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Abstract: The beginning of the end or the end of the beginning? After two years mastered by
coronavirus disease 19 (COVID-19) pandemic, we are now witnessing a turnaround. The reduction
of severe cases and deaths from COVID-19 led to increasing importance of a new disease called
post-COVID syndrome. The term post-COVID is used to indicate permanency of symptoms in
patients who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection. Immune, antiviral, antimicrobial therapies, as well as ozone therapy have been used to treat
COVID-19 disease. Vaccines have then become available and administered worldwide to prevent
the insurgence of the disease. However, the pandemic is not over yet at all given the emergence of
new omicron variants. New therapeutic strategies are urgently needed. In this view, great interest
was found in nutraceutical products, including vitamins (C, D, and E), minerals (zinc), melatonin,
probiotics, flavonoids (quercetin), and curcumin. This review summarizes the role of nutraceuticals
in the prevention and/or treatment of COVID-19 disease and post-COVID syndrome.

Keywords: long-COVID; SARS-CoV-2; vitamins; flavonoids; zinc; quercetin; natural bioactive compounds

1. Introduction

COVID-19, namely coronavirus disease, is today’s most infectious disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus is an enveloped,
single-stranded, positive-sense ribonucleic acid (RNA) viruses and belongs to the family
Coronaviridae (subfamily Coronavirinae) [1]. It was first detected on 12 December 2019
in Wuhan City, Hubei Province, China [2]. Since then, it quickly spread to other countries
around the world, becoming a threat to global health [3]. The pandemic breakout has
attained worrisome proportions, stunning national healthcare systems into inaction and
necessitating worldwide deployment. Its alarmingly quick transmission and a considerable
percentage of morbidity and mortality led the World Health Organization to recognize
it as a pandemic on 11 March 2020 [4]. Globally, on 5 August 2022, the WHO reported
that there had been 579,092,623 confirmed cases of COVID-19, including 6,407,556 deaths.
A total of 12,308,330,588 vaccine doses were reported to have been administered as of
2 August 2022 [5]. COVID-19 is now accepted as a multi-organ disease characterized by a
wide spectrum of manifestations. The first variants of COVID-19 [6] led to fever, dry cough,
fatigue, and myalgia, and for some, bacterial superinfection in most cases of COVID-19
patients. In severe cases, symptoms progress to COVID-19-associated acute respiratory
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distress syndrome (CARDS) and respiratory failure, requiring intensive care unit (ICU)-
level care. After the COVID-19 era, which is not finished at all yet [7], with new variants
emerging (including BA.4 and BA.5 omicron) [8,9], we have now entered the post-COVID
era. Fortunately, today, in most cases, COVID-19 has become very similar to a flu-like
illness. Mainly, the hassle of quarantine remains as well as the fear of infecting weak people,
those with previous pathologies (or diseases), or people who are not vaccinated. What
is most worrisome is what will happen next; indeed, many individuals who healed from
COVID-19 have developed persistent or new symptoms continuing for weeks or months:
this condition is called “post-COVID syndrome” [10]. The number of people that suffer
from symptoms after SARS-CoV-2 infection is dramatically increasing. They describe a myr-
iad of symptoms: neurocognitive post-COVID symptoms, such as vertigo, loss of attention,
confusion, and brain fog; autonomic symptoms, including chest discomfort, tachycardia,
and palpitations [11]; gastrointestinal symptoms, such as stomachache, vomiting, and
diarrhea; respiratory symptoms, including tiredness, breathlessness, cough, and throat
pain; musculoskeletal symptoms, such as myopathy and arthralgia; psychological-related
symptoms, such as post-traumatic stress, insomnia, depression, and anxiety; and other
manifestations, including skin rashes, asthenia, anosmia, and parosmia [12]. Post-COVID
syndrome is progressively accepted as a novel clinical body in relation to SARS-CoV-2
infection and has been defined as a second pandemic [13]. This disease is not easy to study
since several symptoms of post-COVID can be related to exposure to other infective agents
or to a devastating circumstance, such as the current pandemic, and be connected with
other reasons, including lockdown, unemployment, distress, and fear. Furthermore, in
most cases, it is very difficult to trace the variant responsible for the onset of the disease
also because post-COVID syndrome becomes evident after some time, even long after
the disease has ended. Thus, it is difficult to decide if “possible” and “probable” cases
must be considered as post-COVID symptoms. Moreover, post-COVID syndrome may
differ on the basis of the variant of COVID-19 that determined the disease. Fortunately, the
predominance of the post-omicron COVID-19 condition is lower than the one related to
the other strains [14]. Given the number and heterogenicity of symptoms attributable to
post-COVID syndrome and the emergence of new variants, including the most recent BA.4
and BA.5 [15], several studies are still addressing to the prevention and treatment of these
diseases. Regarding post-COVID syndrome, the first variants usually led to pneumonia-
pulmonary fibrosis in post-COVID patients [16]. Now, post-COVID patients complain of
asthenia, general fatigue, dyspnea, and weakness. At present, sundry vaccines and drugs
are being studied for the prevention and treatment of COVID-19 [17,18]. New therapeutic
strategies have also been suggested, including repurposing [19,20], and several research
trials are currently in progress. Other non-traditional methods to combat COVID-19 and
post-COVID comprise physical exercise [21], yoga and meditation [22], and faster and
less expensive methodologies to discover new effective anti-SARS-CoV-2 medicines. Nu-
traceuticals are known compounds showing immune-boosting, antiviral, antioxidant, and
anti-inflammatory activities [23]. They comprehend Zn, vitamins (C, D, and E), curcumin,
probiotics, selenium, quercetin, and others [24]. Therefore, their use provides possible
alternative preventive and therapeutic support to standard therapies for COVID-19 in
adults and children [25–27]. Moreover, dietary habits and lifestyle changes may influence
the course of the disease [28,29]. Literature research was done on PubMed/MEDLINE,
Scopus, and Google Scholar search engines using general keywords such as “post-COVID”,
“COVID-19”, “long COVID”, and “nutraceuticals”. All abstracts and full-text articles were
examined for their relevance to this review. The aim of this review is to examine the role of
nutraceuticals, prebiotics and probiotics, and diet supplementation in the prevention and
treatment of SARS-CoV-2 viral infection and post-COVID syndrome.

2. Post-COVID Syndrome

Currently, there is no universally accepted definition of the post-COVID syndrome. It
was defined for the first time by Greenhalgh et al. [30] as a COVID-19-associated illness
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extending for more than three weeks after the onset of symptoms and chronic COVID-19
as persistent symptoms extending beyond 12 weeks after the onset of symptoms [31].
Depending upon the duration of symptoms, post-COVID or long-COVID syndrome was
divided into two stages: post-acute COVID, where symptoms extend to more than 3 weeks
but less than 12 weeks, and chronic COVID, where symptoms extend beyond 12 weeks
(Figure 1) [30].
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Figure 1. First classification of post-COVID [30].

