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There are currently 18 drug classes for the treatment of tuberculosis, including those in the development pipeline. An in silico
simulation enabled combing the innumerably large search space to derive multidrug combinations. Through the use of ordinary
differential equations (ODE), we constructed an in silico kinetic platform in which the major metabolic pathways in Mycobacte-
rium tuberculosis and the mechanisms of the antituberculosis drugs were integrated into a virtual proteome. The optimized
model was used to evaluate 816 triplets from the set of 18 drugs. The experimentally derived cumulative fractional inhibitory
concentration (�FIC) value was within twofold of the model prediction. Bacterial enumeration revealed that a significant num-
ber of combinations that were synergistic for growth inhibition were also synergistic for bactericidal effect. The in silico-based
screen provided new starting points for testing in a mouse model of tuberculosis, in which two novel triplets and five novel quar-
tets were significantly superior to the reference drug triplet of isoniazid, rifampin, and ethambutol (HRE) or the quartet of HRE
plus pyrazinamide (HREZ).

Tuberculosis (TB) caused by Mycobacterium tuberculosis con-
tinues to be a major global health problem, with an estimated

8.6 million new cases and 1.3 million deaths reported in 2012 (1).
The African and Southeast Asian regions contributed about 57%
of all new TB cases. Among all new cases, an estimated 450,000
people developed multidrug-resistant (MDR) TB, and an esti-
mated 170,000 deaths from MDR-TB occurred. This problem is
further accentuated by the high incidence of coinfection of TB
patients with the human immunodeficiency virus (HIV). The cur-
rent first-line treatment is failing, and drug resistance is emerging
rapidly in all regions of the world. The need of the hour is to
discover novel regimens that are synergistically effective and act
within a shortened duration of therapy (2, 3). The current therapy
for drug-sensitive tuberculosis recommended by WHO, termed
DOTS (directly observed treatment short course), is a combina-
tion of four drugs, viz., rifampin (RIF), isoniazid (INH), pyrazin-
amide (PZA), and ethambutol (EMB) (4). Despite the WHO
guidelines (5), treatment modes have been chaotic for individuals
with MDR or extensively drug resistant (XDR) TB in countries
like India (6). Physicians are often forced to choose among the
available antitubercular agents depending on the patient’s disease
and financial status, the cost of drugs, and the tolerability profile
(7, 8). Since most of these alternatives have poor tolerability and
are moderately effective at best, the treatment outcomes are hardly
encouraging.

The use of multidrug combinations is a given paradigm in the
treatment of tuberculosis. While there are guidelines in terms of
how future combination regimens should be derived (9), the drug
discovery cascade and preclinical development center to a large
extent on the progression of individual drugs through these pro-
cesses. At a late stage in discovery, combinations are typically tried
based on the convenience of sourcing and what is topical at the
moment. Our approach of employing a computational model of-
fers the ability for the drug developer to remain agnostic to the
drugs to be included in a combination along with a new one that is
being developed, and this can happen very early in the discovery

cascade, thus opening up better opportunities to discover an op-
timal combination rather than settle for what appears feasible.

With the understanding of how the ebb and flow of metabolites
is related to the growth and death of bacteria, we have built an in
silico dynamic network of 15 interlinked pathways that were cho-
sen based on their connection to the central carbon metabolism
and their potential for possessing drug targets; for example, enoyl-
acyl carrier protein (ACP) reductase for INH or DNA gyrase for
fluoroquinolones. This platform elicits responses to perturbations
that are similar to the way the bacteria respond in the real world.
The details of such a model for Escherichia coli were published
previously (10). In this study, we report the development of an in
silico model for M. tuberculosis based on ordinary differential
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equations (ODE) to identify novel synergistic combinations. We
mapped the inhibitory reactions of 18 TB drugs (see the supple-
mental material), including compounds in clinical development,
based on published literature. They are INH (11–14), RIF (15),
EMB (16–18), amikacin (AMK) (19), streptomycin (STR) (20),
kanamycin (KAN) (21, 22), capreomycin (CAP) (23, 24), clari-
thromycin (CLR) (25), moxifloxacin (MXF) (26, 27), meropenem
(MEM) (28, 29), D-cycloserine (DCS) (30, 31), clofazimine (CFZ)
(32), thiacetazone (THI) (33), bedaquiline (BDQ; previously
TMC207) (34, 35), linezolid (LZD) (36), PA824 (pretomanid)
(37), SQ109 (38), and BTZ043 (39). Hence, to derive a 4-drug
combination, one would employ the formula 18C4 (combina-
tions without repetitions), which is 3,060 combinations that de-
scribe the quartet space for 18 drugs. Assuming each drug/com-
pound is tested across 6 different concentrations (or dosages) in
order to derive the optimum synergistic or even additive dose, the
total number of test conditions would be 3,060 � 6 � 6 � 6 � 6 �
3,965,760. This large search space is obviously not testable in an
experimental format. However, with the aid of the in silico plat-
form, we have studied the combinatorial search space, following
which a prioritized list of combinations were studied in vitro for
superior bactericidal effect. Subsequently, a further shortlist of
bactericidal combinations were tested in vivo in a chronic model
of tuberculosis in mice. This triage resulted in the identification of
several combinations that were superior to the standard first-line
regimen in the mouse model.

MATERIALS AND METHODS
Bacterial strains, growth conditions, and chemicals. M. tuberculosis
H37Rv ATCC 27294, a strain susceptible to all standard anti-TB drugs,
was used for all of the studies in this report. The inoculum used for all
experiments was derived from a seed lot maintained at �70°C that was
prepared after a single round of broth amplification of bacilli isolated
from infected mouse lungs.

The antituberculosis drugs used in this study were procured from
commercial sources or synthesized to order. INH, RIF, PZA, streptomy-
cin sulfate, ethambutol dihydrochloride, kanamycin B sulfate, amikacin
hydrate, CFZ, CLR, CAP, THI, and DCS were procured from Sigma
Chemical Co., USA. MEM was provided by AstraZeneca Pharmaceuticals,
United Kingdom. MXF, PA824, BDQ, SQ109, BTZ043, and LZD were
purchased from Wuxi Apptec, China.

