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Human intestinal helminth infection affects more than 1 billion people often in the world’s

most deprived communities. These parasites are one of the most prevalent neglected

tropical diseases worldwide bringing huge morbidities to the host population. Effective

treatments and vaccines for helminths are currently limited, and therefore, it is essential

to understand the molecular sensors that the intestinal epithelium utilizes in detecting

helminths and how the responding factors produced act as modulators of immunity.

Defining the cellular and molecular mechanisms that enable helminth detection and

expulsion will be critical in identifying potential therapeutic targets to alleviate disease.

However, despite decades of research, we have only recently been able to identify the

tuft cell as a key helminth sensor at the epithelial barrier. In this review, we will highlight

the key intestinal epithelial chemosensory roles associated with the detection of intestinal

helminths, summarizing the recent advances in tuft cell initiation of protective type 2

immunity. We will discuss other potential sensory roles of epithelial subsets and introduce

enteroendocrine cells as potential key sensors of the microbial alterations that a helminth

infection produces, which, given their direct communication to the nervous system via

the recently described neuropod, have the potential to transfer the epithelial immune

interface systemically.

Keywords: tuft cells, enteroendocrine cell (EEC), microbiome, epithelium, helminth, G protein-coupled receptor

(GPCR)

INTRODUCTION

Soil-transmitted helminths (STHs) affect >1 billion people in the world’s most deprived
communities (1). These parasites are one of the most prevalent neglected tropical diseases
worldwide bringing huge morbidities to the host population. Sub-Saharan Africa alone is estimated
to lose 2.3 million disability-adjusted life-years annually (2). Constant advances have been made in
identifying type 2 immune responses as key to helminth control and expulsion (3–8), with the
cytokine interleukin (IL)-13 being crucial in driving the characteristic “allergic” immune response
(3). CD4+ T-cells and more recently type 2 innate lymphoid cells (ILC2s) are key producers of
these cytokines, with ILC2 believed to be the major initiators of type 2 immunity (9, 10) driven by
the release of the epithelial alarmins IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 (11).
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Following the identification that tuft cells of the rat epithelium
(12) possessed alpha-gustducin, the G-protein subunit of
numerous taste receptors, it had been postulated that these cells
could act as solitary chemosensory apparatus within tissues. The
identification of the tuft cell-specific marker doublecortin like
kinase 1 (DCLK1) (13–17) and the discovery of the downstream
master transcription factors, Pou domain, class 2, transcription
factor 3 (Pou2f3) and growth factor-independent 1b (GFI1b) (15,
18–20), allowed further elucidation of this tuft cell chemosensory
hypothesis. In 2016, three key papers cemented the importance
of tuft cells in sensing parasites and brought tuft cell biology to
the forefront of helminth immunity (21). Through examination
of Pou2f3 null mice during a small intestinal helminth infection,
Gerbe et al. (19) defined that IL-13 acted downstream of the
tuft cell lineage, suggesting a tuft cell initiated IL-25-driven
positive feed-forward loop resulting in ILC2 expansion and IL-
13-driven tuft and goblet cell hyperplasia (Figure 1), essential
for helminth expulsion (22, 23). In parallel to these studies, von
Moltke et al. (24) confirmed tuft cells as IL-25 expressers that,
following small intestinal helminthiasis, underwent hyperplasia
via an ILC2 derived IL-13 interaction with the IL-4Rα in a
feed-forward loop, presumably via stem cell niche signaling
(25, 26). Finally, mice null for the G-protein subunit gustducin
or the transient receptor potential cation channel, subfamily M,
member 5 (TRMP5), a cation channel known to be important
in the signaling cascade of chemosensory cells in the gut,
mirrored the delayed tuft and goblet cell hyperplasia following
a small intestinal helminth infection, giving the first indication
of the chemosensory mechanisms of initial parasite detection
(27). This minireview will focus on recent advancements in
tuft cell biology as well as examining the potential for other
epithelial chemosensory responses to helminths themselves and
the microbial dysbiosis infection induces.

CURRENT TUFT CELL ADVANCEMENTS

Single-cell analysis of the intestinal epithelium now suggests
that tuft cells are a heterogenous population, with two proposed
distinct subsets—tuft-1 and tuft-2—with differing cytokine
profiles (28, 29). In response to undefined helminth antigens,
small intestinal tuft cells produce TSLP as well as IL-25, which
are crucial for the initiation of the anthelmintic mucosal response
(28, 30). Only tuft-2 cells produce TSLP, although a functional
role for TSLP from tuft cells has yet to be demonstrated (28).
Schneider et al. (31) showed that genetic deletion of tumor
necrosis factor alpha-induced protein 3 (Tnfaip3), a negative
regulator of IL-25 signaling in ILC2, caused tuft cell and goblet
cell hyperplasia, as well as small intestinal lengthening. Tissue
remodeling that mimics the histological features of a helminth
infection (31), reinforcing the importance of IL-25 signaling in
type 2 immunity.