Then, several studies reported new terms, such as long COVID, Long Haulers, and
chronic COVID: thus, a new classification was needed [32]. An integrative classification of
post-COVID symptoms was proposed, which include those lasting for more than 24 weeks,
and is post-acute COVID (symptoms from 5th to 12th weeks), long post-COVID (symptoms
from 12th to 24th weeks), and persistent post-COVID (symptoms continuing for more than
24 weeks) (Figure 2).
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Figure 2. Classification of post-COVID as reported by Fernandez-de-Las-Penas et al. [12].

The definition of “long-COVID” is not always the same. The terms “post-COVID
syndrome”, “long COVID”, or “Long Haulers” are sometimes used interchangeably to
mean the same thing [33,34]. However, this is not exactly true. In most cases, long-
COVID is used to mean post-acute COVID [35], i.e., post-acute sequelae of COVID-19, a
situation characterized by the persistence of COVID-19 symptoms beyond 3 months [36].
However, some authors use the term “long-COVID” to indicate symptoms extending for
more 12 weeks from initial symptoms, which is chronic COVID-19 [37]. In our opinion, it
is better to refer to the classification of post-COVID to avoid mistakes.

3. Nutraceuticals and Dietary Supplements against COVID-19 Disease and
Post-COVID Syndrome

The term nutraceutical is a combined terminology for nutrition and pharmaceuticals
that popularly reflects the food or its part that has medicinal benefits on health. Nu-
traceuticals comprise active phytochemicals isolated from plants, dietary supplements, and
functional foods with medicinal properties [38,39]. Nutraceuticals have numerous advan-
tages over synthetic drugs, as they are easily accessible and have negligible side effects
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if administered at the already used and tested dosages. Nutraceuticals include “immune
boosting” foods and nutrients, which are those that can regulate the immune system, such
as zinc, vitamins, curcumin, resveratrol, and selenium [40]. Considering COVID-19, where
there is the absence of efficacious prophylactic and curative drugs and where the mutants
of the SARS-CoV-2 spread seriously affect several populations, one of the crucial defenses
is a strong immune system. The usual therapies for COVID-19 include antiviral agents,
antimicrobials, anti-inflammatories, immunomodulators, angiotensin II receptor blockers,
bradykinin B2 receptor antagonists, and corticosteroids [41]. In addition to conventional
treatment strategies, the use of nutraceuticals has been considered possibly advantageous
in the treatment and/or prevention of COVID-19 and post-COVID-19 [42–47]. Higher age,
obesity, and weakened immune system along with other diseases, including diabetes melli-
tus, are recognized risk factors correlated with the severity of COVID-19 disease [48]. For
these reasons, the role of nutraceuticals, probiotics, and supplements in decreasing the risk
of SARS-CoV-2 infection or attenuating the symptoms of COVID-19 has been largely stud-
ied [49–52]. The use of nutraceuticals for COVID-19 has been often studied in relation to
their interaction with angiotensin-2 converting enzyme (ACE2) [53]. The binding between
SARS-CoV-2 spike glycoprotein with ACE2 receptor leads to ACE2 downregulation and
the resulting enhancement in the level of angiotensin-2 (Ang II) and augmentation of Ang
II/Ang II receptor type 1 (AT1R) axis activation that are associated with proinflammatory
responses [54]. Consequently, natural compounds that decrease ACE2 activity are useful
in the treatment of COVID-19. SARS-CoV-2 utilizes its spike glycoprotein to enter the
host cells. The spike glycoprotein receptor-binding domain (RBD) interacts with ACE2 on
the host cells. The recent Omicron variant is characterized by 32 mutations in the spike
glycoprotein, including 15 of them in the RBD [55]. Numerous molecular modeling docking
studies on natural compounds have been carried out to evaluate their anti-ACE2 activity
by the preventing RBD–ACE2 interaction [56–58]. Laboratory and clinical data support the
possible advantages that some bacterial and molecular compounds may determine in the
immune response to respiratory viruses and their regulatory role in systemic inflammation
or endothelial damage, both representing two essential aspects of COVID-19 [59]. In that
regard, the use of probiotics, prebiotics, and postbiotics has been also studied in the fight
against SARS-CoV-2 infection [60]. There is a clinical demonstration that the modification
of the intestinal microbiota by using these supplements can regulate COVID-19 progression.
Some of the main findings were represented by the reduction of the course of the disease
and the severity of symptoms [61]. Vitamin C, vitamin D, vitamin E, flavonoids, prebiotics,
probiotics, zinc, and melatonin are the principal dietary supplements that are being studied
for their use in COVID-19 (Figure 3) [62]. Moreover, recent studies demonstrated that
the administration of high doses of vitamins C, D, and E, in addition to omega-3 fatty
acids and zinc, may potentially result in a clinical advantage for hospitalized patients [63].
These supplements may reduce the viral load, the disease severity, and hence hospital
stay thanks to their immunomodulatory and antioxidant effects. Furthermore, the defi-
ciency of these nutritional substances may be responsible of improved susceptibility to
infections and dysfunction of the immune system. Nevertheless, there are no specific
randomized controlled trials (RCTs) on vitamin supplementation in the prevention or
treatment of COVID-19 infection. Therefore, clinical trials are needed to confirm the role of
these supplements in COVID-19 prevention and treatment [64,65]. The use of nutraceu-
ticals in post-COVID syndrome is currently under study. Several reports are described
in adults [66,67], older people [68], and children [69,70] for different symptoms including
olfactory loss [71], telogen effluvium [72], and depression and anxiety [73].
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3.1. Vitamins

Vitamins are micronutrients that occupy a crucial position in the appropriate organization
and function of proteins and in some physiological processes and signal pathways. The term
“micronutrients” is related to the fact that they are required in small, generally microgram
amounts daily. However, in critical illness, the requirements for these micronutrients can be
significantly increased [74]. Their usefulness in COVID-19 patients has been demonstrated
and recent research addressed the investigation of their mechanism of action [75].