M. tuberculosis H37Rv was grown in 250-ml roller bottles (Corning) as
smooth cultures to mid-log phase (optical density at 600 nm [OD600] of
0.5) and stored frozen as 0.5-ml aliquots in screw-cap cryovials (Corning)
at �70°C. Representative vials from the frozen lot were thawed and plated
for viable counts after 10 days and were found to contain �108 CFU/ml.
For subsequent experiments, seed lot vials were thawed, and the cells were
diluted to get 3 � 105 to 5 � 105 CFU/ml. The media used for growth of M.
tuberculosis were Middlebrook 7H9 broth and 7H10 agar (Difco Labora-
tories) supplemented with 0.2% glycerol, 0.05% Tween 80, and 10% al-
bumin-dextrose-catalase (ADC).

Animals. All experimental protocols involving animals and the use of
animals were approved by the Institutional Animal Ethics Committee,
registered with the Government of India (registration no. CPCSEA 1999/
5). The BALB/c mice used for these studies were 6 to 8 weeks old with an
average body weight of 20 to 25 g (RCC, Hyderabad). Mice were randomly
assigned to cages and allowed to acclimatize for 2 weeks prior to experi-
ments. Feed and water were given ad libitum.

In silico platform. In order to understand how perturbations are gen-
erated and transmitted within the bacterial cell due to inhibition of spe-
cific enzymes that are housed in interconnected cellular pathways, we
built an in silico platform through the use of major M. tuberculosis path-
ways. Our in silico M. tuberculosis system is a dynamic network of 15

interlinked pathways, including glycolysis, the pentose phosphate path-
way, the tricarboxylic acid (TCA) cycle along with the glyoxylate shunt,
fatty acid metabolism (FAS I and FAS II system), biosynthesis of
branched-chain amino acids, pantothenic acid, and coenzyme A (CoA),
cell wall pathways (mycolic acid, arabinogalactan, and peptidoglycan syn-
thesis), the nicotinamide biosynthesis pathway, and replication, tran-
scription, and translation machinery. These pathways were chosen based
on their connection to central carbon metabolism and their potential for
possessing drug targets that are distributed across various interconnecting
pathways. Modeling of the replication machinery ensured dynamic
changes to DNA, which is a major component of the biomass. With a view
to having comprehensive coverage of physiological factors that influence
gene expression, we included transcription factors, activators, and inhib-
itors, as well as protein formation by translational regulators. Thus, the
roles of transcription and translation machinery in enzyme synthesis were
also modeled. Expanding the transcription and translation machinery
gave the leverage to capture the effects of various perturbations that may
possibly feed in at the gene expression and protein levels. This also helped
to expand the drug coverage to targets like RNA polymerase and gyrases.
Published data on enzyme kinetics (Km, Vmax, and Ki), pathway flux dis-
tribution, operon structure, and gene regulation were used to build the in
silico platform. The kinetics of enzymatic and pathway functioning was
simulated by interconnecting ODE describing the kinetic behavior of each
enzyme in the pathway. A kinetic model was thus constructed within the
computational and mathematical framework by using intracellular en-
zyme concentrations and other kinetic parameters, such as Vmax and Km.
In cases where the kinetic data were not available, the data were reengi-
neered by using a proprietary algorithm that aligned predicted data sets to
published data under various growth and inhibition conditions.

In silico monitoring of growth arrest. Each drug exerts its inhibitory
effect on growth via a certain mechanism of action (MOA). Thus, a drug’s
action in the in silico platform is simulated by affecting the target genes/
pathways that are implicated in its MOA. The effects of various combina-
tions are then monitored with respect to synergy, indifference, or antag-
onism. Since the marker “biomass arrest” is common to both kinds of
antibiotics (bactericidal and bacteriostatic) and is also the one that is
routinely evaluated in the laboratory as defined by the MIC, we used this
as the marker of growth arrest in our synergy simulation.

After integrating the various pathways as described above, the final
product from each pathway was assimilated into a biomass reaction,
which included macromolecules like protein, DNA, lipids, etc., with the
known stoichiometry obtained from the literature (40, 41). The biomass
equation is a representation of M. tuberculosis cell growth. A typical sim-
ulation at t � 0 s begins with zero biomass, then a significant lag in the
curve is observed where the cell is synthesizing the precursor molecules,
followed by the rapid increase during log phase, and finally, stationary
phase. The mycobacterial cell growth is simulated for 172,800 s (48 h).
Upon the introduction of an antibiotic during the simulation, e.g., MXF,
which inhibits gyrA, the growth curve is terminated, resulting in a plateau
of the biomass curve, simulating the arrest of the growth of the organism.

The biomass generated in the in silico platform is given by the follow-
ing equation: 0.214 � MTB_protein � 0.036 � MTB_RNA � 0.022 �
MTB_DNA � 0.01 � MTB_PE � 0.05 � MTB_Sm_Mol � 0.02 � MTB_
sugar � 0.01 � MTB_DMPP � 0.17 � MTB_Poly_l_Glu � MTB_
Myc_AG_PG � 0.0080 � MTB_LAM � 0.09 � MTB_AC1_PIM4 �
0.02 � MTB_TAG � MTB_BM, where MTB_protein is the total protein
content of the cell, MTB_RNA is the total RNA content of the cell,
MTB_DNA is the total DNA content of the cell, MTB_PE is the phos-
phatidylethanolamine, MTB_Sm_Mol is the summation of all small mol-
ecules produced within the cell, such as NAD, etc., MTB_sugar is the
sugars, MTB_DMPP is dimethylallyl pyrophosphate, MTB_Poly_l_Glu is
poly-L-glutamine, MTB_Myc_AG_PG is mycolic acid arabinogalactan
peptidoglycan complex (cell wall), MTB_LAM is lipoarabinomannan,
MTB_AC1_PIM4 is phosphatidyl inositol mannosides, MTB_TAG is tri-
acyl-glycerol, and MTB_BM is the total biomass.
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Analysis of synergy and antagonism. When two drugs with indepen-
dent MOAs are administered, their pathways interact, resulting in indif-
ference, antagonism, or synergism. In vitro combinations are usually as-
sessed on the basis of the fractional inhibitory concentration (FIC) index,
which represents the sum of the FICs of each drug tested, where the FIC is
determined for each drug by dividing the MIC of each drug when used in
combination by the MIC of each drug when used alone (42). The equation
above is true in the case of n � 2 drugs acting in combination, which is
expressed as follows: �FIC � FICA � FICB � FICC � . . . .FICN, where
FICA is the FIC of drug A, etc.

