell morphological states identified using UPSIDE indeed reflect leukemic cells in differ-

ent states of maturation.

Fig 5. Population dynamics of identified morphological states. (A) Population fraction dynamics over time for each

morphological cluster with (right) or without (left) AhR inhibitors (top). Population fraction contribution of each cluster at the

last time point of the culture (bottom). Comparisons of the population fraction with and without AhR inhibitor were

performed using the Chi-Square test for the dependency between the AhRi treatment and a cell’s cluster identity. ��: p< 0.001,
�: p<0.05 (B) UMAP showing CD34 and CD38 expression levels at different time points, in the presence or absence of AhRi.

https://doi.org/10.1371/journal.pcbi.1009626.g005
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Inference of morphological state transitions by cell linkage analysis

The high temporal resolution of the brightfield movie analyzed above enables tracking of indi-

vidual cells from frame-to-frame and, in conjunction with UPSIDE, inference of the rates at

which leukemic cells transition between different morphological states. Notably, this analysis

enables inference of rates without generation of long cell trajectories, which is particular chal-

lenging due to rapid cell motility of AML cells under investigation. Here, we develop an analy-

sis routine to automatically infer transition rates from brightfield movies. In particular, this

UPSIDE-enabled analysis obviates the need for generating individual cell tracks, which are

typically error-prone and require considerable manual intervention. We paired cells from

adjacent frames together, based on their close proximity. We then identified the morphological

states of linked cell pairs using the VAE above (seeMethods section), and calculated state tran-

sition probabilities based on the frequencies of linked cell pairs with specific initial and final

morphological states (Fig 6A). By repeating this calculation over all possible pairs of morpho-

Fig 6. Calculation of morphological state transition probabilities by cell linkage analysis. (A) Cell pairs found in

proximity across on successive time points were linked (left). Cell linkages, along with assigned morphological states of

linked cells, were used to calculate transition probabilities between all states. (B) Heatmap shows transition probability

matrix between all morphological clusters (left); image montage shows representative cell tracks identified from the

culture (right). Scale bar represents 10 μm. (C) Distribution of cellular velocity for linked cells for each morphological

cluster. (D) Plot shows mean cell velocity against mean cell eccentricity for each morphological cluster.

https://doi.org/10.1371/journal.pcbi.1009626.g006
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logical states, we obtained a matrix, describing the transition probabilities between different

morphological states (Fig 6B, left).

This analysis revealed that cells largely transition between different morphological states in

a highly dynamic and reversible manner, but exhibit state transition preferences that reflect

underlying longer-term differentiation trends. Transition probabilities generally range

between ~0.05 to 0.5 (/3 minute frame) (S1 Table), implying transition timescales of tens of

minutes or less. However, these probabilities are not uniform, but are higher for specific transi-

tions, such that the numbers of cells in different states changed progressively over time. Specif-

ically, cells in the most immature states (C1 and C2), as defined by CD34 and CD38

expression (see above), tend to either inter-convert within these states, or switch preferentially

to some of the more intermediate states (C5 and C6). In contrast, cells in the more intermedi-

ate states (C3, C4 and C5) tend to switch to one of the more mature states (C6, C7 and C8),

though they also transition back into the an immature state with lower probability (e.g. C3!

C1; C5! C2). Interestingly, intermediate states appear to inter-convert in a more dynamic

manner, such that probabilities of maintaining the same state over time were lower for these

intermediate states than they were for either the immature (C1, and C2) or more mature (C6,

C7 and C8) states. Finally, cells having the most mature states (C6, C7 and C8) tend to stay

within these states, and more stably maintained these states compared to other cell popula-

tions. A similar maturation trajectory was observed when transitions were visualized with

averaged vector fields on a UMAP projection of the latent space (S10C Fig). These vector fields

emanated from the most immature states (C1 and C2), flowed through the intermediate states

(C3-C5), then converged upon the most mature states (C6-C8). Moreover, the magnitude of

these vector flows are higher within the immature and intermediate states (e.g. C1, C3 and C4)

but lower for the mature states (C6 and C8), consistent with the stability of these states

observed in the transition matrix. Differences in trajectory stability were also directly observed

when following single cells; mature cells (those starting in state C7 and C8) tend to remain in

the same state (Fig 6B right, tracks 1 and 4), whereas more immature cells (C1, C3 and C5) are

highly dynamic, switching from one state to another rapidly between successive frames (Fig

6B, tracks 2 and 3). Together, these data indicate that cells transition rapidly and reversibly

between alternate morphological states, but do so in a biased manner, such that they progress

from more stem cell-associated states (C1 and C2) toward more mature cell states (C8).