The initial identification of the potential taste receptor
signaling pathways involved in parasite recognition at the
epithelial barrier by Howitt et al. (27) has since been expanded
upon. Luo et al. (32) further elucidated the Trpm5-dependent
sensory pathway by showing that stimulation of intestinal

organoids using larvae and antigens of the small intestinal
helminth Trichinella spiralis stimulates increased intracellular
calcium levels, resulting in tuft cell depolarization. They
further observed that IL-13 administration promotes tuft
cell hyperplasia as well as upregulation of genes including
the Tas2r family of bitter taste G-protein coupled receptors
(GPCRs) and the succinate receptor Sucnr1, indicating an
adaptive ability of these chemosensory cells during T. spiralis
infection. The importance of Tas2r in tuft cell recognition
of helminths was demonstrated when pretreatment of small
intestinal villi with allyl isothiocyanate, an inhibitor of bitter
taste receptors, abolished T. spiralis-induced tuft cell-derived
IL-25. Conversely, increased tuft cell production of IL-25
was seen after the administration of salicin, a Tas2r agonist
(32). Two groups have also demonstrated the importance
of Sucnr1 with Lei et al. (33) demonstrating that tuft
cells are the sole epithelial expressers of this receptor in
the small intestine. They, in parallel with Schneider et al.
(31) demonstrated that dietary succinate increases small
intestinal tuft cell secretion of IL-25 and promotes hyperplasia.
Interestingly, examination of Sucnr1 null mice demonstrated a
prevention of succinate-induced tuft and goblet cell hyperplasia
(33). Nadjsombati et al. (34) demonstrated that succinate
metabolites are produced by the small intestinal helminth
Nippostrongylus brasiliensis in vitro; yet, immunity against N.
brasiliensis is not abrogated in Sucnr1−/− mice, suggesting no
requirement or at least redundancy in this potential helminth
recognition pathway.

Schneider et al. (31) also reported that small intestinal tuft
cells on Tritrichomonas-colonized mice highly express not only
Sucnr1 but also GPCRs for short-chain fatty acids Ffar3. This
result is also corroborated by other groups, who reported that
Ffar3 is highly expressed by intestinal tuft-2 cells, but not
intestinal tuft-1 cells or tracheal tuft cells (28, 34). Although
the discovery of Ffar3 expression on small intestinal tuft cells
is an interesting find, little is known at the moment on how
the receptor impacts anthelmintic immunity. Interestingly, in a
murine model of allergic airway inflammation, Ffar3 knockout
abrogates Heligmosomoides polygyrus-induced alleviation of
airway inflammation but did not affect worm burden in the small
intestinal niche of this helminth (35). Murine small and large
intestinal tuft cells also express choline acetyltransferase, which
catalyzes the production of acetylcholine (36). Although the close
interaction between airway tuft cells and cholinergic neurons has
been previously demonstrated (37), with recent demonstrations
of tuft cell acetylcholine driving ciliary beating in a Trpm5-
dependent fashion (38), their role in cholinergic neuron signaling
in the intestine is less clear. There is evidence that during genetic
and antagonist muscarinic receptor blockade, small intestinal tuft
cells arise with an enteroendocrine-like phenotype to sustain the
murine intestinal epithelial cholinergic niche (39). Moreover, as
acetylcholine receptors are also expressed on diverse cell types,
including goblet cells (where acetylcholine promotes mucus
secretion), dendritic cells, macrophages, as well as B and T
cells (40, 41), there is the unexplored possibility that tuft cells
may also play a larger role in anthelmintic immunity via their
production of acetylcholine.
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FIGURE 1 | Current understanding of chemosensory detection of helminths at the epithelial barrier and a flavor of possible future perspectives. (1) Helminths are

detected by tuft cells (red) through an as yet undefined receptor and ligand, although microbial dysbiosis produced via helminth colonization may be a potential

candidate. (2) Gustducin-α and the transient receptor potential cation channel, subfamily M, member 5 (TRMP5) are required for the signaling cascade and Ca2+ flux,

allowing the secretion of the alarmin interleukin (IL)-25 and leukotriene C4 in an arachidonate 5-lipoxygenase (ALOX5)-dependent mechanism signaling to resident

type 2 innate lymphoid cells (ILC2s). (3) These factors in turn increase ILC2 numbers and their secretion of the cytokine IL-13, driving a feed-forward loop via the stem

cell niche resulting in helminth expulsion. Tuft cell-derived acetylcholine could also possibly alter this epithelial stem cell niche and local immune responses. (4)

Potential cross communication of tuft cells via cytospinules and the relay of helminth-derived signals to coordinate surrounding epithelial response. (5) The potential of

enteroendocrine cells (purple), which host an array of chemosensory apparatus, to directly sense a helminth infection or infection-induced microbial dysbiosis. (6) The

release of enteroendocrine peptide hormones signaling to the surrounding immune system either directly or via neuronal communication is proposed.