Reverse engineering of Ki in the in silico model. The MICs are de-
fined as the lowest concentration of an antimicrobial agent that will in-
hibit the visible growth of a microorganism after overnight incubation
(43). The binding kinetics of a drug to its target and the effect on the
function of the target define how the drug molecule interferes with the
bacterial physiology to produce a therapeutic response. This is referred to
as the mechanism of action (MOA) of the drug. MOAs influence clinical
efficacy, safety, and duration of action and differentiate medicines. With
the experimentally derived MIC for a given drug, the Ki in the platform at
its site of action is modulated until arrest of biomass is observed in the
platform. This modulation is done with the help of reverse-engineering
techniques, where different values of Ki are tested in the in silico model.
Then, an optimal Ki value is chosen such that a higher value would show
survival of the mycobacterium and a lower value would show growth
arrest or inhibition.

Computational synergy module. With the reverse-engineered Ki for
the drugs, combinations of two drugs were simulated in order to propose
the kinds of interaction that they share. In order to present the interactive
relationship, isobolograms were used. The MIC of each drug in the com-
bination was considered 1 unit. In our in silico simulation, the drug is
added when bacterial growth reaches steady state. This is t � 0 s in our
simulation. The total run time for a wild-type uninhibited cell is 172,800
s (48 h). In the drug simulation runs, the effect on biomass is seen as a
plateauing of the biomass curve. To begin with, the first combination was
checked, where 0.5� MIC of drug A [f(x) of A, where x � 0.5] and 0.5�
MIC of drug B [f(y) of B, where y � 0.5] were considered. The combina-
tion was simulated using a simulator developed in-house, and the results
were analyzed as follows:

(i) Survival of the organism. This fact states that the combination of
drug concentrations was not adequate to arrest biomass generation in M.
tuberculosis.

(ii) Inhibition of the organism. This fact states that the combination
of drug concentrations was adequate to arrest biomass generation in M.
tuberculosis.

If the cell survives, then it is concluded that the additive concentration
is not enough and the dose needs to be increased to arrest the growth of M.
tuberculosis. In such a scenario, I � f(x) � f(y) � 2, which corresponds to
an antagonistic combination.

If the growth is arrested at the concentration being considered, the
dose is lowered and the organism checked for survival. Either simultane-
ous reduction of the fractional concentrations of both drugs or reduction
of the concentration of each drug one by one is done, followed by analysis
of the results. If the organism survives the previous data point, the value is
retained for plotting the isobole; otherwise, the dose is lowered further.
These data points mimic I � f(x) � f(y) � 0.5, referring to a synergistic
combination. Data points are also found to lie in the zone of additivity,
i.e., f(x) � f(y) is �0.5 and �2; such a situation is referred to as an additive
combination. Taking into account the twofold (one well) experimental
variability, additivity is depicted by the zone between 0.5 and 2.0 instead of
the line where f(x) � f(y) � 1.0.

The in silico model was validated using pairwise combinations. Among
the entire list of 153 combinations that are possible (18C2), 65 combina-
tions (�40%) were tested in vitro, which is an adequate representation of
the entire set.

In vitro MIC determination. The MICs of antibiotics against M. tu-
berculosis H37Rv were determined using the resazurin-based microplate
assay (44).

In vitro two-dimensional (2-D) checkerboard analysis of antimicro-
bial inhibition. Serial double dilutions of drug A and drug B were pre-
pared in rows (B to G) and columns (2 to 11), respectively, in a 96-well
microplate. M. tuberculosis H37Rv culture (200 	l at 105 cells/ml) was
dispensed into all wells except those in column 1, which was used as a
no-growth control. Column 12 did not have antibiotics and was used as a
growth control. The assay plates were incubated at 37°C for 6 days, and
growth was monitored using resazurin dye, as mentioned above. The
fractional inhibitory concentration (FIC) was calculated as the ratio of the
MIC in combination with the MIC of a single agent. The cumulative
fractional inhibitory index (�FIC) was calculated as the sum of the FICs of
drug A and drug B to evaluate interaction profiles. A �FIC of �0.5 was
interpreted as synergism, a �FIC of �2 as antagonism, and values in
between as additive.

In vitro three-dimensional (3-D) checkerboard analysis of antimi-
crobial inhibition. For studying triplet combinations, the protocol de-
scribed above was followed to initially set up the checkerboard assay with
doublets in multiple plates. The third drug was introduced at different
concentrations but at one concentration per plate. The remaining steps
were followed as described above for the 2-D checkerboard analysis.

In vitro bactericidal-effect analysis. For determining the extent of the
bactericidal effect, sample wells which remained blue in the resazurin
microtiter assay (REMA) and whose 
FICs were within the synergistic-
to-additive range (�0.7 for doublets and �1.5 for triplets) were plated on
Middlebrook 7H10 agar medium and incubated at 37°C for 21 to 28 days,
following which bacterial colonies were enumerated to obtain the net
reduction in CFU in comparison to the counts for the untreated controls
at the start of drug testing, as well as to that achieved when M. tuberculosis
was exposed to each drug alone.

In vivo efficacy study. BALB/c mice were infected with approximately
100 bacilli per mouse by using the Madison aerosol chamber. Infected
mice were housed in individually ventilated cages (Allentown Technolo-
gies) in a biosafety level 3 (BSL3) facility. A total of 20 treatment groups
were included in the study, excluding the pretreatment and posttreatment
control groups which received the vehicle alone. Treatment was initiated
4 weeks after the onset of infection and was administered orally once a day,
6 days a week, for 4 weeks. Forty-eight hours after the completion of
treatment, mice were euthanized with CO2 and their lungs harvested and
homogenized in phosphate-buffered saline (PBS) containing 0.1% bovine
gelatin and 0.1% Triton X-100 using tissue grinders (catalog no.
W012576; Wheaton). Each suspension was serially diluted in 10-fold steps
and plated on Middlebrook 7H11 agar supplemented with 10% albumin-
dextrose-catalase. The plates were incubated at 37°C with 5% CO2 for 3
weeks, and CFUs enumerated. Dunnett’s multiple-comparison test was
used to assess differences in lung CFUs in treated versus untreated mice.

