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Abstract

Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may 
experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, 
which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating 
treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This 
review aims to highlight that gap by exploring pre-clinical data—at a behavioral, molecular, and structural level—and recent 
clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex 
is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more 
sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks 
associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that 
ketamine should be administered adhering to sex-specific considerations.
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Introduction
Major depressive disorder (MDD) is a common psychiatric 
illness and one of the leading causes of years lived with dis-
ability worldwide (Collins et  al., 2011; James et  al., 2018; Vos 
et al., 2020). The lifetime prevalence of MDD is more than 20% 
(Harvard Medical School 2007; Hasin et al., 2018), and at its most 
severe form, MDD can result in suicide (Turecki and Brent 2016; 
Bachmann 2018). Women are twice as likely to be affected by 
MDD (Kessler 2003), and evidence suggests that sex can influ-
ence response to antidepressant treatments (Khan et al., 2005; 
Keers and Aitchison 2010), resulting in a major health disparity 
within the field. Though the majority of antidepressant trials 
(89%) report the inclusion of male and female participants, less 

than 1% report an intention to disaggregate by sex (Weinberger 
et al., 2010), and only a small minority of published papers in 
psychiatry (16%) use stratified analyses, pointing to a general 
lack of sex considered in mental health research (Howard et al., 
2017) despite evidence of sexual dimorphism in the field (Salk 
et al., 2017; Eid et al., 2019; Hyde and Mezulis 2020; Kang et al., 
2020)

Current first-line pharmacotherapies for MDD include se-
lective serotonin/norepinephrine reuptake inhibitors, which 
take multiple weeks to show therapeutic effects and only 
30%–40% of people respond to the first line of therapeutics 
(Nierenberg et al., 2000; Lieberman et al., 2008; Machado-Vieira 

International Journal of Neuropsychopharmacology (2022) 25(1): 75–84

https://doi.org/10.1093/ijnp/pyab082
Advance Access Publication: 19 November 2021
Review

International Journal of Neuropsychopharmacology (2022) 25(1): 75–84

https://doi.org/10.1093/ijnp/pyab082
Advance Access Publication:    , 2022
Review

https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-4891-4800
https://orcid.org/0000-0003-1439-0129
mailto:corina.nagy@mcgill.ca?subject=


76 | International Journal of Neuropsychopharmacology, 2022

et al., 2010; Al-Harbi 2012; Kato et al., 2018). Given the need for 
therapeutics with higher efficacy and shorter onset latency, the 
field has shifted focus to rapid-acting antidepressants such as 
ketamine.

The effect of a single infusion of ketamine can last 1 to 2 
weeks (Berman et  al., 2000; Zarate et  al., 2006; Price et  al., 
2009; Diazgranados et  al., 2010a, 2010b; Murrough et  al., 2013; 
Grunebaum et al., 2018), and repeated infusions have safely re-
sulted in a cumulative and sustained effect for up to 3 weeks 
(aan het Rot et al., 2010; Murrough et al., 2013; Shiroma et al., 
2014; Cusin et al., 2016; Singh et al., 2016; Phillips et al., 2019). 
Some of the characteristic features of MDD, including decreased 
grey matter volume in the prefrontal cortex (PFC) and hippo-
campus (HC) (Salvadore et al., 2011; MacMaster et al., 2014) as 
well as decreased plasma and serum levels of brain-derived 
neurotrophic factor (Lee et  al., 2007; Bocchio-Chiavetto et  al., 
2010; Kishi et al., 2018), are ameliorated by antidepressant treat-
ments (Castrén et al., 2007), including ketamine.

Similar to standard antidepressant therapies, both the 
positive and negative outcomes of ketamine treatment seem 
to differ between sexes; therefore, it is imperative to under-
stand the variations to ensure safe and effective treatment. It 
is important to note that sex refers to the biological differences 
between males and females, often in connection with repro-
ductive functions, whereas gender is a social construct that has 
given rise to masculinity and femininity (Short et al., 2013). In 
this review, we focus on sex differences. This review will discuss 
the mechanisms of action of ketamine and explore work in pre-
clinical models demonstrating the effects of sex on behavioral 
responses and molecular, structural, and functional changes 
in the brain. Finally, we will compare these data with clinical 
studies and discuss how they relate.