3.1.1. Vitamin C

Vitamin C, also known as ascorbic acid (Figure 4), is a powerful molecule with
pleiotropic functions. It has been demonstrated to perform an essential role in immune
function; it shows antioxidant, antiviral, anticancer, and antithrombotic effects [76]. It is
mostly represented in the plant world (spinach, chard, broccoli, sweet potatoes, cauliflower,
pepper, carrots, peppers, and others) [77,78]. Many fruits are also rich in vitamin C, such as
oranges, strawberries, apples, cherries, and particularly kiwi. The levels in the Hayward
green cultivar are typically between 80 and 120 mg per 100 g fresh weight [79,80].
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At pharmacological doses, vitamin C is beneficial to patients affected by CARDS and
other respiratory illnesses. Moreover, high-dose intravenous vitamin C (HDIVC) may be
advantageous in patients with diverse viral diseases [81]. The antiviral activity of vitamin C
is due to the support of lymphocyte activity, enhancement of interferon-α production, and
modulation of cytokines, which lowers inflammation, improving endothelial dysfunction
and restoring mitochondrial function. A high dose of vitamin C may have a virucidal effect
since it inhibits viral growth in vitro [82]. The current statement describes the possible
use of vitamin C as a prevention or treatment of COVID-19 patients [83,84]. Its use has
been suggested used as a primary preventative measure for susceptible populations such
as the elderly, those suffering from comorbidities, and healthcare workers with higher
exposure risks [85]. Vitamin C can suppress the cytokine storm, reduce oxidative stress,
decrease inflammation, prevent thrombotic complications, and lower alveolar and vascular
damage [86]. However, the negative effect of vitamin C is that it can lead to the formation of
urinary stones or the occurrence of nephropathies [87]. The recently reported randomized
trial in sepsis demonstrated poorer outcomes in those patients receiving vitamin C [88].
Other studies are ongoing or have recently finished in assessment of the role of vitamin C
in the treatment of COVID-19 (Table 1). A double-blind RCT was carried out by Majidi et al.
(2021) [48] in critically ill COVID-19 patients. The daily supplementation of 500 mg vitamin
C for 2 weeks markedly enhanced the survival of COVID-19 patients during the post-
supplementation period. Moreover, the authors demonstrated that there was no side effect
on kidney function, arterial blood gas parameters, and electrolytes (sodium, calcium, and
phosphorus) after vitamin C supplementation. The treatment with HDIVC of CARDS and
multiorgan dysfunction related to COVID-19 had been previously hypothesized by Liu et al.
(2020) [89]. The authors predicted that HDIVC could suppress cytokine storm caused by
COVID-19, help to enhance pulmonary function, and lower mortality for patients with
COVID-19. In the RCT study, they found that HDIVC was beneficial in terms of stability,
availability, safety, and cost compared with other treatments. Zhao et al. (2021) [90], in a
retrospective case series study, assessed the beneficial effects of HDIVC in patients with
severe COVID-19 pneumonia. The study was carried out on twelve patients (six severe and
six critical). All patients received HDIVC (mean 163 mg/kg in severe patients). Significant
improvements were obtained in C-reactive protein (CRP), lymphocyte count, and CD4.
After HDIVC therapy, the improvements in severe patients were higher than those in critical
ones. HDIVC (11 g per day average for a 70 kg person) was shown to be advantageous
in terms of inflammatory response and immune and organ function. In a retrospective
before–after case-matched study, Zhao et al. (2021) [91] studied the treatment of 55 patients
with moderate COVID-19 with an HDIVC protocol of 100 mg/kg/day for seven days from
admission; the control group was not treated with HDIVC. There was a substantial decrease
in the number of patients treated with HDIVC that evolved from moderate to severe disease
(p = 0.03). In addition, during the first week, there was a reduced systemic inflammatory
response syndrome (SIRS) duration and occurrence (p = 0.0004 and p = 0.0086, respectively)
in the treated patients with respect to the control group. A recent placebo-controlled pilot
study by Zhang et al. (2021) [92], carried out in three hospitals located in Hubei, China,
in 56 critically ill COVID-19 patients, evidenced a substantially lowered mortality after
HDIVC treatment (daily dose of 24 g of ascorbate). HIDIVC did not affect ventilation-free
days but possibly provided a possible sign of benefit in oxygenation for critically ill patients
with COVID-19, characterized by an enhancement in PaO2/FiO2 ratio.

3.1.2. Vitamin D

In the past decade, the crucial function of vitamin D in inflammation and immunomod-
ulation was progressively recognized [93]. The preventive and therapeutic contribution of
vitamin D in COVID-19 has been widely studied [94–96]. Recently, clinical trials and meta-
analysis studies regarding the role of vitamin D in the prevention, progression, and severity
of prevention of COVID-19 infection, have been reported [97,98]. Vitamin D deficiency
seems to aggravate COVID-19 [99]. The severity of hypovitaminosis D was in relation to the
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prognosis of COVID-19 since COVID-19 cases in which hypovitaminosis D was also found
were more susceptible to experience severe COVID-19 [100]. Moreover, hypovitaminosis D
was linked to a higher COVID-19 mortality risk [101]. Besides being a fat-soluble vitamin,
vitamin D is also a steroid hormone, playing a vital role in modulating the immune system
together with maintaining serum calcium homeostasis [102]. Vitamin D can derive from
supplements as vitamin D2 (ergocalciferol) and D3 (cholecalciferol) (Figure 5). Vitamin
D is obtained from limited dietary sources such as oily fish and egg yolks or from photo-
chemical and thermal transformation of the cholesterol precursor 7-dehydrocholesterol
in skin exposed to ultraviolet B radiation [103]. However, the major source of vitamin D
remains sun exposure. The conversion to its hydroxylated metabolites is determined by
skin exposure to ultraviolet B (UVB) radiation through the activity of specific hydroxylases.
Among these, calcifediol (25-hydroxyvitamin D3) and calcitriol (1,25-dihydroxyvitamin
D3) are the immunologically active forms.

Table 1. RCTs studies regarding the use of vitamin C in the treatment of COVID-19 in relation to CRP,
body temperature, lymphocyte counts, CD4+ T-cell counts, and P/F and SOFA scores.

Dose of Vitamin C N◦ of Participants Duration of
Intervention Outcome of Interest Ref.

500 mg
120 hospitalized critically

ill patients with
COVID-19

14 days
A higher mean survival duration with

respect to that of the control group (8 vs.
4 days, p < 0.01).

[48]

24 g
308 adults diagnosed
with COVID-19 and
transferred into ICUs

7 days

Ventilator-free days in the 28 days since
admission to the ICU; Changes in SOFA

scores, in plasma biomarkers of
inflammation, and in pulmonary

infection.

[89]

162.7 mg/kg for
severe and 178.6 mg/kg

for critical patients.