What is the basis of these dynamic morphological state transitions? The AML cells we

filmed move rapidly on the culture surface (S1 Movie), and polarize as they move; thus some

of the observed morphological state transitions could reflect transitions from a stationary to a

motile state. To test this hypothesis, we derived the instantaneous velocities of cells in different

morphological states, by calculating the displacement between successive frames for each state

(Fig 6C). From this analysis, we found that cells with elongated morphologies, such as those in

states C2, C4, C5, and C7, show higher movement velocities compared to other states. Consis-

tently, there was a strong correlation between instantaneous velocity and cell eccentricity, aver-

aged over all cells in individual clusters (Fig 6D). Thus, though morphological transition

probabilities are biased by differentiation, the transitions themselves involve the rapid switch-

ing between stationary and mobile states (Fig 6B, left, tracks 2-3).

If morphological state transition probabilities calculated above are biased by the direction-

ality of cell differentiation, they would change when cells are subject to perturbations that

modulate stem cell differentiation and self-renewal. To test whether this was the case, we

repeated this state transition analysis for cells treated with AhR differentiation inhibitors

(S10A Fig and S1 Table). In the presence of AhRi, there is a decrease in the transition probabil-

ities into the more differentiated states (C6, C7 and C8), together with an increase in the tran-

sition probabilities into and amongst intermediate cell states (C3, C4 and C5). This suggests
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that AhRi blocks movement from a stem cell-associated morphological state to one associated

with mature cells by stalling cells in an intermediate state. Consistently, single cell track analy-

ses showed that cells often transition rapidly from an intermediate state (C5) to more mature

state (C8) without AhRi, but stall at an intermediate state (C5) when AhRi is present (S10B

Fig). Thus, these observations show that changes in cell differentiation dynamics can influence

the probabilities at which cells transition between different morphological states.

Discussion

In this study, we developed a deep learning platform, UPSIDE, for unsupervised exploration of

dynamic cell morphological states in transmitted light movies. Using UPSIDE, we identified

distinguishing cell morphological features and states in a heterogeneous collection of blood

cell types. We found that the UPSIDE VAE learning architecture outperforms other compara-

ble methods in recognizing unique morphological features within each cell type. We further

demonstrated the utility of our method by uncovering morphological states in primary human

AML patient-derived leukemic cells displaying different degrees of stemness, differentiation,

and cellular mobility. Finally, UPSIDE addresses the issue of latent feature interpretability, one

of the most challenging aspects of analyzing deep convolutional networks, to allow more intui-

tive insight into learned latent morphological features.

UPSIDE will enable analysis of dynamic responses of AML leukemic stem cells to chemo-

therapy at the single cell level. AML drug resistance poses a significant clinical challenge as the

majority of patients eventually develop relapse disease. Growing evidence suggests leukemic

stem cell populations in AML constitute the drug-tolerant sub-populations that survive drug

treatment and eventually lead to relapse disease [28,39]. A number of studies have profiled the

genomic and transcriptomic features of these stem cell populations at the single-cell level

[40,41], however, single-cell profiling approaches that continuously monitor differentiation

and drug resistance dynamics in single cells could yield additional information not readily

obtainable from these snapshot measurements. To this end, a large scale screen of hundreds of

drug treatment or regimen time courses can be captured via brightfield time lapse imaging

[42,43]. UPSIDE can then be employed as an unbiased method to survey and specify impor-

tant morphological features associated with therapeutic response, persistence or resistance as a

function of cell types, cell states and treatment.