KETAMINE MECHANISM OF ACTION

Ketamine acts on a number of cellular processes, including but 
not limited to blocking NMDA channels, delta and mu-opioid 
agonism, reduction in cholinergic neuromodulation, and in-
creased release of neurosteroids (Sleigh et  al., 2014); however, 
the following mechanism is the one most associated with its 
antidepressant effects. Ketamine is an uncompetitive NMDA re-
ceptor antagonist (Orser et  al., 1997), and its inhibitory action 
on NMDA receptors is use dependent; specifically, it only blocks 
open-state receptors on tonically firing GABAergic inhibitory 
interneurons (MacDonald et al., 1987; Duman et al., 2016). The 
decreased GABAergic neurotransmission disinhibits excitatory 
glutamatergic neurons, causing burst releases of glutamate 
that activate post-synaptic AMPA receptors (Duman et al., 2016; 
Widman and McMahon 2018). In this instance, AMPA receptor 
activation leads to an influx of Ca2+ through L-type voltage-
gated calcium channels that subsequently induces the release 
of brain-derived neurotrophic factor (BDNF) into the synapse 
(Autry et  al., 2011; Lepack et  al., 2014; Zhou et  al., 2014; Yang 
et al., 2015; Fukumoto et al., 2019) (Figure 1). Conversely, blocking 
AMPA receptors abolishes the effects on downstream proteins 
(Maeng et al., 2008; Li et al., 2010; Zhou et al., 2014). Zanos et al. 
(2016) found that BDNF is elevated only in the HC and not the 
PFC following ketamine treatment, contrary to other studies, but 
these discrepancies may be explained by differences in experi-
mental methods.

Bdnf binds to the postsynaptic TrkB receptor, activating 
the MAPK and PI3K signaling pathways (Huang and Reichardt 
2003; Yang et al., 2015; Ho et al., 2018), leading to phosphoryl-
ation of Mek/Erk and Akt, respectively, and the phosphorylation 

and activation of mTOR (Li et  al., 2010; Duman et  al., 2016). 
Importantly, inhibiting any component of this signaling cascade, 
that is, Erk, Akt, or mTOR, blocks the antidepressant effects of 
ketamine (Li et al., 2010). Akt can also phosphorylate Gsk3, re-
leasing its inhibition on mTOR; as such, co-administering Gsk 
inhibitors with ketamine potentiates its effects and lowers the 
required dose of ketamine (Inoki et al., 2006; Beurel et al., 2011; 
Kitagishi et al., 2012; Liu et al., 2013; Dossat et al., 2018). Evidence 
from post-mortem studies supports ketamine’s role in regu-
lating mTOR-dependent translation showing decreased mTOR 
expression and increased expression of its negative regulator, 
REDD1 (Jernigan et al., 2011; Ota et al., 2014). Interestingly, inde-
pendent of ketamine, Bdnf, Erk, and Akt are directly affected by 
estrogen and progesterone, implying a very important influence 
of sex on the action of ketamine, which we expand on in a later 
section.

Activated mTOR inhibits 4E-BP, resulting in the disinhibition 
of eIF4E (Hoeffer and Klann 2010). Both 4E-BP1 and 4E-BP2 are 
required for the synaptic and behavioral effects of ketamine 
(Aguilar-Valles et al., 2020). mTOR also activates p70S6K, in turn, 
activating eIF4B and inactivating eEF2K (Hoeffer and Klann, 
2010; Autry et  al., 2011; Monteggia et  al., 2013). The reduction 
of phosphorylation on eEF2 removes the suppression of protein 
translation (Autry et al., 2011; Monteggia et al., 2013), resulting 
in increased synaptic strength and spine size (Kopec et al., 2007) 
through increased translation of PSD-95, synapsin-1, and GluR1 
in the post-synaptic terminal (Li et al., 2010, 2011) (Figure 1).