In vivo pharmacokinetic studies. The drugs were formulated in 0.5%
hydroxypropyl methyl cellulose (HPMC)– 0.1% Tween 80 suspensions as
3- or 4-drug combinations. Formulations were prepared by weighing and
adding each compound to the bottle, according to the design. Formula-
tion vehicle was added, and the suspension was stirred overnight. Only
uniform suspensions were used, while those that precipitated were aban-
doned. Formulations were prepared every week, and compound stability
was estimated at the end of the week. Pharmacokinetics (PK) analysis was
performed on infected mice on the 20th day of dosing. Blood samples
were collected from each mouse at 0.5, 2, 4, 6, and 24 h after compound
administration. Blood samples of about 30 	l were collected from mice in
all groups by serial sampling via the saphenous vein into Microvette
CB300 tubes (Starstedt, Germany) coated with EDTA, and plasma (10 	l)
was separated following centrifugation. Plasma samples were stored at
–20°C until analysis using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS).
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Bioanalysis of plasma samples for estimating drug concentration. A
1-mg/ml stock solution of each compound was prepared in dimethyl sul-
foxide (DMSO) for all of the analytes except PZA and LZD, for which the
stock solution was 10 mg/ml in DMSO, and RIF, for which the stock
solution was prepared in 50% acetonitrile in water. Three different sets of
calibration standard (CS) combinations were prepared by 2-fold dilution
of the stock solutions. CS set 1 contained analytes CLO, BDQ, PA824,
PZA, and SQ109, CS set 2 contained analytes BTZ043, MXF, THI, EMB,
and PZA, and CS set 3 contained LZD, INH, RIF, and PZA. A 16-point
calibration curve was utilized for all analytes, and the standard curves
ranged from 0.0005 to 20 	g/ml except for PZA and LZD, for which the
standard curve range was 0.006 to 200 	g/ml. Plasma samples were pre-
cipitated by adding chilled acetonitrile (1:10, vol/vol) containing carbam-
azepine as an internal standard (10 ng/ml). Samples were vortexed and
then centrifuged at 4,000 rpm for 30 min at 10°C. The resulting superna-
tant was mixed with the mobile phase (50% acetonitrile in water with
0.1% formic acid). Five microliters of the sample was injected on to a
liquid chromatographic system (Acquity ultraperformance liquid chro-
matography [UPLC] system, Waters, Milford, MA) coupled to a triple-
quadrupole mass spectrometer (Xevo TQ-S; Waters, Milford, MA). Sam-
ples were separated on an LC column (ACE 3 C18, 50 by 4.6 mm, 3 	m
particle size; Advanced Chromatography Technologies, Aberdeen, Scot-
land) by isocratic elution with 40 parts of 20 mM ammonium formate
containing 0.1% (vol/vol) formic acid and 60 parts of acetonitrile at a flow
rate of 0.5 ml/min with a run time of 4 min. Samples were acquired in
positive ion mode and detected by multiple reaction monitoring (MRM).
The concentrations of the analyte were determined from a standard curve
obtained by plotting known concentrations of the analyte against peak
area ratios (analyte/internal standard peak response).

PK data analysis. PK analyses of the plasma concentration-time rela-
tionships were performed with Phoenix software (version 6.2; Pharsight,
USA). A noncompartmental analysis program, model 200, was used to
calculate PK parameters. The maximum concentration of drug in plasma
(Cmax), time to Cmax (Tmax), elimination half-life (t1/2), and area under
the concentration-time curve (AUC) from time zero to infinity (AUC0 –�)
were estimated. AUC was computed using the trapezoidal rule (linear up
and log down), and the AUC0 –� was considered only when the extrapo-
lated AUC was not more than 20% of the original value. A minimum of
three sample points in the terminal slope were used to calculate half-life.

RESULTS

An in silico M. tuberculosis platform that is capable of simulating
the effects of drugs singly or in combination was built by intercon-
necting ordinary differential equations that describe the kinetic
behavior of enzymes in the various biochemical pathways. This is
a dynamic network of 15 interlinked pathways that include central
carbon metabolism, amino acid and cell wall biosynthesis, and
core features like replication, transcription, and translation. These
pathways were chosen based on their central roles in cellular
growth and survival and their potential for possessing drug tar-
gets. We had earlier built a similar platform for E. coli. Since we
had to overcome the paucity of kinetic data for M. tuberculosis
enzymes, we reengineered the parameters by using a proprietary
algorithm that aligned predicted data sets to published data under
various growth conditions and a large set of MIC data for various
antitubercular agents in stand-alone and doublet combination
mode.

We monitored growth inhibition in the platform according to
significant decreases in biomass levels. Each drug exerts its inhib-
itory effect via a certain mechanism of action (MOA). Thus, the
action of a drug in the in silico platform is simulated by affecting
the target genes/pathways that are implicated in its MOA. We
mapped the inhibition by 18 drugs in the in silico platform (see
“Drug mechanism incorporation in the in silico platform” in the
supplemental material). The effects of various combinations were
then monitored with respect to synergy, indifference, or antago-
nism. Since the biomass arrest marker is common to both kinds of
antibiotics (bactericidal and bacteriostatic) and is also the one that
is routinely evaluated in the laboratory as defined by MIC, we used
this as the marker of growth arrest in our synergy simulation. The
experimentally derived MIC and the reverse engineered Ki as in-
ferred from the in silico platform are shown in Table 1.