More generally, UPSIDE has a number of advantages that facilitate the unbiased explora-

tion and discovery of dynamic cell phenotypes from microscopy movies of unlabeled cells. As

UPSIDE does not require genetic labeling, identifying or tracking cells, it could readily be

applied towards a wide variety of cell types, including primary cells and patient samples. Fur-

thermore, the reduced phototoxicity of transmitted imaging allows for high temporal resolu-

tion imaging over long times, allowing dynamic transitions to be analyzed over a wide range of

timescales. Finally, the unsupervised nature of UPSIDE makes it particularly suited for analyz-

ing new systems without prior feature selection or knowledge of underlying biology, as the

VAE architecture is capable of self-learning the distinguishing features. In the future, integra-

tion of UPSIDE with image-based cell sorting techniques (e.g. [44]) will allow for cells with

defined morphological features to be isolated for downstream analysis, thus opening the door

to interrogation of the molecular basis of distinct phenotypic states.

Methods

Ethics statement

Human blood and bone marrow samples were obtained by written informed consent on a pro-

tocol approved by the University of Washington/Fred Hutchinson Cancer Research Center
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Cancer Consortium Institutional Review Board. The samples were deidentified in the

laboratory.

Experimental techniques

Cell lines. Kasumi-1, Scid.ADH2, and RAW246.7 cell lines were cultured Eagle’s minimal

essential medium (DMEM), phenol-red free containing 10% Fetal Bovine Serum (FBS), Peni-

cillin-Streptomycin-Glutamine (Gibco 10378016) at 37˚C and 5% CO2 (ThermoFisher) for 2

days before imaging. For 5 cell type imaging experiments, each cell line was imaged in a sepa-

rate individual well in the same 96-well glass-bottomed plate. AML211 CD34+CD38- subpopu-

lation was cultured in ‘Differentiation Media Condition’ for 2 days before imaging at the same

time with the cell lines.

Culture of patient-derived leukemic cells. Primary acute myeloid leukemia samples

(AML211) were provided by the Pamela Becker lab. The study was conducted with approval of

the Institutional Review Board, Fred Hutchinson Cancer Research Center. The samples were

obtained from AML patients with written, signed informed consent.

Cryo-preserved AML cells were thawed in ‘Long Term Bone Marrow (LTBM) Media’

[Iscove’s Modified Dulbecco’s Medium (IMDM) with glutamine and HEPES (Mediatech. Inc,

Manassas, VA), 15% Fetal Bovine Serum (HyClone, Logan, UT), 15% Horse Serum (VWR),

50 μM beta-mercaptoethanol (Sigma), 0.043% Monothiolglycerol (Sigma)] and washed twice

to remove DMSO, then cultured in LTBM with 50U/ml DNase to break up and free live cells if

chunks are present at 37˚C and 5% CO2 for 1 hour. Cells were then cultured in LTBM with 10

ng/ml recombinant human Stem Cell factor (SCF) at 37˚C for 2 days. For cell sorting and flow

cytometry analysis, cells underwent Lymphocyte Separation Medium (Mediatech. Inc, Manas-

sas, VA) to remove dead cells and were stained with CD34 (ThermoFisher 17-0349-42), CD38

(ThermoFisher 12-0388-41), and CD45 (VWR 10758-692) for flow cytometry analysis and

sorting by FACS Aria (BD biosciences, San Jose, CA).

Sorted CD45+CD34+CD38- subpopulation from AML211 samples were cultured in ‘Differ-

entiation Media Condition’ (adapted from (Klco et al., 2013)) which comprises of Eagle’s mini-

mal essential medium (DMEM), phenol-red free containing 10% FBS, Penicillin-

Streptomycin-Glutamine (Gibco 10378016), 100 ng/ml Recombinant Murine SCF (Prepotech

250-03), 50 μM beta-mercaptoethanol (Sigma M6250), 10 ng/ml Recombinant Human IL-3