Ketamine’s half-life is 2 to 3 hours (Mion and Villevieille 2013); 
therefore, the active metabolites and long-term potentiation by 
AMPA receptor insertion underlie its short-term and sustained 
antidepressant effects, respectively (Koike et al., 2011; Cornwell 
et al., 2012). Cytochrome P450 (CYP) enzymes are responsible for 
the biotransformation of ketamine into its pharmacologically 
active metabolites: norketamine (NK), hydroxyketamine (HK), 
hydroxynorketamine (HNK), and dehydronorketamine (DHNK) 
(Rao et  al., 2016). (2R,6R;2S,6S)-HNK may be able to induce an 
antidepressant response and cause a glutamate burst and AMPA 
receptor activation, similar to ketamine, independent of NMDA 
receptor antagonism, though this is controversial at this time 
(Zanos et al., 2016; Lumsden et al., 2019). (2R,6R)-HNK is more 
potent than (2S,6S)-HNK—which reflects the relatively greater 
potency of (R)-ketamine compared with (S)-ketamine—and also 
lacks ketamine-induced side effects (Zhang et  al., 2014; Yang 
et al., 2015; Zanos et al., 2016). Sex is again implicated in keta-
mine function because estrogen and progesterone are involved 
in regulation of CYP enzymes, which will be discussed in more 
detail in a later section.

Though the most accepted mechanism starts with NMDA 
receptor inhibition, Zanos et al. (2016) suggest that it is the me-
tabolite (2R,6R)-HNK that is necessary and sufficient for the 
antidepressant response, independent of NMDA antagonism. 
Yang et al. (2017) could not replicate the findings of Zanos et al. 
(2016) in 2 models of depression. Collingridge et al. (2017) cau-
tion against disregarding the NMDAR hypothesis, arguing that it 
remains the strongest proposed mechanism, and Suzuki et al. 
(2017) suggest that (2R,6R)-HNK does, in fact, inhibit synaptic 
NMDA receptors, inducing a similar pathway to ketamine, there-
fore leaving the debate open on the NMDA inhibition-dependent 
hypothesis.

Beyond the antidepressant effects of ketamine described 
above (involving increased translation mediated through BDNF 
and the mTOR pathway), the effects of ketamine result in in-
creased synaptogenesis, spinogenesis, serotonergic neurotrans-
mission, and changes in functional connectivity in/to the PFC 
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and HC. These changes are capable of rescuing the morpho-
logical and biochemical abnormalities present in patients with 
active MDD and result in symptom amelioration (Li et al., 2010, 
2011; Gigliucci et al., 2013; Sos et al., 2013; Yamamoto et al., 2013; 
Nishitani et al., 2014; Thelen et al., 2016; Pham et al., 2017; Moda-
Sava et al., 2019) (Figure 1).

SEX DIFFERENCES IN PRECLINICAL MODELS

Detailed tables corresponding to the main findings presented 
in this section can be found for the behavioral (supplementary 
Table 1), molecular (supplementary Table 2), and structural sup-
plementary Table 3) data related to ketamine’s effects.

Behavioral Responses

Females are consistently found to be more sensitive to ketamine 
both in dosage (Carrier and Kabbaj, 2013; Franceschelli et  al., 
2015; Saland et al., 2016; Sarkar and Kabbaj, 2016; Zanos et al., 
2016; Dossat et  al., 2018) and magnitude of the behavioral re-
sponse (Guo et al., 2016; McDougall et al., 2017; Schoepfer et al., 
2019), while males have a prolonged response (Franceschelli 
et  al., 2015). Interestingly, ovariectomized female rodents, like 
males, do not respond to low-dosage treatment (2.5  mg/kg); 