The individual drug actions of known antituberculosis agents
were simulated, followed by testing the pairwise and triplet com-
binations. The platform was validated by testing pairwise combi-

TABLE 1 MICs from the in vitro assay, CFU count at the MIC for each drug in the in vitro assay, and reverse-engineered Ki values from the in silico
platform

Drug Code MIC (	M) Ki (	M) �Log10 CFU/ml at the MIC

Amikacin AMK 0.43 18 �0.20
BTZ043 BTZ043 0.0009 7.75E�06 1.40
Capreomycin CAP 5.91 132 �0.11
Clarithromycin CLR 9.63 380 0.75
Clofazimine CFZ 0.26 0.1 0.72
D-Cycloserine DCS 30.59 0.01 0.87
Ethambutol EMB 19.61 0.2 1.40
Isoniazid INH 0.22 0.002 1.02
Kanamycin KAN 1.61 70 0.44
Linezolid LZD 2.31 101 0.25
Meropenem MEM 8.15 0.001 0.57
Moxifloxacin MXF 0.02 0.01 1.40
PA824 PA824 1.09 0.1 1.07
Rifampin RIF 0.009 0.1 1.24
SQ109 SQ109 1.18 0.0002 1.40
Streptomycin STR 0.68 29 0.36
Thiacetazone THI 8.47 0.0002 0.76
Bedaquiline BDQ 0.35 0.2 0.02
Pyrazinamidea PZA NDb ND ND
a PZA was included in the in vivo studies only.
b ND, the MIC and associated values were not determined in the present study.
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nations with a standard in vitro checkerboard method. A total of
153 pairwise combinations that are possible from 18 drugs (18C2)
were studied in the in silico platform. Of these, 65 pairwise com-
binations were studied in vitro in order to validate the results from
the in silico platform. The best �FICs across the 65 pairs were
within twofold of each other when compared between the in silico
and in vitro test systems (Fig. 1A; see also Fig. S1 in the supple-
mental material). The interday reproducibility across in vitro ex-
periments was established, which enabled batch mode testing of
combinations, since all combinations could not be tested in a sin-
gle experiment (see Fig. S2).

Subsequently, 816 triplet combinations (18C3) were studied in
the platform. A three-step process of filtration that removed the
additive and indifferent combinations was done prior to selecting
55 triplet combinations that were then studied in vitro for �FIC, as
well as bactericidal effect. This was necessitated by the fact that an
exhaustive computational analysis over the 10-concentration
range for each drug in a given triplet would have required 1,000
simulations per triplet and a total of 816,000 simulations. With the
available in-house grid-computing infrastructure, this would
have consumed 13 h per triplet, totaling 442 days for the 816
triplets. In the first step for all 816 triplets, a set of 13 equally
fractionated concentrations, from FICA 0.1 � FICB 0.1 � FICC 0.1
to FICA 1 � FICB 1 � FICC 1, were tested in the model, thus
yielding �FICs from 0.3 to 3. Of these, 360 triplets that resulted in
the inhibition of growth at a �FIC of �1.2 were advanced for an
exhaustive analysis of synergy. In the second step, among the 360
triplets, the exhaustive concentration range for any given triplet
was decided by the outcome of the first step. In the case of 2 triplets
where growth inhibition was seen at a �FIC of 0.3, a concentration
range involving FICs of 0.025, 0.05, 0.75, and 0.1 was carried out,
resulting in 4 � 4 � 4 � 64 simulations per triplet, totaling 128
simulations. In the case of 58 triplets where growth inhibition was
seen at a �FIC of 0.6, the range was extended to include a FIC of
0.2 for each drug, resulting in 125 simulations per triplet � 58

triplets � 7,250 simulations. In the case of 130 triplets where
growth inhibition was seen at a �FIC of 0.9, this was extended to
include a FIC of 0.3 for each drug, resulting in 216 � 130 � 28,080
simulations. Finally, in the case of 170 triplets where growth inhi-
bition was seen at a �FIC of 1.2, this was extended to include a FIC
of 0.4 for each drug, resulting in 343 � 170 � 58,310 simulations.
Thus, for 360 triplets, the total number of simulations was re-
duced to 93,768 simulations, resulting in a 90% decrease in overall
time without any sacrifice in the accuracy of the data. The top 51 of
these triplets were studied in 3-D checkerboard in vitro studies. As
with the pairwise combinations, the predictive power of the sim-
ulation was highly significant, with only a 2.5-fold deviation be-
tween experimental FICs and simulation FICs (Fig. 1B; see also
Fig. S3 and Table S1 in the supplemental material).

The synergy obtained with the 3-drug combinations was also
tested for bactericidal effect by plating for CFU enumeration. Ta-
ble 1 shows the extent of kill observed for each drug when tested at
its MIC, i.e., a FIC of 1. One of the most significant findings in this
report is that only some of the combinations that were synergistic
for the growth inhibition based on FIC analysis were also syner-
gistic for killing M. tuberculosis. From the 3-D checkerboard ex-
periments, only those test wells which were at the interface of
growth and no-growth were plated. Such an interface corresponds
to the minimum concentration that resulted in the inhibition of
growth as observed in the REMA. The data in Table 2 (see also
Table S2 in the supplemental material) show the extent of bacte-
rial kill obtained in the case of each triplet at its most potent syn-
ergistic �FIC index value, where the individual drug concentra-
tions were at FICs of �0.5, i.e., half their MICs. Based on
reductions of �2 Log10 CFU/ml, 31/51 triplets tested were syner-
gistic for bactericidal effect. The best �FIC for growth inhibition
did not always yield the most bactericidal combination. This was a
key finding in this study, because there were synergistic combina-
tions based on �FIC that were less bactericidal than the individual
drugs. For example, BTZ043, MXF, and SQ109 are individually

FIG 1 Correlation of FIC results from in silico versus in vitro studies. (A) 2-D combination studies; 65 doublets were analyzed. (B). 3-D combination studies; 51
triplets were analyzed. The experimental values were within twofold of the predicted value.
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bactericidal, but when combined yield only stasis at a synergistic
�FIC of 0.75. This indicates antagonism at the level of bactericidal
effect, even though there is synergy for growth inhibition. Another
example is the combination of CFZ, MXF, and THI.