Recent findings have also begun to elucidate the initial
on switch of the tuft cell/ILC2 feed-forward loop, which,
given the production of IL-25 in the naive state (24), was
likely to be another messenger or danger signal. Tuft cells
had previously been shown to produce leukotriene C4 (13),
but McGinty et al. (42) have demonstrated that following
small intestinal helminth infection, tuft cells secrete leukotriene
C4, in an Alox5-dependent manner, that could signal to
surrounding ILC2s via their expression of leukotriene receptors
CYSLTR1 and 2 (Figure 1). Given that several immune cells
can produce leukotrienes and the long-lived nature of tuft
cells (43), bone marrow transfer experiments were superseded
by targeted cell-specific null models demonstrating that it was
indeed tuft cell-derived leukotriene that was key in driving
ILC2 expansion early during small intestinal N. brasiliensis
infection (42). However, the precise chemoreceptor or the
helminth products they detect remain unknown. Parallel
studies by Ualiyeva et al. (44) have also demonstrated that
tuft cells located in the lung can release leukotrienes in
response to aeroallergens via the P2Y2 receptor, indicating
systemic potential for helminth detection. Interestingly, although
tuft cells also produce IL-25 in response to protist-derived

succinate via SUCNR1, McGinty et al. (42) demonstrated that
stimulation of tuft cells with succinate, although driving IL-
25, resulted in no leukotriene production but importantly
no defect in ILC2-driven responses. Furthermore, TAS1R3
also expressed on tuft cells responds to Tritrichomonas
muris and succinate, but not to a helminth infection (45),
indicating an ability of tuft cells to selectively respond to
different parasites.

This variety and flexibility of the cellular secretome of
tuft cells further mirror the responses of enteroendocrine
cells (EECs), key chemosensory cells of nutrient detection, in
being able to orchestrate an array of digestive requirements
to the numerous nutrients detected. Therefore, it is likely
that these pathways have been utilized by the innate immune
system in evolution to allow the “tasting” of parasites and
allow an equally diverse response in immunity as digestion.
Furthermore, EECs demonstrate heterogeneity spatially to
respond to the nutrients in the likely locations they would
appear (46–49); so it is likely that chemosensory cells detecting
and responding to parasites would also differentiate in a
spatiotemporal fashion to specific parasite niches along the
intestinal tract and beyond, as indicated in spatial studies of
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tuft cells (28, 29, 36, 50). Tuft cells also possess cytospinules
which project into the nuclei of neighboring cells, providing
them with a unique ability to communicate cellular cargo to
the surrounding epithelium (51). Moreover, tuft cells are often
associated with EECs (52), while both cell types can act as
reserve stem cell niche in the small intestine upon Paneth cell
ablation (53), indicating potential overlap and collective function
(Figure 1).

ENTEROENDOCRINE CELLS—KEY
CHEMOSENSORY CELLS OF THE
EPITHELIUM

EECs are specialized trans-epithelial signal transduction conduits
which respond to luminal nutrients by secreting peptide
hormones to control gastrointestinal enzyme secretion, motility,
and appetite regulation (54, 55). Despite constituting only
1% of the total epithelium, these cells span from the entire
length of the gastrointestinal tract and collectively form the
largest endocrine system of the body (56). Peptide-secreting
intestinal epithelial cells described as having a high degree of
amine precursor uptake were reported as early as the 1960s
(57). Initially thought to arise from neural crest cells due to
their production of neuropeptides such as serotonin, lineage
tracing on avian embryos proved that these cells do not arise
from the ectoderm (58, 59). Like other intestinal epithelial
cells, EECs originate from Lgr5+ intestinal stem cells within
the intestinal crypt, integrating Wnt, Notch, and mitogen-
activated protein kinase-dependent signaling (60), and require
the expression of the secretory cell lineage transcription factor
atonal bHLH transcription factor 1 (61–65), finally forming
EECs via the expression of the transcription factors neurogenin3
and neurogenic differentiation 1 (NeuroD1) (64, 66, 67).
Neurogenin3+ EEC progenitor cells will further differentiate to
give rise to multiple mature EEC types, traditionally identified
with a one-cell one-peptide dogma. This historic classification
included glucagon-like-peptide-1 (GLP-1)-producing L-cells,
cholecystokinin (CCK)-producing I-cells, gastrin-producing G-
cells, gastric inhibitory peptide-producing K-cells, somatostatin-
secreting D-cells, secretin-producing S-cells, and serotonin-
producing enterochromaffin cells. However, it is now known that
there is considerable secretome overlap and plasticity between
the different EEC lineages. Using transgenic reporter mice,
multiple groups have shown that CCK, GLP-1, and secretin
are coexpressed by a large subset of EECs (68, 69). A recent
single-cell transcriptional analysis using Neurog3 reporter mice
showed that hormonal co-secretion differs by cell lineage, with
a large proportion of EECs secreting multiple hormones (70).
Furthermore, EECs also show hormonal plasticity in response to
various extracellular cues, such as the upregulation of secretin
production in response to bone morphogenic protein as well
as their physical location within the crypt/villi dictating their
secretome (70, 71).