(Prepotech 200-03), 20 ng/ml Recombinant Human IL-6 (Prepotech 200-06), 10 ng/ml

Recombinant Human TPO (Prepotech 300-18), 10 ng/ml Recombinant Human Flt3-Ligand

(Prepotech 300-19), or ‘Maintenance Media Condition’ (adapted from (Pabst et al., 2014))

which comprises of minimal essential medium (DMEM), phenol-red free containing 10%

FBS, Penicillin-Streptomycin-Glutamine (Gibco 10378016), 100 ng/ml Recombinant Murine

SCF (Prepotech 250-03), 50 μM beta-mercaptoethanol (Sigma M6250), 20 ng/ml Recombinant

Human IL-3 (Prepotech 200-03),), 50 ng/ml Recombinant Human Flt3-Ligand (Prepotech

300-19), 1 μM UM729 (STEMCELL Technologies 72332), and 500 nM StemRegenin-1

(STEMCELL Technologies 72342). Cells were cultured on treated polystyrene (Corning) of

glass-bottomed (Mattek) 96-well culture plate coated overnight with 33.33 μg/ml Retronectin

(Takara T202).

For imaging differentiation assay, CD34 Human Monoclonal Antibody (4H11), APC

(eBioscience 17-0349-42) and CD38 Human Monoclonal Antibody (HB7), PE (eBioscience

12-0388-41) was spiked into the culture media. Cells were imaged every 3-5 min with bright-

field and 60 min with fluorescent light for 4 days. We note that low levels of fluorescence signal

were present in the image channels, thus contributing to a non-zero background level in these

cells.
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Image acquisition. Timelapse imaging was performed on Inverted Microscope Platform

Leica DMi8 (Leica Microsystem). All image acquisitions were performed using 40X air objec-

tive. Fluorescent images were captured using Laser Diode Illuminator, LDI (89 North).

Image analysis

UPSIDE computational pipeline is designed to analyze the morphological diversity of cells

from timelapse brightfield images. The method consists of four main modules: 1) Label-free

prediction, 2) Image segmentation, 3) Live cell classification, and 4) Unsupervised feature

learning. The following section describes each of the modules in further details.

Label-free imaging and image segmentation. UPSIDE utilizes a label-free imaging

method to identify cells from brightfield (BF) images. Here we adapted a U-net-based deep

learning technique described by Ounkomol and coworkers [22] to predict fluorescent pictures

of cytoplasm from the captured BF images. To complete this task, we analyzed ~103 cells

stained with CellTrace Violet Cell Proliferation dye (ThermoFisher C34557) to label their cyto-

plasm. This cell number was sufficient to achieve maximal performance in cell prediction, as

determined by training runs with different cell numbers (S1C Fig). Training data was obtained

by capturing approximately 300 – 400 BF images and their corresponding cytoplasm fluores-

cent images. This data was then used to train a model that predicts cellular cytoplasm. These

two models were subsequently used to predict fluorescent images for the main timelapse

brightfield image stacks. Object segmentation was performed on predicted cytoplasm images

using ictrack software [20]. To demonstrate the performance of this software, we sampled

~1000 segmented objects by ictrack and manually evaluated its segmentation accuracy by

comparing these segmented objects to the predicted fluorescent images as reference. Objects

that are properly identified based on their predicted fluorescent signals are considered cor-

rectly segmented, whereas those that are over-segmented or under-segmented are considered

incorrectly segmented. We note that a significant fraction of incorrectly-segmented objects

(7%) correspond to dead cells or cell aggregates that are then removed in the subsequent live

dead classification step (S2B Fig).

Live cell classification. Identified cell crops were then fed through a classifier to separate

living cells from dead cells and other debris for analysis by UPSIDE. We performed this addi-

tional classification step as dead cells and other non-cell objects possess a variation in shape,

size and texture (S2B Fig) that could potentially affect the encoding of live cell morphological

features. These concerns notwithstanding, we found that the outcome of UPSIDE’s clustering

was not significantly affected by the presence of a small percentage (7%) of dead cells (S2C and

S2D Fig).