The in vivo efficacy in the chronic model of tuberculosis in

BALB/c mice was determined for nine test triplets and their asso-
ciated quartets that included PZA. We included PZA in the in vivo
studies because of its reported role in sterilization in vivo, even
though we did not study the combinations that included PZA
either in the in silico platform or in the in vitro studies. The in vitro

TABLE 2 In vitro bactericidal analysis of 51 triplet drug combinations along with the reference regimen of INH, RIF, and EMBa

Drug:

FICA FICB FICC �FIC index �Log10 CFU/mlA B C

AMK EMB THI 0.5 0.5 0.125 1.125 �0.3
AMK MEM MXF 0.125 0.5 0.125 0.75 1.44
BTZ043 CAP MEM 0.125 0.25 0.5 0.875 1.52
BTZ043 CFZ LZD 0.125 0.5 0.125 0.75 1.87
BTZ043 EMB SQ109 0.5 0.125 0.125 0.75 3.7
BTZ043 KAN MEM 0.125 0.125 0.5 0.75 1.42
BTZ043 MEM BDQ 0.125 0.5 0.125 0.75 1.38
BTZ043 MXF SQ109 0.125 0.5 0.125 0.75 3.2
BTZ043 MXF THI 0.125 0.5 0.25 0.875 0.7
BTZ043 PA824 BDQ 0.125 0.125 0.5 0.75 3.44
BTZ043 SQ109 THI 0.125 0.5 0.125 0.75 2.7
CLR SQ109 THI 0.125 0.5 0.125 0.75 2.7
CFZ EMB PA824 0.125 0.5 0.25 0.875 0.3
CFZ EMB SQ109 0.5 0.125 0.125 0.75 1.63
CFZ EMB THI 0.5 0.125 0.5 1.125 0.25
CFZ LIN BDQ 0.25 0.125 0.5 0.875 0.27
CFZ MXF SQ109 0.5 0.25 0.5 1.25 0.7
CFZ MXF THI 0.125 0.125 0.5 0.75 0.65
CFZ PA824 SQ109 0.125 0.25 0.5 0.875 3.7
CFZ PA824 THI 0.5 0.125 0.125 0.75 3.4
CFZ PA824 BDQ 0.125 0.5 0.5 1.125 2.06
CFZ SQ109 THI 0.125 0.5 0.125 0.75 2.7
DCS EMB SQ109 0.125 0.5 0.5 1.125 3.7
DCS EMB THI 0.5 0.5 0.125 1.125 1.28
DCS MXF SQ109 0.5 0.5 0.5 1.5 0.3
DCS MXF THI 0.5 0.5 0.125 1.125 0.3
DCS PA824 BDQ 0.125 0.5 0.25 0.875 2.92
DCS SQ109 THI 0.125 0.5 0.5 1.125 2.7
EMB LZD SQ109 0.5 0.125 0.5 1.125 2.19
EMB LZD THI 0.5 0.5 0.25 1.25 0.27
EMB SQ109 MXF 0.5 0.5 0.125 1.125 3.7
EMB MXF THI 0.5 0.5 0.125 1.125 0.3
EMB PA824 SQ109 0.125 0.25 0.5 0.875 3.7
EMB PA824 THI 0.125 0.25 0.25 0.625 3.7
EMB PA824 BDQ 0.5 0.125 0.5 1.125 2.16
EMB SQ109 THI 0.125 0.25 0.5 0.875 2.7
EMB SQ109 BDQ 0.125 0.5 0.25 0.875 2.62
EMB THI BDQ 0.125 0.125 0.5 0.75 2.24
KAN SQ109 THI 0.125 0.5 0.25 0.875 2.7
LZD MXF SQ109 0.5 0.5 0.125 1.125 0.25
LZD MXF THI 0.25 0.125 0.5 0.875 0.89
LZD SQ109 THI 0.5 0.5 0.25 1.25 1.85
MEM SQ109 THI 0.125 0.5 0.125 0.75 2.7
MXF PA824 SQ109 0.125 0.125 0.5 0.75 3.4
MXF PA824 THI 0.125 0.25 0.25 0.625 3.7
MXF PA824 BDQ 0.25 0.25 0.5 1 3.1
MXF SQ109 THI 0.5 0.5 0.125 1.125 3.4
PA824 SQ109 THI 0.125 0.5 0.125 0.75 3.7
PA824 SQ109 BDQ 0.5 0.125 0.25 0.875 2.7
STR SQ109 THI 0.25 0.125 0.5 0.875 2.7
SQ109 THI BDQ 0.5 0.25 0.125 0.875 2.8
INH RIF EMB 0.5 0.5 0.5 1.5 �0.3
a The maximum bacterial kill achieved for each combination with each drug concentration not greater than 0.5 FIC, i.e., 1/2 MIC, is shown.
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combination studies with PZA were not carried out because it
requires an acidic pH for testing in vitro, which renders the testing
incompatible with other agents. Since in vitro validation was not
possible, the in silico model with PZA was also not carried out.

In the in vivo study, the plasma exposures for the drugs in the
present combination study were similar to their individual expo-
sures, except for SQ109 and EMB (45–50). Exposure to SQ109 was
higher in all the combinations than in previously reported data
when tested individually. The observed AUC for SQ109 in com-
binations (2 to 8.9 	g · h/ml) was higher than the reported AUC
(0.25 	g · h/ml) at a dose of 25 mg/kg of body weight. On the
contrary, the AUC for EMB in combinations (4 to 9.9 	g · h/ml)
was lower than its reported AUC (28 	g · h/ml) at a 100-mg/kg
dose (see Table S3 in the supplemental material).

The triplets were compared to the INH-RIF-EMB combina-
tion, whereas the quartets were compared to the INH-RIF-PZA-
EMB combination. Mice were administered only the dose that
gives the human-equivalent exposure in mice for the individual
drugs (where clinical data are available). In the case of SQ109 and
BTZ043, the dose reported earlier to yield efficacy in the chronic
mouse model was chosen for the combination study. Two of the
18 test combinations were not tolerated beyond the first week of
dosing, and hence, these groups (MXF-THI-PA824 and MFX-
THI-PA824-PZA) were terminated and excluded from the analy-
sis. The reasons for their toxicity are not understood at this time.
All the remaining triplet and quartet combinations were bacteri-
cidal compared to the results for the untreated controls (Fig. 2),
thus translating successfully from in vitro bactericidal effect to in

vivo bactericidal effect. Comparing the extent of bactericidal effect
across the in vitro assays and the in vivo system for the triplet
combinations, 5/8 regimens showed good correlation, while 3/8
regimens overperformed in vitro (Fig. 3). Among these combina-
tions, EMB-BDQ-SQ109 and MXF-PA824-BDQ showed better
efficacy (P � 0.01) than the reference 3-drug regimen (see Table
S4 in the supplemental material).