Although still incompletely understood, recent evidence has
shown that EECs have a huge potential to interact with the
immune system, with a strong potential for playing a role

in the chemosensory sensing of helminths and orchestrating
immunity (56). Indeed, helminth infections in particular can
drive hyperplasia of EECs in a variety of animal species,
often thought to be the driving force to alterations in feeding
that accompany a helminth infection in the upper small
intestine (72–77). These alterations in EEC hyperplasia, like
tuft cells, are also driven by type 2 cytokines in both small
intestinal (T. spiralis) and large intestinal (Trichuris muris)
helminth infections (78–81), with the EEC peptide CCK
shown to influence the resulting immune response via driving
weight loss in a feed-forward loop (81). Moreover, EECs can
secrete peptide hormones as well as cytokines in response to
pathogen-associated molecules (82), and given that intestinal
immune cells potentially express peptide hormone receptors
(83–85), there is the intriguing possibility that EECs are
critical and novel modulators of barrier immunity to helminths
(Figure 1).

Interestingly, EECs are the chief epithelial expressers of the
receptors that sense bacterial metabolites, such as Ffar3/2 (86,
87), and therefore have the unique ability to relay dysbiosis
into physiological adaptation (88). It is now well-established
that microbial dysbiosis occurs during an intestinal helminth
infection (89, 90), and these changes are transient following
helminth expulsion (91, 92), meaning microbial alterations may
provide a clear signal to the epithelium of a helminth infection.
Indeed, the microbiota is a well-established essential signal
for repair during intestinal inflammation (93) and antibiotic-
induced microbial dysbiosis alters succinate levels altering tuft
cell numbers in the absence of a helminth infection (33).
Microbial load increases greatly in the cecum and large intestine,
but small intestinal dysbiosis does occur during a large intestinal
helminth infection (94). Although these microbial changes are
not as instantaneous as detecting the helminths themselves, they
can occur within days of infection (95). Moreover, helminth-
driven dysbiosis may actually strengthen existing innate barrier
responses, as during large intestinal Trichuris suis infection,
the addition of the dietary supplement inulin heightens the
microbial changes T. suis initiates (96), resulting in tuft cell
hyperplasia (97).

EECs have a heightened ability to potentially sense helminths
and/or the microbial dysbiosis they produce via the huge array
of chemosensory apparatus they possess. Classically, the peptide
hormones secreted by EECs signal to the brain in a paracrine
fashion via local vagal afferents to mediate digestion and
satiety. Recently, Bohórquez et al. (98) demonstrated that CCK-
expressing EECs possess basal axon-like cytoplasmic processes,
termed neuropods, which transpose nutritional and microbial
intestinal signals directly to the brain (99). Neuropods are rich
in mitochondria, dense secretory vesicles, presynaptic proteins,
and neurofilaments and lie in close contact to enteric glia
(100). Neuropods are present in both ileal and colonic EECs
(98) and have the capacity to respond to and transmit glucose
stimuli to vagal neurons in milliseconds (99). The EEC neuropod
therefore has the exciting potential to communicate intestinal
chemosensory information directly to the brain and, given the
novel neurological control of ILCs (101), presents an exciting
immunological addition to the gut–brain axis.
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DISCUSSION

Given that RNA-seq analysis of bitter taste receptor-expressing
cells in multiple barrier tissues is strongly linked to innate
immune transcripts (102), it is clear that we are only at
the beginning of fully elucidating the complex interactions
of chemosensory, immune, and neuronal cellular interactions
during infection. It still remains imperative to define the
helminth products that initiate these epithelial cascades which
drive immunity. Although tuft cells are reported to respond
almost instantly to a helminth infection (42), it remains a
possibility that helminth-derived microbial alterations could be a
potential slower innate trigger, particularly in the large intestine
where reports of helminth-induced tuft cell alterations have so
far been absent. Alternatively, chemosensing may fall to EECs
in the large intestinal niche and tuft cells may even act in
concert with EECs utilizing microspinule communication to
harness neighboring EECs neuropod signaling to help drive
the systemic immunity often seen during a helminth infection.

In summary, the initial fascinating epithelial chemosensory
discoveries discussed above could simply be a taste of things
to come.
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