We built a convolutional neural network for this classification task (S11 Fig):

To obtain training data for this network, ~10000 brightfield cell crops were manually anno-

tated as ‘Live’ or ‘Dead.’ The network were trained for approximately 10,000 steps, and cross

entropy loss were calculated a Adam optimizer46 were used for weights and biases learning:

CEloss ¼
Pj

i¼1
½f ðXÞlogðyÞ þ ð1 � f ðXÞÞlogð1 � yÞ� ð1Þ

Where f(X) is the predicted class of a given cell crop X and y is its correct label. The remain-

der of the identified cell crops were then fed to the trained classification model. Crops classi-

fied as ‘Dead’ were discarded, and ‘Live’ crops were used for further analysis.

Unsupervised feature learning. Morphological feature learning in UPSIDE relies on the

variational autoencoder architecture (VAE) [21] to perform feature extraction. Two informa-

tion pieces were used to train the VAE: 1) The overall shape of the cell and 2) The cellular tex-

ture inside the boundary mask. Predicted CellTrace violet signal of the cell was used to
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generate the cell shape crop. The following image preprocessing steps were performed to mini-

mize trivial variations between cell crops:

• Object re-centering

• Object rotational orientation to 90o. All cell crop images are then rescaled accordingly to

eliminate image’s dimension inflation due to rotation.

• Object’s vertical and horizontal pixel density reorientation to top and right, respectively

To obtain texture representation, brightfield pixel values distribution inside the cell’s mask

was scale adjusted to zero mean and unit variation. They are then scaled linearly to be between

0 and 1 to facilitate learning with VAE. All pixel values outside the boundary were set to 0.5.

Preprocessed image crops for shape and texture were used to train two separate VAEs. The

overall architecture is as described below (S12 Fig).

The loss function for the VAE is a weighted combination between reconstruction loss and

Kullback-Leibler Divergence loss:

L ¼ A½g �MSEþ ð1 � gÞ � KLD� ð2Þ

where A is a constant, and γ varies between 0 and 1. As previously discussed [21], optimal val-

ues for γ are determined by testing different values, and manually examining resultant decoded

images to determine the accuracy and diversity of output images with respect to its original

image. Additionally,

MSE ¼ jjX � Fðz;XÞjj2 ð3Þ

KLD ¼ �
1

2

PJ
i¼1
ð1þ logðs2Þ � m2 � s2Þ ð4Þ

VAE for cell shape feature extraction was first trained for ~100000 steps while VAE for tex-

ture feature extraction was first trained for ~200000 steps. Trained weights and biases for the

cell shape extraction were then used to encode all cell crops obtained from the movie into

100-element vectors. These vectors were projected onto a 2D plane using UMAP [24]. Cell

crops with defective shapes are gated out using the cytometry2 function in ictrack. The

remaining crops were then used to train VAE for cell shapes and texture separately. Afterward,

cell crops were encoded into 100-element shape vectors and 100-element texture vectors. Each

cell crop’s latent vector is represented by a weighted concatenation between the shape and the

texture contributions:

z ¼ concatenateðw � zshape; ð1 � wÞ � ztextureÞ ð5Þ

Encoded latent dimension of cell crops are then clustered using Louvain clustering

algorithm.

To generate synthetic images, encoded cell barcodes and arithmetic variations were treated

as z and fed directly into the decoder.

Comparable deep learning architectures. In addition to utilizing the Variational Auto

Encoder architecture to learn the latent dimensions in our imaging datasets, we tested a few

other deep learning architectures to compare their performances with our current approach:

Vanilla Auto Encoder (AE) [25]

In this architecture, each processed shape or texture is fed through a series of convolutional

layers and fully connected neural network layers to generate a latent vector with a dimension

of 100. The organization of the neural network layers are as follows (S13 Fig).
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The loss function for the AE is:

L ¼ jjX � Fðz;XÞjj2 ð6Þ

AE for cell shape feature extraction was first trained for ~100000 steps while AE for texture

feature extraction was first trained for ~200000 steps. Each cell crop’s latent vector is repre-

sented by a weighted concatenation between the shape and the texture contributions:

z ¼ concatenateðw � zshape; ð1 � wÞ � ztextureÞ ð7Þ

Adversarial Auto Encoder (AAE) [14]

In this architecture, each processed shape or texture is fed through a series of convolutional

layers and fully connected neural network layers to generate a latent vector with a dimension

of 100. The latent dimension was then regularized using a discriminator that forces the dimen-

sion space into a unit gaussian distribution (1x AAE) or four mixed gaussian distributions (4x

AAE). The organization of the neural network layers are as follows (S14 Fig).