All the triplet combinations gained further efficacy after the
addition of PZA. We observed superior efficacy for five quartets
compared to the INH-RIF-EMB-PZA combination (see Table S4
in the supplemental material).

DISCUSSION

In a drug discovery cascade, the search for novel antimycobacte-
rial leads often starts with a high-throughput screen with either
the whole bacterium or a specific enzymatic target. The output of
such a screen typically yields unoptimized chemical start points
which are then advanced through various biological assays to de-
rive a valuable clinical candidate. Such a strategy, while powerful
for identifying individual lead compounds, is currently not ame-
nable to identifying potentially valuable combinations that are
central to the treatment of tuberculosis. We developed an in silico
simulation platform that is equivalent to the above-described
high-throughput screen and yields potentially useful combina-
tions that can be advanced to further studies. Similar to a drug
discovery cascade, the in silico output is only the start of a combi-
nation discovery cascade, wherein the subsequent progression de-

FIG 2 In vivo efficacy of triplets and quartets in a chronic model of tuberculosis in BALB/c mice following aerosol infection. LOQ, limit of quantitation (30
CFU/ml of lung homogenate).
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pends on the discovery of bactericidal combinations in vitro and,
finally, bactericidal combinations in vivo.

The in silico platform, which was developed in-house (and is
not commercially available), describes the functioning of M. tu-
berculosis and its response to internal and external perturbations
at the molecular and kinetic levels. The first such kinetic platform
for E. coli was described previously (10). Based on a similar meth-
odology, we have now constructed a dynamic platform for the
pathogen M. tuberculosis. Such a framework responds to pertur-
bations similarly to the way the natural system in question would
respond. This type of modeling has been referred to as an “impos-
sible” problem, primarily because of the dearth of parametric data
required to give meaning to flux equations and secondarily be-
cause of the absence of robust software that can simulate and give
stable solutions in systems comprising thousands of ordinary dif-
ferential equations (ODEs). Our in silico platform has the ability to
solve many thousands of simultaneous ODEs (10). The absence or
the paucity of kinetic parameters could be overcome by numeri-
cally solving the ODEs and reverse engineering for the parameters
that give stable solutions and are closest to the actual cellular phys-
iology. In contrast, one of the major issues with ODE simulations
is that we cannot generate a population data set because they yield
single-cell output. Hence, we cannot model variability or hetero-
geneity. Second, our model simulates logarithmically growing
mycobacteria. The various nongrowing (persistent/dormant bac-
teria) mycobacteria under alternate physiological states, such as
altered oxygen levels, could not be simulated in our model.

None of the combinations in the entire set were antagonistic.
Based on the pairwise validation observed (Fig. 1A), among the
816 triplets (18C3) that were studied in the in silico platform, we
advanced only the top 50 triplet combinations from in silico to in
vitro studies. The objective was to identify synergistic combina-
tions that can be further advanced through in vivo studies, and
hence, we focused on those combinations where the prediction
was for a �FIC of �2 (i.e., synergistic and additive). However, the
selection was not merely based on the best 
FIC but also based on
parameters such as adequate representation of all drug classes

among the combinations and the 
FIC in a given combination
being a result of at least 10% of the MIC of each drug in the
combination. The excellent correlation observed between in silico
and in vitro results (Fig. 1B) corroborated our decision to advance
such combinations to in vitro studies rather than take those from
elsewhere in the rank order list that emerged from the in silico
predictions.

The in silico model was optimized to predict growth and arrest
of growth. Hence, it predicted the synergistic and additive rela-
tionship between drugs in the combination with respect to inhi-
bition of growth, i.e., the best 
FIC in vitro. However, the model
could not predict bactericidal effect, because the current output
parameters do not distinguish between arrest of growth and death.
The assumption was that for a given combination to be bacteri-
cidal, it has to be inhibitory in the first place. Hence, our method
of shortlisting based on growth inhibition was certainly more in-
clusive than exclusive in terms of identifying bactericidal combi-
nations. The reasons that separated those combinations that were
synergistic for bactericidal effect could not be discerned from the
in silico platform. According to the work of Collins and colleagues,
bactericidal effect in rapidly growing bacteria is due to the pro-
duction of free radicals that follows a steep increase in the redox
ratio (NAD/NADH) (51, 52). In our in silico E. coli platform, we
could reproduce the increase in redox ratio with bactericidal tar-
gets (53). We observed experimentally that with bactericidal
drugs, there is a significant production of free radicals in E. coli.
However, in contrast, this increase is only marginal in the case of
slowly growing M. tuberculosis (data not shown) and, therefore,
does not serve as a suitable marker of bactericidal effect in the M.
tuberculosis platform. Additionally, our attempt to correlate a
fingerprint analysis of the flux of various metabolites with bac-
tericidal effect was also unsuccessful. Thus, we have yet to iden-
tify a reliable metabolite signature of bactericidal effect in M.
tuberculosis.

The choice of triplets for the in vivo efficacy studies from the list
of bactericidal triplets was based on the criteria that all of the
members were oral drugs and every drug was represented in at

FIG 3 In vitro-in vivo correlation of bactericidal effect of combinations. The maximum �Log10 CFU/ml achieved with each drug concentration that was not
greater than 0.5 FIC, i.e., 1/2 MIC, in the combination from the in vitro experiment (see Table S4 in the supplemental material) was plotted against the �Log10

CFU/lung from the in vivo experiment.
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least one combination. Based on the bactericidal effect data (Table
2), regimens were selected in the median  0.5 log kill range
(2.62  0.5). From such a distribution, further bias was intro-
duced such that the newer drugs, BDQ, PA824, and SQ109, which
are in clinical trials, were adequately represented. The same was
not possible with LZD, which is also in clinical trials, because with
the exception of 1 combination, the remaining 6/7 combinations
that had LZD yielded �2 log kill under in vitro conditions. A
second study was planned to sample from the upper and the lower
quartiles of the same distribution curve; however, due to the clo-
sure of the AstraZeneca India research and development site,
where the in vivo studies would have been conducted, the subse-
quent set of in vivo studies was not possible.