however, hormone replacement therapy can rescue ketamine 
sensitivity, suggesting that behavioral responses can fluctuate 
with female sex hormones (Carrier and Kabbaj 2013; Saland 
et al., 2016). Although a gonadectomy does not increase behav-
ioral sensitivity to ketamine in males, cyclic administration of 
progesterone can elicit a response to a typically insufficient 
dose, suggesting that testosterone does not have a blunting 
effect, but rather that ovarian hormones enhance the effects 
(Saland et al., 2016). Proestrus females respond to lower doses of 
ketamine than males, and although the same is not true in dies-
trus females, administration of estrogen receptor (ERα/β) agon-
ists can recover this effect (Dossat et al., 2018). Controlling for 
estrus staging and hormone cycling is a critical factor of keta-
mine treatment and needs further research, especially because 
it is overlooked in much of the available literature.

Addiction to ketamine and the likelihood of adverse events 
manifest in sex-influenced ways. For example, at equivalent 
doses, negative side effects are more severe in females than in 
males (McDougall et al., 2017; Schoepfer et al., 2019). In females, 
3 weeks of daily ketamine treatment can result in anxiety- and 
depressive-type behaviors, an effect not found in males (Thelen 
et al., 2016). On the other hand, repeated doses of ketamine at 
levels below the threshold for addiction are more likely to be 
effective in females (Strong et al., 2017; Schoepfer et al., 2019). 

Figure 1. Ketamine mechanism of action: ketamine binds open-state NMDA receptors on GABAergic interneurons, which inhibits their firing. Silencing of the inter-

neurons results in disinhibition of excitatory glutamatergic neurons and a burst-release of glutamate. Glutamate binds AMPA receptors on the post-synaptic mem-

brane, leading to calcium influx through L-type voltage-gated calcium channels (VDCC). This influx causes Bdnf release into the synaptic cleft, which binds TrkB, its 

receptor, on the post-synaptic membrane. Bdnf binding TrkB activates the Mek and PI3K pathways in the post-synaptic neuron, which lead to Gsk3 inhibition, mTOR 

activation, and protein translation. Ketamine’s antidepressant effect is driven by the resulting synaptogenesis and serotonergic neurotransmission via increased trans-

lation of Bdnf, PSD-95, synapsin-1, and GluR1.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
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As described above, lower doses of ketamine are insufficient to 
elicit an antidepressant response in males; however, low doses 
(5 mg/kg) administered chronically rather than acutely appear 
to elicit this response in male rats (Garcia et al., 2008a, 2008b, 
2009). Clinically, this may mean repeated low-dose ketamine 
treatment can have a sustained antidepressant effect in males 
and carry a lower risk for dependency while acting faster than 
traditional antidepressants. Although sex hormones can en-
hance the antidepressant response to ketamine, they also ap-
pear to increase susceptibility to addiction (Wright et al., 2017).

Not all the animal data regarding the addictive potential of 
ketamine can be easily interpreted. For example, some evidence 
points to only males demonstrating addictive-like behaviors 
(Schoepfer et al., 2019), whereas other evidence suggests keta-
mine acts as positive reinforcer for both sexes but that only fe-
males are prone to addictive-like behaviors (Guo et  al., 2016). 
Females have been found to demonstrate aversion to ketamine, 
which has not been seen in males (Strong et al., 2017). The field 
will need more studies with consistent experimental designs to 
reliably detect sex differences in risk of addiction to ketamine.

Enantiomerically pure (R)-ketamine is suggested to be a safer 
alternative to the racemic form of ketamine because it appears 
to have fewer aversive effects, including being more potent and 
free of the psychotomimetic side effects and abuse liability 
(Yang et al., 2015; Zanos et al., 2016). This may present an op-
tion for an efficient antidepressant response while mitigating 
the aversive side effects associated with ketamine.