The loss functions for the VAE are:

Lautoencoder ¼ jjX � Fðz;XÞjj
2

ð8Þ

Ldiscriminator ¼ �
1

N
PN

i¼1
½logðzrealÞ þ logð1 � zencodedÞ� ð9Þ

Where zreal is a 100 element vector sampled from a normal gaussian distribution (1X AAE)

or a mixed 4-gaussian distribution with each gaussian’s mean to be -1, -0.5, 0.5, and 0.5 and

standard deviation to be 1 (4X AAE).

AAE for cell shape feature extraction was first trained for ~100000 steps while AAE for tex-

ture feature extraction was first trained for ~200000 steps. Each cell crop’s latent vector is rep-

resented by a weighted concatenation between the shape and the texture contributions:

z ¼ concatenateðw � zshape; ð1 � wÞ � ztextureÞ ð10Þ

ClusterGAN [26]

This architecture carries an encoder that converts a generated image into a latent dimen-

sion which is then forced to match the same starting latent code that was originally used to

make the image. This is a semi-supervised architecture where a specific number of classes

needs to be predetermined beforehand. To convert this into an unsupervised method, we

removed the class module, enabling the GAN to draw data from a normal distribution, without

the one-hot class vector input. The neural network organizations for the generator, encoder,

and the discriminator are as follows (S15 Fig).

Loss functions used for training were described previously [26]. We input the cell crops

into the encoder module of ClusterGAN to generate the latent dimensions for the comparative

analysis with other architectures.

Cell shape feature extraction was first trained for ~100000 steps while the texture feature

extraction was first trained for ~200000 steps. Each cell crop’s latent vector is represented by a

weighted concatenation between the shape and the texture contributions:

z ¼ concatenateðw � zshape; ð1 � wÞ � ztextureÞ ð11Þ
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Algorithms and quantitative analysis

Neighbor similarity scoring. The metric is formulated to estimate the degree of homoge-

neity of the grouping of each cell type in the encoding space of the four cell types. Specifically,

the neighbor similarity scoreHC for a given cell type C is defined as follows:

Hc ¼ Ec

PN
i¼1
ni

N

� �

ð12Þ

Where E(�) represents the expectation value, or the mean over all cells within a cell type C,

and N specifies a predetermined number of nearest neighbor cells to a given cell. We note that

varying values of N does not significantly affect the scoreHC (S5D Fig). Furthermore, for each

neighboring cell i, ni = 0 if the identity of i is C, and ni = 0 otherwise.

Latent dimension z-score calculation. The z-score Zf,c of a particular feature f of cluster

C is defined as the fold difference in standard deviation between the mean of the value of that

feature in cluster C compared to that of the complete dataset:

Zf ;C ¼
mf ;c � mf

sf
ð13Þ

Here, μf,C is the mean value of feature f over all cells in cluster C, and μf, σf are the mean and

standard deviation of feature f over the dataset.

Pairwise cell tracking algorithm. The pairwise cell tracking algorithm was built to ensure

the validity of a given paired cell linkage from one frame to another. To achieve this goal, we

established stringent requirements for a given cell pair to be considered ‘valid’. Specifically, the

linking algorithm concerning all cells in frame t is as followed:

jjFor all cell i 2 Nt :

jj if dði; jÞ > D0 for all i 2 N and i 6¼ j :

jj for all cell k 2 Ntþ1 :

jj if dði; kÞ < D1 and dði; kÞ ¼ minðV
tþ1

i Þ :

jj link i and k together

Here, Nt represents a set of all detected cells in frame t; d(a,b) denotes the Euclidean dis-