The doses used in the in vivo studies were based on human-
equivalent effective doses for each individual drug established un-
der similar conditions. If viewed from the perspective of the in
vitro FIC studies, then the drugs in a given combination were
tested at 1 � 1 � 1 � 1 doses instead of the fractional doses which
would have ideally tested the synergism observed from the in silico
and in vitro studies. However, it is also pertinent to note that the
relationship of the in vitro-derived FIC to plasma or tissue con-
centrations is poorly understood. Hence, the decision was to test
full doses instead of fractional doses, in order to ensure maximum
benefit with already approved human doses, which are known to
minimize the risk of the emergence of resistance. Subsequent
studies are needed to further titrate the doses to test whether the in
vitro-derived FIC indices can serve as a guide to select doses in vivo
in order to maximize the benefit of synergy while minimizing the
risk of adverse events.

The standard triage of drug discovery involves potency testing
in vitro (MIC studies), followed by efficacy testing in animal mod-
els after ensuring adequate plasma levels that merit the test of the
hypothesis. In the present study, we employed a similar progres-
sion, wherein the combinations were first tested in vitro and then
shortlisted for in vivo testing based on their effectiveness in killing
M. tuberculosis. Among the nine triplets, CFZ-PA824-BDQ is
advancing in a phase 2 trial (ClinicalTrials registration no.
NCT01691534; 54). All of the BDQ-containing triplets (5/8) (Fig.
3, regimens 1, 2, 4, 6, and 7) and quartets (5/8) in our study were
bactericidal; 5/5 quartets and 2/5 triplets among these were signif-
icantly superior, while the remaining 3 triplets were equivalent to
the first-line regimen. Furthermore, 4/5 of these BDQ-containing
triplets or quartets also contained PA824. The in vitro extent of kill
correlated well with the in vivo extent of kill for all 5/5 triplets,
thereby reinforcing the exquisite efficacy of BDQ and PA824 (56,
57). However, even among the triplets containing BDQ and
PA824, there was a progressive increase in bactericidal effect ob-
served depending on the inclusion of a more bactericidal agent
(MFX � CFZ � EMB � SQ109). As an extension of the findings
reported earlier by Reddy et al. (58), the regimen EMB-BDQ-
SQ109 was significantly better than regimens in which EMB or
SQ109 or CFZ was combined with PA824 and BDQ. Among the
three triplets that overperformed in the in vitro studies (Fig. 3,
regimens 3, 5, and 8), regimens 3 and 5 contained BTZ043, a
compound which has been reported earlier (46) to be more potent
in vitro than in vivo. The only oxazolidinone-containing regimen
that was shortlisted for in vivo studies was inferior to the first-line
regimen. This is in direct contrast to the other regimen containing
EMB-SQ109, which has BDQ instead of LZD. Even under in vitro
conditions, all the LZD-containing combinations performed

moderately to poorly: 4/7 resulted in stasis, while 3/7 resulted in 1
to 2 Log10 CFU/ml kill rates (see Table S2 in the supplemental
material). Only one among these was tested in vivo, and that was
inferior to the first-line regimen. However, there are several lines
of recent evidence to suggest the usefulness of oxazolidinone-con-
taining regimens in patients (59, 60).

An often cited criticism in advancing compounds to in vivo
studies based on in vitro bactericidal effect is the lack of its predic-
tive value. This was partially reinforced from the outcome of these
studies, where 3/8 test triplet combinations and the reference reg-
imen either over- or underperformed under in vitro conditions
(Fig. 3). The absence of a direct correlation can be explained by the
following reasons: whereas under in vitro conditions, the bacilli
are growing aerobically in a planktonic phase, under in vivo con-
ditions in the mouse model, the bacilli are exclusively intracellular
and in an apparently nonreplicating phase (61, 62). However, it is
pertinent to note that in human lesions, all of these physiological
states may be present during the course of the treatment. Hence,
those combinations that are effective in both the in vitro and in
vivo systems would be preferred. As a corollary, the in silico model
described here pertains to only one of the physiological states and
has significant room for further development. The limitation in
predicting the usefulness of drugs like the oxazolidinone class is a
caveat of our current in silico model. The model lacks the capabil-
ity to discern metabolic improvements or any drug-drug interac-
tions in vivo, as it is solely based on the mechanism of action.
Moreover, the suitability of the modeling tool to simulate events
following exposure to multidrug combinations that predict min-
imal relapse rates is as yet unexplored.

New versions of the in silico model would include the simula-
tion of persistor bacteria, intracellular bacteria, etc., depending on
the availability of biochemical knowledge of pathway behavior
under these conditions. Recent studies exploring bactericidal ef-
fect under conditions of alternate carbon sources have revealed
that there is accelerated killing under nonreplicating growth con-
ditions when M. smegmatis is exposed to TMC207 in minimal
medium containing glycerol as the carbon source, in contrast to a
rich medium like LB (63). Our current model does not include
metabolic pathways that are active when M. tuberculosis is grown
in the presence of glycerol as the sole carbon source. Conse-
quently, the M. tuberculosis in silico platform did not test the effect
of drugs when carbon sources other than glucose are used. A few
models that are used to study drug-drug interactions replicate
events closer to in vivo conditions, and such systems have reported
synergism or antagonism with respect to anti-TB drugs that is
otherwise not evident from in vitro studies (64). All models,
whether in vitro, ex vivo, or in silico, can only simulate the in vivo
events to a certain extent. Furthermore, even in vivo animal mod-
els are incomplete with respect to modeling human disease in its
entirety, with the exception of nonhuman primate studies. How-
ever, the outcomes are sometimes unexplainable, perhaps due to
the underlying mechanisms of action of these drugs, which can
vary based on the environment (e.g., PA824 under hypoxic versus
aerobic conditions [37, 65]), or simply due to the occurrence of
complex and variable changes occurring within the host as part of
disease progression. The prowess of the in silico approach de-
scribed here is that the computational architecture and power can
be extended to study any physiological state in a high-throughput
mode, provided the biochemistry of pathways under such physi-
ological conditions is even partially understood. The current
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study did not evaluate nonbeneficial combinations in vitro and in
vivo, and hence, the negative predictive value of the in silico plat-
form model is unknown. However, through our modeling and
subsequent experimental methods, we have sifted through a large
number of potentially useful combinations and unraveled at least
five that are significantly better than the standard regimen con-
taining INH, RIF, EMB, and PZA, thus paving the way for better
options in the care and management of tuberculosis patients.
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