12 COVID-19 patients
(six severe and six

critical)
3 months

Improvement of CRP, body temperature,
lymphocyte counts, CD4+ T-cell counts,

and P/F and SOFA score.
[91]

100 mg/kg/day and a
rate of 1 g/h for 7 days

recovery

55 moderate COVID-19
patients 1 month

A shorter duration of SIRS (p = 0.0004);
lower CRP levels (p = 0.005) and higher
number of CD4+ T cells from Day 0 (on

admission) to Day 7 (p = 0.04).

[91]

24 g 56 critical COVID-19
patients 7 days Improvement in P/F ratio (p = 0.01);

decline in IL-6 (p = 0.04). [91]

CRP, C-reactive protein; ICU, intensive care unit; P/F, PaO2/FiO2; SIRS, systemic inflammatory response syn-
drome; SOFA, Sequential Organs Failure Assessment.

Vitamin D acts by modulating the renin-angiotensin system (RAS) and the expression
of the ACE2; thus, it may prevent adverse. COVID-19 outcomes [104]. It mitigates lipopro-
tein (LPS)-induced acute lung injury by inducing the ACE2/Ang 1–7 axis and suppressing
the ACE/Ang II/AT1R axis [105]. Moreover, vitamin D acts on different mechanisms of
the immune system to restrain the virus, including reduction of the entry of the virus,
lowering the levels of pro-inflammatory cytokines and enhancing the anti-inflammatory
ones, increasing the development of natural antimicrobial peptide, and activating defen-
sive mechanisms including macrophages that are able to demolish SARS-CoV-2 [106,107].
Accordingly, there is a growing amount of data that shows the association between serum
calcifediol and the different clinical outcomes of SARS-CoV-2 infection [108]. A preliminary
study showed the inhibitory effect of calcitriol on the nasal epithelium infected with the
virus [109]. In a genomic study, Glinsky (2020) suggested that, in addition to inhibiting
the expression of ACE2, vitamin D is also able to disrupt the function of SARS-CoV-2 gene
proteins, acting as a repressor of ACE2 expression [110]. Annweiler et al. (2020) [104]
hypothesized that supplementation with high-dose vitamin D could ameliorate the prog-
nosis of COVID-19 in high-risk older patients. The first reports showed that cases with
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COVID-19 had on average significantly lower calcifediol levels compared with negative
patients [111]. Likewise, a substantial reverse relationship was found in 20 European coun-
tries between the mean serum concentrations of calcifediol and the number of COVID-19
cases and mortality [112]. A RCT study showed that vitamin D3 supplementation (5000 IU
daily for 2 weeks) lowers the recovery time for cough and gustative sensory loss in pa-
tients with sub-optimal vitamin D status and showing mild to moderate symptoms of
COVID-19; this was also demonstrated from the progressive decrease in BMI and IL-6
levels [113]. A randomized prospective open-label study carried out in India on 87 patients
with COVID-19 and hypovitaminosis D also showed that supplementation with vitamin
D to standard care significantly ameliorated inflammatory markers. Patients receiving
60,000 IU of daily supplemental vitamin D for eight days showed an improvement in
levels of C-reactive protein, lactase dehydrogenase, IL-6, ferritin, as well as neutrophil
to lymphocyte ratios [114]. Further studies showed that the assumption of vitamin D
200,000–300,000 IU bolus and then reduction to a maintenance dose reduces the risk of
contracting COVID-19 and the severity of the disease [115]. The issues and morbidities
associated with COVID-19, including pneumonia/CARDS, inflammation, and thrombosis,
may be improved by vitamin D [116]. Furthermore, severe-COVID-19 patients are often
predisposed to bone fragility and osteoporosis, which can be related to vitamin D deficiency
and altered platelet-related parameters. Thus, the influence of the relationship between
vitamin D and PLT on the risk and outcome of COVID-19 disease has been studied [117].
Moreover, hypovitaminosis D was associated with a greater COVID-19 mortality risk [118].
Most of the abovementioned reasons and results reinforce the use of supplementation with
vitamin D as potential prophylaxis for COVID-19. Recently, it has been speculated that
vitamin D may play a complementary role in the development of vaccine efficacy [119].
Actually, vitamin D deficiency (calcifediol below 50 nmol/L) is still widespread despite its
important role [120].

Foods 2022, 11, 2884 8 of 26 
 

 

specific hydroxylases. Among these, calcifediol (25-hydroxyvitamin D3) and calcitriol 
(1,25-dihydroxyvitamin D3) are the immunologically active forms. 

 
Figure 5. Structures of vitamin D2, D3, and its main metabolites. 

Vitamin D acts by modulating the renin-angiotensin system (RAS) and the expres-
sion of the ACE2; thus, it may prevent adverse. COVID-19 outcomes [104]. It mitigates 
lipoprotein (LPS)-induced acute lung injury by inducing the ACE2/Ang 1–7 axis and sup-
pressing the ACE/Ang II/AT1R axis [105]. Moreover, vitamin D acts on different mecha-
nisms of the immune system to restrain the virus, including reduction of the entry of the 
virus, lowering the levels of pro-inflammatory cytokines and enhancing the anti-inflam-
matory ones, increasing the development of natural antimicrobial peptide, and activating 
defensive mechanisms including macrophages that are able to demolish SARS-CoV-2 
[106,107]. Accordingly, there is a growing amount of data that shows the association be-
tween serum calcifediol and the different clinical outcomes of SARS-CoV-2 infection [108]. 
A preliminary study showed the inhibitory effect of calcitriol on the nasal epithelium in-
fected with the virus [109]. In a genomic study, Glinsky (2020) suggested that, in addition 
to inhibiting the expression of ACE2, vitamin D is also able to disrupt the function of 
SARS-CoV-2 gene proteins, acting as a repressor of ACE2 expression [110]. Annweiler et 
al. (2020) [104] hypothesized that supplementation with high-dose vitamin D could ame-
liorate the prognosis of COVID-19 in high-risk older patients. The first reports showed 
that cases with COVID-19 had on average significantly lower calcifediol levels compared 
with negative patients [111]. Likewise, a substantial reverse relationship was found in 20 
European countries between the mean serum concentrations of calcifediol and the number 
of COVID-19 cases and mortality [112]. A RCT study showed that vitamin D3 supplemen-
tation (5000 IU daily for 2 weeks) lowers the recovery time for cough and gustative sen-
sory loss in patients with sub-optimal vitamin D status and showing mild to moderate 
symptoms of COVID-19; this was also demonstrated from the progressive decrease in BMI 

Figure 5. Structures of vitamin D2, D3, and its main metabolites.