Both the test and the stress model can influence the outcome 
of an experiment (supplementary Table 1). Different behavioral 
tests are used as a proxy for MDD symptoms, and any given 
study can use 1 of many or a combination of stress paradigms. 
Many studies use stress-naïve animals (no stress exposure), 
which are not ideal for representing the effects of ketamine 
on depression. Inconsistent dose/treatment regimens can also 
introduce error or noise in the findings, though even studies 
using the same dose of ketamine have produced different out-
comes. Additionally, ovarian hormone levels appear to be crit-
ical mediators of the antidepressant response to ketamine, and 
most studies do not control for estrus staging. The animal used, 
including the strain of the animal, can have significant impacts 
on behavioral response. Unsurprisingly, mice and rats do not re-
spond identically, but even the strain of the animal can intro-
duce another layer of complexity. For example, a study using 
female rats, all on the same dose/treatment regimen, found 
differences between the Wistar-Kyoto and Wistar strains (Tizabi 
et al., 2012). Given these factors influencing ketamine response, 
we must cautiously extrapolate preclinical data to humans.

Molecular Effects

mTOR and Glutamate—Most studies find similar effects of 
glutamate in both sexes (Sarkar and Kabbaj 2016; Dossat 
et  al., 2018), though there is some evidence to suggest that 
the glutamate burst, activation of the mTOR pathway, and 
upregulation of AMPA subunits occur only in the PFC of male 
mice and no mTOR activation in the HC of either sex (Thelen 
et  al., 2019). Other evidence suggests ketamine may increase 
synaptic proteins and decrease glutamate and aspartate in the 
male HC and increase aspartate in the female PFC (Franceschelli 
et al., 2015; Thelen et al., 2016). Furthermore, subanesthetic doses 
of ketamine show sex hormone- and regional-specific effects, 
inducing mTOR activation differentially in males, diestrus 
females, and proestrus females (Dossat et al., 2018). Presently, 
the data in the field are too conflicting to draw conclusions on 

the exact differences in these aspects of ketamine’s molecular 
response between males and females (supplementary Table 2).

BDNF—In certain behavioral measures, low levels of forebrain 
Bdnf in female rodents increases sensitivity to depressive-
type behaviors after chronic stress, but not males (Autry et al., 
2009), and positive treatment response is associated with 
increased Bdnf in the dorsal HC in females only (Saland et al., 
2016). Independent of ketamine, progesterone can induce 
phosphorylation of Erk and Akt and upregulate Bdnf expression 
(Kaur et al., 2007). Estrogen can increase Bdnf through binding 
its ERE-like element (Sohrabji et al., 1995). Following ketamine 
treatment, males show increased Bdnf in the PFC and HC, 
whereas for females, changes depend on hormonal status: 
proestrus females have higher Bdnf levels in the PFC compared 
with males and diestrus females, whereas the increase is found 
in the HC of diestrus females (Dossat et  al., 2018). Given the 
enhancing role of ovarian sex hormones on Bdnf signaling, Bdnf 
may be a key mediator of the enhanced ketamine sensitivity in 
females.

Cytochromes—CYP enzymes—specifically CYP2A6, CYP2B6, and 
CYP3A4—are responsible for the biotransformation of ketamine 
into its active metabolites: NK, HK, HNK, and DHNK (Desta 
et al., 2012; Rao et al., 2016). CYP2B6 is the major enzyme that 
mediates N-demethylation to HNK at therapeutic concentrations 
(Yanagihara et al., 2001; Portmann et al., 2010; Desta et al., 2012). 
The positive feedback loop regulating ketamine metabolism 
appears to be mediated, at least in part, by estrogen. Indeed, 
estrogen, ketamine, and its metabolites work in an additive 
fashion to induce transcription of CYP2A6, CYP2B6, ERα, 
and 3 of the 4 AMPA receptor subunits, while ketamine and 
its metabolites can also bind ERα directly (Ho et  al., 2018). 
Furthermore, significant differences in plasma growth hormone 
profiles reveal that hepatic expression of cytochrome enzymes 
is sex influenced in rodents (Waxman and Holloway 2009). These 
data suggest sex differences in CYP enzymes and their resulting 
effects on ketamine metabolism.