tance between cells a and b, and Vt
a represents a set of Euclidean distances between cell a in

frame t−1 to all cells in frame t. D0 is the minimum distance between the given cell and other

cells in the same frame, for this cell to be considered for linkage analysis. It can readily be set

by calculating the average distance between all cells in the dataset and setting a value of D0 to

be larger than this average value. The parameter D1 represents the maximum distance a poten-

tial paired cell can be away from the initial cell. It can be readily determined by manual inspec-

tion of cell movements: By manually inspecting the distance traveled between cells in the

movie, the user can have an expectation of how far a cell can reasonably travel between adja-

cent timepoints.

Transition probability between cell clusters. In order to estimate the transitional

dynamics between identified morphological clusters through time, we determine the probabil-

ity for a cell X to transition from cluster i at time t to another cluster j out of a set of clusters
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k2C at time t+1 as follows:

p Xtþ1 ¼ jjXt ¼ i
� �

¼
fij

P
Cfik

ð14Þ

Where fij is the number of transitions from cluster i to cluster j.

Supporting information

S1 Fig. Robust label-free cell prediction using the UNET architecture. (A) Sample images

from models trained on brightfield images from the cell type dataset (top) and the Acute Mye-

loid Leukemia dataset (bottom). Scale bar represents 20 μm. (B) Pearson’s correlation coeffi-

cients measuring correlation between the ground truth fluorescence images and predicted

synthetic images. Asterisk (�) represents the theoretical upper limit of the model’s performance

for each dataset. Such a model would perfectly predict the fluorescent level of each cell but not

be able to predict fluorescent noise that arises from the instrumentation. (see21 for detailed

method). (C) Pearson’s correlation coefficients for label-free prediction using different cell

numbers for training. (D) Segmentation performance of the ictrack software (left) and sample

segmented objects along with their brightfield and predicted fluorescence images (right). Scale

bar represents 5 μm.

(TIF)

S2 Fig. A convolutional cell classifier is trained to remove dead cells from the dataset.

Brightfield crops of selected cells are classified as either ‘Live’ or ‘Dead’ using a convolutional

classifier that is trained to recognize dead cells using a manually labeled dataset. (A) Represen-

tative cell crops classified as ‘Live’ or ‘Dead’. Scale bar represents 10 μm. (B) Receiver operating

characteristic (ROC) curve measuring the prediction performance of the trained classifier.

AUC: Area under the curve. (C) Fraction of correctly classified live cells out of ~1000 seg-

mented objects. (D) UMAP plots show clustering of latent encodings of a cell population

(top), with 100% confirmed live cells, 97% confirmed live cells, and 100% confirmed live cells

with an unlearned variational autoencoder, where weights of neuron layers had randomized

weights. Sample cell images from each identified cluster are also shown (bottom).

(TIF)

S3 Fig. Images of the four blood cell types analyzed by UPSIDE. (A) Representative images

from the four blood cell types Raw264.7, Kasumi-1, Scid-ADH2 and AML LSCs. (B) Represen-

tative images from eight different morphological clusters identified by Louvain clustering of

the UPSIDE-generated latent vectors from each cell type. Scale bar represents 5 μm.

(TIF)

S4 Fig. Concurrent training of shape (mask) and texture variational autoencoders for the

cell type dataset. Reconstruction and Kulback-Leibler Divergence (KLD) losses of the models

for the Cell Types Dataset (A) and the Acute Myeloid Leukemia Dataset (B).

(TIF)

S5 Fig. Comparison of cell type homogeneity scores obtained using different data encoding

methods. (A) The cell type homogeneity score, defined as the mean fraction of the N nearest

neighboring cells of the same type as the cell of interest, averaged over all cells, measures how

well different cell types are separated in latent space. (B) Mean nearest neighbor score (H)

across 4 cell types obtained with different relative mask weight contribution for encodings gen-

erated by either VAE or PCA method. (C) Maximum nearest neighbor scores (Hmax) for VAE,

PCA, and other alternative deep learning architectures. Hmax is defined as the highest mean
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nearest neighbor score across all weight combinations of mask and texture contributions.