Foods 2022, 11, 2884 9 of 26

3.1.3. Vitamin E

Supplementation with foods that are a source of vitamin E has been used to control
nutritional deficiencies and obesity and promote acceptable nutritional status in COVID-19
patients by improving immune and antioxidant activities during the infectious phase [121].
The body is not able to synthesize vitamin E. It exclusively formed by photosynthetic
processes of plants and therefore must be consumed from outside sources in minor quan-
tities. It is found in abundance in sunflower oils and olive as well as nuts, soybeans,
avocados, wheat, and green leafy vegetables [122]. Vitamin E comprises a class of liposolu-
ble compounds, including tocopherols and tocotrienols, characterized by a hydroxylated
chromanol ring attached to a hydrophobic phythyl side chain. Despite the existence of
multiple tocopherol and tocotrienol vitamers, the attribute of “vitamin” is only given to
α-tocopherol [123]. α-TOH is a lipid-soluble antioxidant that serves for the preservation
of cell membranes, as it acts as a defense against oxidative stress [124]. It traps reactive
oxygen species, thus preventing the oxidative explosion associated with SARS-CoV-2 [125].
Vitamin E is able to reduce inflammatory cytokine production, promote T-cell proliferation
and differentiation, and influence inflammatory responses in various tissues, including the
lungs [126]. In animal and human models, vitamin E ameliorates the immune response by
decreasing the production of nitrogen oxide, thus downregulating prostaglandin E2 and
inhibiting cyclooxygenase-2, initiating T-lymphocyte signals, and modulating Th1/Th2
balance. Furthermore, it acts as an immunoregulator through protein kinase C regula-
tion [127]. Investigations of the effectiveness of vitamin E in COVID-19 are still underway.
However, its immunomodulatory and preventive function from the oxidative disruption
have contributed to its recognition as a possible supplement for COVID-19 [127]. Vitamin
E supplementation at a high dose of 500 mg/kg can also act as a therapeutic drug to inhibit
ferroptosis, which is one of the central mechanisms of programmed cell death in COVID-19
patients, and reduce ferroptosis damage to multiple organs, including lung, kidney, liver,
intestine, heart, and nervous system [128,129]. The use of vitamin E has been also studied
in vulnerable populations including the elderly and pregnant women, conditions in which
the effect of COVID-19 infection is specifically dangerous for health [130]. In pregnancy,
important alterations occur in the immune, hematological, cardiovascular, and respiratory
systems. As COVID-19 mainly affects these systems, doctors have concerns regarding
COVID-19’s influence on pregnant women. In effect, COVID-19 may cause obstetric compli-
cations such as miscarriage, preterm labor, pre-eclampsia, and fetal distress [131]. Increased
ROS have been demonstrated as a result of the production of free superoxide radicals
and mitochondrial activity of the placenta during pregnancy [132]. As an antioxidant
molecule, vitamin E can decrease oxidative stress during pregnancy [133]. A recent study
evaluated maternal serum afamin and vitamin E amount in pregnant women with COVID-
19 (60 pregnant women with COVID-19 infection and 36 age-matched pregnant women
without any defined risk factors) and the association with adverse perinatal outcomes.
Afamin is a specific binding pleiotropic glycoprotein for vitamin E, and it is an indicator of
oxidative stress. The study in the group of women with COVID-19 showed high levels of
afamin and low levels of vitamin E in all trimesters of pregnancy [134].

3.2. Zinc

Zinc (Zn) is a transition metal that, after iron, is the second in abundance in the trace
metals in the human body. Its crucial role in multiple cellular functions has been recognized,
such as the maintenance of immune health, thus playing an essential role in antiviral
functions. Zn also acts as an anti-inflammatory, antioxidant, and membrane stabilizer agent.
Zinc is present in different foods, mainly in those of animal origin (fish, meat, egg yolk) to
those of vegetable origin (wheat germ and oats), legumes, nuts and walnut seeds, pumpkin,
and sesame [135,136]. Zn deficiency can lead to lymphopenia, caused by a reduction in the
development of lymphocyte B cells in the bone marrow. Coronavirus RNA polymerase
activity is inhibited by Zn, thus conferring to this metal a role in COVID-19 disease [63,137].
Zn supplementation determines the improvement in the efficacy of other treatments, such
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as hydroxychloroquine [138]. Furthermore, a retrospective study carried out on 141 COVID-
19 patients showed that the association of Zn with low-dose hydroxychloroquine led to
significantly fewer hospitalizations [139]. A case series with high-dose Zn on four COVID-
19 patients also showed clinical symptomatic improvements [140]. Zn supplementation may
lower decrease COVID-19-related symptoms such as lower respiratory tract infection. Thus
far, there is no definite awareness of the amount of Zn required to have a therapeutic effect.
Several factors including the presence of pre-existent Zn deficiency and the variance in Zn
bioavailability and absorption must be taken in consideration [141]. A RCT study showed
the safety and feasibility of intravenous Zn treatment and the ability of administering high-
dose intravenous Zn to invert the acute-phase Zn deficiency related to COVID-19 [142].
Further investigation in this field is needed with larger RCTs.

3.3. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine, Figure 6) is a hormone secreted by the pineal
gland mainly during the night and more in infants and adolescents than in the elderly.
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Melatonin is important in the regulation of other hormones and maintenance of the
body’s circadian rhythm. Melatonin is substantially implicated in psycho-neuroendocrine
immunology (PNEI), aging mechanisms, and stress management; moreover, it interacts
with cortisol and immunity and inflammasome pathways, interfering with COVID-19 [121].
The combination of melatonin with conventional therapies may substantially reduce the
mortality of severely ill COVID-19 patients. The main target of melatonin is the immune
system; thus, it has a protective action against gene-mutated variants [143]. Moreover,
melatonin does not act as a virucidal but shows indirect antiviral action by reducing
inflammation, oxidation, and enhancing immune features. Anti-inflammatory effects may
be related to sirtuin-1 (SIRT-1) and nuclear factor kappa-B (NF-κB). Its anti-oxidative effect
is due to up-regulation of anti-oxidative enzymes such as superoxide dismutase, down-
regulation of pro-oxidative enzymes including nitric oxide synthase, and interaction with
free radicals. Furthermore, melatonin improves proliferation and maturation of natural
killing cells, T and B lymphocytes, and monocytes and granulocytes in bone marrow
and other tissues [144]. The direct inhibitory effects of melatonin on the entry of the
SARS-CoV-2 virus into the human host have recently been explored [145]. Melatonin
may bind SARS-CoV-2 RBD and ACE 2, exerting a dual-binding effect. Melatonin is
also a significant inhibitor of calmodulin, which is required for the activation of ACE2.
Thus, its prolonged effect on ACE2 may be due to its binding to the receptor and the
inhibition of calmodulin [131]. It also significantly inhibits inflammasome stimulation
that may indirectly diminish the severity of the cytokine storm and lung destruction [146].
Furthermore, it can restore the circadian rhythm and mitochondrial metabolism, serving
as an adjuvant in COVID 19 [147,148]. Recently, Hasan et al. (2021) [149] completed a
single-center, prospective RCT on the protective effect of melatonin in severe-COVID-19
patients. The protocol consisted of standard therapy with oxygen intubation, remdesivir,
levofloxacin, dexamethasone, and enoxaparin. Half of the patients additionally received
10 mg of melatonin. Interestingly, the mortality rate was 17.1% in the conventional therapy
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group and 1.2% in melatonin group; thus, overall, the mortality was reduced by 93% in
patients treated with melatonin.