Pharmacology and Intracellular Signalling —Studies suggest that 
there may not be sex differences in mTOR phosphorylation 
following low-dose (neither 2.5 nor 5 mg/kg) ketamine (Carrier 
and Kabbaj 2013; Zanos et al., 2016) but that increased sensitivity 
in proestrus females is accompanied by activation of Akt in the 
PFC and Akt/CaMKIIα in the HC (Dossat et  al., 2018). Though 
comprehensive studies where the pathways are manipulated 
are necessary to establish a cause and effect relationship, this 
may suggest that upstream proteins play a role in mediating 
sex differences. There is also evidence that ketamine induces 
∆FosB expression in a sex-influenced manner in the nucleus 
accumbens (NAc), though the difference may depend on the 
treatment regimen and the latency between treatment and 
sacrificing (Strong et al., 2017; Schoepfer et al., 2019).

Though pharmacokinetic profiles are not likely affected by 
sex hormonal fluctuations, there are noticeable differences be-
tween males and females. For example, peak plasma concen-
trations of ketamine, NK, HNK, and DHNK differ between males 
and females with respect to both timing and concentration, and 
because ketamine is not known to undergo local metabolism in 
the brain, the distribution or permeability of NK into the brain 
may be greater in females, whereas males may have slower 
elimination or greater retention of ketamine in the brain. (Zanos 
et al., 2016; Saland and Kabbaj 2018). These differences reflect 
the dissimilarities in CYP enzymes and metabolic capacity and 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab082#supplementary-data
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may relate to the duration of ketamine’s effects (Franceschelli 
et al., 2015; Thelen et al., 2019). Using urine metabolites, it was 
demonstrated that compared with males, females have higher 
metabolite fluctuations and unique overall metabolic profiles, 
identifying sex-specific metabolic trajectories (Guo et al., 2016). 
Contrary to the previous data, 1 study showed no difference in 
ketamine-induced behavioral or pharmacokinetic profiles be-
tween males and females (Chang et al., 2018).

Discrepancies in molecular studies can be attributed to mul-
tiple factors. Supplementary Table 2 outlines the main findings 
of molecular studies in detail. Studies using whole-tissue frac-
tions contain whole-cell information but mask synapse-specific 
transcripts/proteins, whereas studies using specialized dissec-
tions such as synaptoneurosome fractions are specifically en-
riched for synapse-specific changes of transcripts and proteins 
(Williams et al., 2009). Because transcripts and proteins are tran-
siently upregulated, differences in testing latency can result in 
experimental variability. Finally, various stress models induce 
different baselines before ketamine is administered, meaning 
some proteins may be altered before treatment. For example, 
stress induces brain region–specific changes in BDNF signaling. 
It decreases BDNF in the PFC and HC but increases BDNF in the 
NAc and basolateral amygdala (Yu and Chen 2011). If the animals 
are stress naïve, a ceiling effect may be established, preventing 
further changes to transcript or protein expression; this is likely 
true with many proteins that have been analyzed across studies.

Structural and Functional Changes

Synaptogenic effects measured by dendritic spine density are 
the most evidenced structural changes identified in ketamine 
treatment. In mice, increases were found in male PFC and in fe-
male HC, though equivalent increases were not found in female 
PFC. The increased spine density in female HC appears to be in-
dependent of mTOR activation (Li et al., 2010, 2011; Yang et al., 
2015; Sarkar and Kabbaj 2016; Thelen et al., 2019). Male rodents 
with signs of addictive behavior display increased spine density 
in the nucleus accumbens shell, but not the core, whereas fe-
male spine density increases in both the nucleus accumbens 
shell and nucleus accumbens core (Strong et al., 2017).

Ketamine treatment leads to increased functional connect-
ivity to the dorsolateral PFC from several subcortical and cor-
tical regions, and functional brain networks associated with 
emotional regulation, cognitive control, and motivation have 
been found to be hyperconnected following ketamine treatment 
(Gopinath et  al., 2016). Systemically, both acute and chronic 
ketamine administration increase body weight and can reverse 
elevated adrenal weight resulting from chronic mild stress. 
Supplementary Table 3 outlines the main findings of structural 
and functional studies in detail.