VAE: Variational Autoencoder, 4x AAE: Adversarial Autoencoder with latent dimension

trained to fit a 4 mixed gaussian distribution, 1x AAE: Adversarial Autoencoder with latent

dimension trained to fit a normal distribution, Clus GAN: Cluster Generative Adversarial

Autoencoder with the one hot encoding component module removed, PCA: Principal Com-

ponent Analysis. (D) Cell type homogeneity scores for the VAE, calculated using different

numbers of neighbors N. (E). UMAP projections showing ground truth (left) and predicted

clustering for the VAE (right), for two cell types, AML leukemic stem cells (LSCs) and

Raw264.7 macrophages.

(TIF)

S6 Fig. Clustering of AML cell morphologies in latent space using the Louvain method. (A)

2D UMAP projection of learned mask and texture encodings from combined AML datasets.

Each cell was colored based on the raw Louvain clustering result over all datasets. (B) Cluster-

gram of the z-score from morphological groups defined by Louvain methods. Groups with

closely related z-score patterns were combined into larger morphological clusters.

(TIF)

S7 Fig. Images and UMAP projections of cells from each grouped morphological cluster.

(A) Representative imags of cells in different morphological clusters. Scale bar represents 10

μm. (B) 2D UMAP projections of latent space encodings from the combined AML dataset sep-

arated into + and - AhRi conditions.

(TIFF)

S8 Fig. Decoding of the four most enriched mask and texture features for each morpholog-

ical cluster in image space. (A) Decoded texture images are accompanied by unzoomed pixel

difference maps. Scale bar represents 10 μm. (B) Heatmap presenting the distribution of CD34

and CD38 expression in AML LSCs after 90hrs of culture (left). Fractional composition of

each identified morphological cluster for the CD34+CD38- and CD34-CD38+ populations.

(TIF)

S9 Fig. Time evolution of morphological states and CD34 and CD38 levels in AML cells.

(A) Population fractions of cells in different morphological states in the absence(left) or pres-

ence of AhRi (center). Population fractions for cells in each cluster at the last time point

(right). Comparisons of end-point population fractions of different morphological states, both

with and without AhRi treatment, were performed using the Chi-Square test. ��: p< 0.001. (B)

UMAP of cells from the indicated time points. Unless otherwise indicated, cells were not

treated with AhRi. Colors represent CD34 and CD38 expression levels at different time points.

(C) Flow cytometry analysis of CD34, CD38, and CD123 expression levels of patient-derived

AML cells cultured for 80 hrs, taken without imaging.

(TIF)

S10 Fig. Transition dynamics between morphological clusters for AML cells with or with-

out AhR inhibitors. (A) Transition probability matrices between identified morphological

states with and without AhRi, along with matrices showing the difference between these two

conditions (right); two replicates are shown (top and bottom). (B) Representative tracks of sin-

gle cells cultured without (top) or with (bottom) AhRi. Scale bar represents 10 μm. (C) Average

transition magnitude (circle, right) and directionality (vector, left) of cells occupying the 2D

morphological UMAP space. The transition magnitude was calculated as the average magni-

tude of all the transitions within a particular umap region, and the transition directionality was
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calculated as the net transition vector over all cells within that region.

(TIFF)

S11 Fig. Architecture of convolutional classifier neural network for live cell classification.

(TIF)

S12 Fig. Architecture of convolutional variational autoencoder for cell shape and texture

learning.

(TIF)

S13 Fig. Architecture of convolutional vanilla Auto Encoder (AE) for cell shape and tex-

ture learning.

(TIF)

S14 Fig. Architecture of convolutional Adversarial AutoEncoder (AAE) for cell shape and

texture learning.

(TIF)

S15 Fig. Architectures of the generator, encoder, and discriminator module of clusterGAN

for cell shape and texture learning.

(TIF)

S1 Table. Transition probabilities between different morphological clusters in pairwise

tracking analysis.

(PDF)

S1 Movie. Representative timelapse brightfield movie of cultured AML cells.

(MP4)
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