3.4. Flavonoids

Flavonoids are a wide class of nutraceuticals present in numerous foods and veg-
etables in the diet, having precious pharmacological properties including antioxidant,
antitumor, and anti-inflammatory effects [150,151]. Several flavonoids have been also
studied for their antiviral properties in vitro and in vivo [152]. Flavonoids determine the
inhibition of viral protease, RNA polymerase and mRNA, virus replication, and infectivity,
thus suggesting an antiviral activity [153]. Moreover, they have shown anti-viral and
immunomodulatory activities against coronaviruses [154]. Nowadays, flavonoids are a
source of possible agents for COVID-19 [155]. Flavonoids may target several inflammatory
pathways associated with SARS-CoV-2, such as modulating NOD-like receptor protein
3 (NLRP3) inflammasome, toll-like receptors (TLRs), bromodomain-containing protein 4
(BRD4), nuclear factor erythroid-derived 2-related factor 2 (NRF2), and ACE2 [156]. Fur-
thermore, they can modulate the immune system and macrophage profile and natural killer
cells and increase anti-inflammatory mechanisms [157]. An instructive molecular modeling
study revealed that epicatechin from Hypericum perforatum provided a better inhibition of
the ACE2 with favorable pharmacokinetic properties than the other known ACE2 inhibit-
ing compounds [158]. Another study showed that the citrus flavonoid naringin is able to
inhibit ACE2 enzyme, showing very low estimated docking energy (−6.85 kcal/mol) [159].
Several flavonoids, including apigenin, fisetin, luteolin, kaempferol, jusanin, and quercetin,
have been effectively used for the prevention and/or treatment of COVID-19 [160,161] and
post-COVID [162–164].

Quercetin

Quercetin (3,3′,4′5,7-pentahydroxyflavone, Figure 7) is a large, distributed plant
flavonoid present in vegetables, leaves, seeds, and grains [165].
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It shows antioxidant, anti-inflammatory, anti-cancer, and immunoprotective effects,
and it can prevent many chronic diseases. It also inhibits lipid peroxidation, platelet aggre-
gation, and capillary permeability and promotes mitochondrial biogenesis. Furthermore,
quercetin has been studied for its promising antiviral effects due to its ability to the inhi-
bition of proteases, polymerases, reverse transcriptase, DNA gyrases, and binding viral
capsid proteins [166]. The phytochemical quercetin supplementation, in the form of foods or
nutraceuticals, may help in the prevention of COVID-19 through multiple mechanisms [167].
Computational studies have highlighted that quercetin is able to inhibit the major targets
of SARS-CoV-2 including 3-chymotrypsin-like protease, 3CLpro, and papain-like protease;
PLpro, which are two enzymes essential for the replication of the virus and therefore impor-
tant drug targets [168]; and RNA-dependent RNA polymerase and spike (S) protein [169].
Nguyen et al. (2012) [170] showed that quercetin inhibited recombinant SARS-CoV 3CLpro
activity by up to 80%. Abian et al. (2020) demonstrated that this activity was related to the
destabilization of its structure [171]. The docking binding energy for 3CLpro and PLpro
correspond to −6.25 and −4.62 kcal/mol, respectively, as assessed by molecular modeling
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studies [172]. Furthermore, quercetin has additional activities uniquely aimed at counter-
acting SARS-CoV-2. Specifically, it alters the expression of 30% of genes encoding protein
targets of SARS-CoV-2 in human cells, and thus, it potentially interferes with the activities of
85% of SARS-CoV-2 proteins [110]. Moreover, quercetin inhibits protein disulfide isomerase
(PDI), the enzyme involved in platelet-mediated thrombin formation, and may alleviate
coagulation abnormalities that may be found in COVID-19 patients [173]. Finally, it may
interact with NLRP3 [174]. These receptors are activated by SARS-CoV-2, leading to a
cytokine storm and destructive inflammation and causes ALI/CARDS in COVID-19 pa-
tients [175]. Activation or inhibition of the NLRP3 inflammasome is influenced by regulators
such as thioredoxin-interacting protein (TXNIP), SIRT1, and NRF2. The anti-inflammatory
activity of quercetin is related to the suppression of the NLRP3 inflammasome by acting
on these regulators. Additionally, quercetin suppresses inflammation through interference
in various signaling pathways, especially NF-κB [176]. With regard to human studies,
the interim results from one RCT that demonstrated that quercetin supplementation im-
proved viral clearance and partially lowered symptoms severity [177]. In another RCT,
the therapeutic efficacy of quercetin was evaluated in combination with antiviral drugs
in hospitalized COVID-19 patients, showing that it diminished the hospitalization period.
Moreover, the serum levels of quantitative C-reactive protein (q-CRP), lactate dehydroge-
nase (LDH), and alkaline phosphatase (ALP) were decreased more efficiently after quercetin
administration [178]. Moreover, a pilot, controlled, and open-label RCT assessed that the
administration of Quercetin Phytosome®(QP), a novel bioavailable form of quercetin, statis-
tically shortened the timing of conversion of the molecular test from positive to negative
and the severity of the symptoms [179]. In a study on 152 COVID-19 outpatients by Di
Pierro et al. (2021) [180], the administration of a daily dose of QP for 30 days determined
a decrease of both hospitalization frequency and length. The demand for noninvasive
oxygen therapy, the progression to ICU, and the number of deaths were also reduced. The
combination of quercetin with standard therapy in the first period of viral infection was
shown to improve the early symptoms and help in preventing the severity of the progression
of COVID-19. Recently, Rondanelli et al. (2022) [181] also evaluated the potential effect of
3 months’ supplementation with QP (250 mg twice a day) as prevention for symptomatic
COVID-19. This pilot study, which was carried out on 120 subjects (63 males, 57 females,
age 49 ± 12), demonstrated that QP administration determined a 14% higher protection
factor of contracting the COVID-19 infection. The results obtained are encouraging, but
further studies with a larger number of participants and longer follow-up are needed before
considering quercetin for regular prophylaxis of COVID-19.