HUMAN DATA

Clinical trials of ketamine for MDD and treatment-resistant de-
pression (TRD) are still in their infancy, with surprisingly few 
studies that examine sex differences. In this section, we will dis-
cuss the human correlates to preclinical data.

Neuromolecular changes resulting from ketamine treatment 
are rare in human trials given most protein changes can only 
be examined directly in brain tissue and cannot be detected in 
peripheral tissue. Although ketamine is a relatively new treat-
ment for MDD/TRD and data are limited, it has been demon-
strated that following ketamine administration, plasma BDNF 
is elevated at 2 and 24 hours, showing a significant sex effect in 

which women have higher plasma BDNF at baseline (Woelfer 
et  al., 2019). Post-mortem brain tissue analyses revealed that 
BDNF levels are reduced in the PFC and HC of female and male 
depressed suicides, respectively (Hayley et al., 2015).

Changes in functional connectivity from ketamine treat-
ment have also been described. Patients with MDD have lower 
global brain connectivity, but 24 hours after receiving ketamine, 
increased global brain connectivity can be detected in the PFC. 
These increases are specifically associated with treatment re-
sponse and show evidence of synaptogenesis (Abdallah et al., 
2017). In both humans and rats, ketamine induces a robust in-
crease in PFC-HC coupling (Grimm et  al., 2015). Progesterone 
alone can increase functional connectivity from both bilateral 
dorsolateral PFC and bilateral sensorimotor cortices with the 
HC (Arélin et al., 2015) that fluctuate throughout the menstrual 
cycle. Ketamine increases activity in the midcingulate, dorsal 
anterior cingulate cortex, insula, and thalamus and decreases 
activity in the subgenual/subcallosal anterior cingulate cortex, 
orbitofrontal cortex, and gyrus rectus (Höflich et al., 2017). The 
subgenual cortex is thought to be metabolically overactive in 
TRD (Mayberg et al., 2005), and decreases in orbitofrontal cortex 
and subgenual activity may predict the dissociative effects of 
ketamine (Deakin et al., 2008); therefore, it is possible that the 
cause of the dissociative side effects may also contribute to the 
antidepressant effects. Ketamine dependency is associated with 
dose-dependent white matter deficits in the bilateral frontal 
and left temporoparietal cortices. Because patients with schizo-
phrenia show similar deficits, it is thought that white matter 
contributes to ketamine’s psychotomimetic side effects (Liao 
et al., 2010).

Although there do not seem to be significant differences in 
ketamine treatment response between men and women or be-
tween pre- and post-menopausal women, men and women do 
experience ketamine treatment differently (Coyle and Laws, 
2015; Freeman et al., 2019), a fact that may be related to the dose 
administered. For example, with a 0.5-mg/kg dose of ketamine, 
women presented higher scores on the Hamilton Depression 
Rating Scale than men at 24 hours, but when given 1.0 mg/kg of 
ketamine, women had lower Hamilton Depression Rating Scale 
scores after 24 hours (Freeman et al., 2019). Moreover, side ef-
fects differ between sexes, with men reporting more deperson-
alization, amnesic, verbal learning deficits, subjective memory 
loss, and psychotic disorders (Morgan et al., 2006; Zhang et al., 
2013; Derntl et al., 2019) and women more likely to report in-
creased nausea, headaches, and cognitive impairment disorders 
(Zhang et al., 2013; Freeman et al., 2019). In chronic ketamine 
users, women report more severe withdrawal symptoms such as 
anxiety, dysphoria, tremors, cognitive impairment, and urinary 
discomfort (Chen et  al., 2014). In addition, although transient 
hypertension is common with ketamine treatment (aan het Rot 
et al., 2010; Murrough et al., 2013; Liebe et al., 2017), women reach 
max diastolic blood pressure faster and more severely than 
men, with changes almost twofold higher (Liebe et  al., 2017). 
Liebe et al. (2017) suggest extra attention be paid to women with 
baseline hypertension because of the increased risk of hyper-
tensive crisis (Liebe et  al., 2017). Finally, ketamine has greater 
effects on cardiac output and pain indices (analgesia) in men, 
whereas women have faster clearance of the drug (Sigtermans 
et al., 2009). Similar to rodents, these effects may reflect differ-
ences in CYP enzymes.