3.5. Curcumin

Curcumin (diferuloylmethane, Figure 8) is the primary curcuminoid derived from the
rhizome of turmeric (Curcuma longa). It has shown diverse biological functions, such as anti-
inflammatory, antioxidant, anticancer, and antimicrobial properties. Besides the antifungal
and antibacterial properties, it may also act as an anti-viral compound by inhibiting the
replication in a wide range of viruses [182]. Therefore, it was proposed as a potential
treatment against COVID-19 [183].
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COVID-19 thanks to its relative safety and to its broad spectrum of antiviral activity against
enveloped viruses, such as SARS-CoV-2. It may directly modify the spike protein and/or
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ACE2 and induce host antiviral responses by targeting NRF2 and HMGB1 and block NF-κB,
inflammasome, HMGB1, and IL-6. Moreover, it inhibits NADPH oxidase; thus, it dampens
ROS production and alleviates oxidative tissue injury [184]. Manoharan et al. (2020) [185]
indicated curcumin as a “wonder” drug in COVID-19 management for its inhibitory
activity exerted by blocking the host viral interaction between viral spike protein and
ACE2 receptor at an entry site in humans. It may also actively interfere via modulating the
proinflammatory effects of Ang II-AT1 receptor-signaling pathways by lowering respiratory
distress in COVID19 treatment. Moreover, they elucidated that the topic application of
curcumin as emulsion may efficiently hamper SARS-CoV2 infections in humans considering
the localization of the viral entry site of ACE2 receptor in nasal cells, eyes, and the mucosal
surface of the respiratory tract. Finally, Liu et al. (2020) [186] suggested curcumin as a
therapy against pneumonia and fatal CARDS in humans. Several computational studies
underlined the capability of curcumin of interacting with several target proteins of SARS-
CoV-2. Shanmugarajan et al. (2020) [187] showed that curcumin inhibits the binding of
spike glycoprotein to ACE2 receptor, thereby attenuating the viral infection. Patel et al.
(2021) [188] showed that curcumin and its derivatives act as inhibitors of the spike protein
displaying binding energies, ∆G, ranging from –10.98 to –5.12 kcal/mol (6CRV) and –10.01
to –5.33 kcal/mol (6M0J). The most interesting compound was bis-demethoxycurcumin,
which showed the best binding affinity to the spike protein of SARS-CoV2. Jena et al.
(2021) [189] reported the potential of catechin and curcumin to interact with the S protein
of SARS-CoV-2 and ACE2 of the human cell membrane and with the RBD/ACE2-complex.

In vitro studies are specified below. Marín-Palma et al. (2021) described the combined
effects of curcumin as antiviral and anti-inflammatory against DG614 strain and Delta vari-
ant [190]. They demonstrated that 10 µg/mL of curcumin showed an antiviral effect of 99%
and 99.8%, respectively, suggesting that this nutrient affects the SARS-CoV-2 replicative
cycle and may exhibit a virucidal effect independently from the virus strain/variant. More-
over, the pro-inflammatory cytokines IL-1β, IL-6, and IL-8 released by peripheral blood
mononuclear cells triggered by SARS-CoV-2 were reduced after treatment with curcumin.
The study by Bormann et al. [191] demonstrated that curcumin potently neutralizes SARS-
CoV-2 in Vero E6 and human Calu-3 cells at low, subtoxic concentrations. Further, curcumin
treatment significantly lowered SARS-CoV-2 RNA levels in cell culture supernatants. The
effectiveness of curcumin on outcomes of hospitalized COVID-19 patients was also recently
reviewed [192]: the additive treatment with various formulations of curcumin brought the
reductions of typical symptoms, the duration of hospitalization, and the number of deaths.
Moreover, this therapy led to improvement in cytokine storm manifestation by reducing
pro-inflammatory and stimulating anti-inflammatory pathways. Interestingly, curcumin
bioavailability can be enhanced by 2000% using piperine as an adjuvant. A double-blind,
controlled RCT indicated that administration of a combination of curcumin and piperine
reduced the days of remission of symptoms and the oxygen requirement. Dose-escalating
studies have demonstrated the safety of curcumin after 3 months of administration [193].

3.6. Prebiotics and Probiotics

Gastrointestinal disturbances are common in COVID-19 patients and may affect the
host’s intestinal microbiota: it means that the diversity and population of beneficial bacteria
may change [194,195]. Dysbiosis has been widely associated with COVID-19 severity [196].
The reduction of gut microbiota richness persists even six months after recovery following
SARS-CoV-2 infection [197]. The modulation of the intestinal microbiota by probiotics,
prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics represent a potential
additive approach for enhancing health of COVID-19 patients [198,199]. Specific probiotic
assumptions can reduce COVID-19 gastrointestinal symptoms, which are often worsened
by the use of antibiotics and anti-inflammatories. Probiotics may reconstitute the gut
microbiome and consequently modulate the immune system, reduce the vulnerability to
infections, and increase the amount of resistance genes [200]. Furthermore, probiotics
may modulate other crucial aspects in the severity of COVID-19 cases, such as improving
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the production of Treg cells to control inflammation [201], reducing D-dimer levels that
are involved in coagulopathy [202], and intensifying the immune efficacy of COVID-
19 vaccines [203,204]. Nevertheless, more studies are needed to evaluate the effects of
probiotics and establish the right doses, the intervention time, and the mechanisms of
action in COVID-19 disease. Two important groups of prebiotics are represented by
fructo-oligosaccharides and galacto-oligosaccharides, which exist in low quantities in
foods and show beneficial effects on human health [205]. Among prebiotics [206], tea
polyphenols (TPs) have been shown to regulate gut microbiota in the prevention and/or
alleviation of COVID-19 through the gut–lung axis [207]. The gut and lungs have been
demonstrated to belong to a shared mucosal immunity that is the gut–lung axis [208,209].
Therefore, adjusting host-microbiota balance in the lung and gut can be a good way
to curb COVID-19. Given the ability of probiotics to act as immunomodulators, anti-
inflammatories, antioxidants, and antivirals, their use may represent a correct way to
support the restoration of the gut microbiota [210]. Probiotics are living micro-organisms
that give an advantage to the host’s health if administered in proper doses [211]. Some of
their general mechanisms are represented by inhibition of bacterial adherence and invasion
capacity in the intestinal epithelium and improvement of the gut barrier function and
immune system [212]. Probiotics have been reported to confine the virus entry by restoring
the ACE2-containing epithelial barrier. Probiotics may also release ACE-inhibitory peptides
that can reduce Ang II expression and induce the synthesis of short-chain fatty acids, which
regulate blood pressure and inflammation. They reduce NO production and stress oxidation
leading to inflammatory pathways (NLRP3 and NF-κB) downregulation. Bacteriocin and
other anti- and pro-inflammatory cytokines produced by the effects of probiotics might
balance pro- and anti-inflammatory cytokine levels and enhance T-cell count in the SARS-
CoV-2 patients infected. Moreover, probiotics may also reduce hyaluronan synthesis,
which could eventually improve CARDS [213]. Some clinical trials regarding probiotics
for the management of COVID-19 are already ongoing [214]. Some representative RCTs of
probiotic intervention in COVID-19 are summarized in Table 2.

Table 2. RCTs studies of probiotic in the treatment of COVID-19 gastrointestinal symptoms.

Study Type Study
Subjects Age Group Number

Enrolled Intervention/Treatment Primary Outcome
Measures Ref

Single-blind RCT Patients with
COVID-19 ≥18 year 152

Oxygen–ozone therapy
with dietary supplements

SivoMixx

Number of patients, in
treatment, needing

orotracheal intubation.
[215]

RCT
COVID-19 patients

requiring
hospitalization

18–60 year 300

Combination of
Lactobacillus plantarum

CECT7481, L. plantarum
CECT 7484, L. plantarum

CECT 7485, and
Pediococcus acidilactici

CECT 7483 vs. Placebo

Severity progression of
COVID-19, stay at ICU,

mortality ratio.
[216]

Double-blind
RCT

Persons with
household contact of

COVID-19 patient
≥1 year 182 Probiotic (Lactobacillus

rhamnosus GG) vs. Placebo
Changes in Shannon

bacteria diversity. [217]

Double-blind
RCT

Healthcare workers
without COVID-19 ≥20 year 314 Probiotic (Lactobacillus)

vs. Control (Maltodextrin)

Occurrence of
SARS-CoV-2 infection in

healthcare workers.
[218]

Open-label RCT
COVID-19 patients

requiring
hospitalization

≥18 year 40
Dietary Supplement:

Probiotic vs. No
intervention

Cases with discharge to
ICU. [219]
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Table 2. Cont.

Study Type Study
Subjects Age Group Number

Enrolled Intervention/Treatment Primary Outcome
Measures Ref

Double-blind
RCT

COVID-19 patients
with diarrhea ≥18 year 108

Synbiotic (Omnibiotic
AAD: 2 Bifidobacterium

strains, Enterococcus,
7 Lactobacillus strains) vs.

Placebo

Duration of diarrhea. [220]

SivoMixx: Streptococcus thermophilus DSM322245, Bifidobacterium lactis DSM32246, Bifidobacterium lactis DSM32247,
Lactobacillus acidophilus DSM32241, Lactobacillus helveticus DSM32242, Lactobacillus paracasei DSM32243, Lactobacillus
plantarum DSM32244, and Lactobacillus brevis DSM27961; ICU, intensive care unit; RCT, randomized controlled trial.

3.7. Nano-Nutraceuticals

Nanotechnology is widely used in different fields of research with countless biomedical
science applications from cancer nanomedicine [221,222] to antimicrobial activity [218,219],
and finally, advancements in the area of nanomedicine in healthcare have been carried out
in fighting the COVID-19 pandemic [223–227]. Nanomedicine applications and lipid-based
nanoparticles can also aid in the occurrence of efficacious vaccines and/or therapeutics
against COVID-19 [228]. Potential immuno-nanomedicine strategies to curb COVID-19
have been also proposed [229]. Recently, nano-nutraceuticals have been suggested to
manage pre- and post-COVID infections [230–232], including fisetin flavonoid nanopar-
ticles [233], resveratrol and Zn nanoparticles [234], and curcumin nanoparticles [235].
Actually, for example, the clinical use of curcumin is hampered by its low oral bioavail-
ability. The use of several formulations, such as packaging with nanoparticles, liposomes,
and micelles, represents a suitable strategy to improve curcumin bioavailability [236].
Sharma et al. reported that curcumin-encapsulated polysaccharide nanoparticles (CUR–
PS-NPs) strongly inhibit the release of cytokines, chemokines, and growth factors related
with damage of SARS-CoV-2 spike protein by deactivating mitogen-activated protein ki-
nase (MAPK)/NF-κB signaling in epithelial cells [237]. The nano-formulation of curcumin
named “nanocurcumin” improved dissolution rate, saturation solubility, bioavailability,
and drug stability. Tahmasebi et al. (2021) [238], in a randomized, double-blind-placebo
controlled trial study, evidenced that the treatment with nanocurcumin led to an increase of
the number of suppressor Treg cells and levels of transcription factor forkhead box protein
P3 (FOXP3), IL10, IL35, and transforming growth factor-β (TGF-β). The same research
group also demonstrated that nanocurcumin was able to reduce the frequency of Th17 cells
and corresponding inflammatory factors in mild- and severe-COVID-19 patients [239].

4. Conclusions

It is now established that nutrition and nutritional supplements are an important role
in the prevention and treatment of COVID-19 disease and post-COVID syndrome. Post-
COVID syndrome refers to a variety of symptoms with a duration beyond the acute phase
of COVID-19. It is mainly characterized by pulmonary, musculoskeletal, digestive, and
neurological problems. It represents an emerging global crisis. However, the mechanisms
by which SARS-CoV-2 may cause post-COVID syndrome and the best therapeutic options
are not clearly defined. Besides the common therapies used for COVID-19, flavonoids,
curcumin, melatonin, prebiotics, probiotics, and vitamin C, D, and E have shown encour-
aging data suggesting their use to prevent and counteract the symptoms of COVID-19
pandemic infection, and they are currently under study in the prevention and treatment
of post-COVID syndrome as well. Nano-nutraceuticals may represent new strategies for
the development of new therapies to curb COVID-19 and post-COVID syndrome. In any
case, new studies are urgently needed to further investigate the molecular mechanisms
played by nutraceuticals in the prevention and treatment of post-COVID syndrome. This
will allow more rational and efficient use of these safe products.
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5. Future Perspectives

Nutrition plays an important role in the management of the current COVID-19 and
post-COVID syndrome. Numerous studies have demonstrated the importance of nu-
traceuticals for the prevention and treatment of these diseases. Future research may be
addressed to in deep studies on the nutraceutical that have already demonstrated their
usefulness and to new, potentially effective natural compounds. A longer efficacy with no
side effects is a key requirement to plan future treatments needed to manage COVID-19
and post-COVID-19 infection. Specifically, in the last two years, efforts have been mainly
focused on fighting COVID-19 in order to reduce hospitalizations and deaths. Now, is the
time to focus on post-COVID, which is currently the most worrisome enemy and for which
no validate therapeutic options are available.
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