CYP enzymes show sex-influenced expression in humans as 
well. CYP2A6, CYP2B6, and CYP3A4 expression are all induced by 
estrogen and progesterone (Higashi et al., 2007; Koh et al., 2012; 
Choi et al., 2013). CYP2B6 and CYP3A4 are the primary enzymes 
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responsible for the biotransformation of ketamine into NK and 
HNK in human liver microsomes (Yanagihara et al., 2001; Hijazi 
and Boulieu 2002). Compared with men, CYP3A4 shows higher 
expression and activity in women (Hunt et  al., 1992; Wolbold 
et al., 2003; Parkinson et al., 2004). CYP enzymes can help explain 
some sex differences, including the influence of different meta-
bolic profiles on clinical outcomes. Women have higher DHNK, 
HNK4a, and HNK4c levels than males—all catalyzed mainly by 
CYP2B6; males have higher HK5a—catalyzed by CYP3A4/CYP2A6 
(Zarate et  al., 2012). This is clinically relevant because higher 
DHNK, HNK4c, and HNK4f levels are associated with lower scores 
on the Brief Psychiatric Rating Scale and Clinician Administered 
Dissociative States Scale (Zarate et  al., 2012), in line with men 
having more psychotomimetic and dissociative side effects.

FUTURE DIRECTIONS

Males and females seem to differ in response to ketamine—as they 
do with other antidepressant therapies—and it is important that 
these sex-influenced responses be considered when going forward 
with clinical trials and potential therapeutic regimens of ketamine 
for MDD/TRD. Preclinical models reveal that females are more sen-
sitive and respond to lower doses of ketamine, likely due to ovarian 
hormones and different metabolic profiles. There are differences 
with respect to behavioral, molecular, structural, and functional 
responses to ketamine in preclinical models, and future clinical 
research needs to include more women and closely examine the 
differences between sexes. Given that ovarian hormones have a 
significant influence on pharmacodynamics and metabolism, 
the phase of the menstrual cycle should be taken into account. 
Additionally, studies need to determine long-term safety and effi-
cacy in both sexes. As seen in preclinical studies, ketamine doses 
that are typically insufficient acutely may be effective as a chronic 
regimen (including in males), which needs to be followed-up in 
humans. To date, the acute effects of ketamine are likely similar 
in both sexes, though side effects vary. As such, males should be 
monitored more closely for psychiatric symptoms such as dissoci-
ation and psychosis, whereas physical symptoms such as hyper-
tension and nausea should be particularly monitored in females.

CONCLUSION

Based on the preclinical and clinical data, it seems that 
long-term sustained use of low-dose ketamine cannot be ad-
ministered equivalently between sexes, given the risk for misuse 
and side effect profiles. In addition, the use of enantiomerically 
pure (R)-ketamine may mitigate risk, because preclinical data 
suggest it is more potent, could potentially be given at a lower 
dose, and may be free of the psychotomimetic side effects of its 
racemic form. Both men and women experience adverse events 
following ketamine administration; however, they are mostly 
transient and commonly do not pose significant health risks to 
the patient. When possible, for women, administration of keta-
mine near the onset of the follicular phase—when estrogen and 
progesterone levels are at their lowest—may also reduce risk be-
cause ovarian hormones likely increase susceptibility to adverse 
events and addiction. Overall, based on the studies reviewed in 
this article, we suggest that ketamine should be administered in 
a sex-specific manner.
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Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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