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Abstract

Accurate measurements of metabolic fluxes in living cells are central to metabolism

research and metabolic engineering. The gold standard method is model-based metabolic

flux analysis (MFA), where fluxes are estimated indirectly from mass isotopomer data with

the use of a mathematical model of the metabolic network. A critical step in MFA is model

selection: choosing what compartments, metabolites, and reactions to include in the meta-

bolic network model. Model selection is often done informally during the modelling process,

based on the same data that is used for model fitting (estimation data). This can lead to

either overly complex models (overfitting) or too simple ones (underfitting), in both cases

resulting in poor flux estimates. Here, we propose a method for model selection based on

independent validation data. We demonstrate in simulation studies that this method consis-

tently chooses the correct model in a way that is independent on errors in measurement

uncertainty. This independence is beneficial, since estimating the true magnitude of these

errors can be difficult. In contrast, commonly used model selection methods based on the

χ2-test choose different model structures depending on the believed measurement uncer-

tainty; this can lead to errors in flux estimates, especially when the magnitude of the error is

substantially off. We present a new approach for quantification of prediction uncertainty of

mass isotopomer distributions in other labelling experiments, to check for problems with too

much or too little novelty in the validation data. Finally, in an isotope tracing study on human

mammary epithelial cells, the validation-based model selection method identified pyruvate

carboxylase as a key model component. Our results argue that validation-based model

selection should be an integral part of MFA model development.
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Author summary

Measuring metabolic reaction fluxes in living cells is difficult, yet important. The gold

standard is to label extracellular metabolites with 13C, to use mass spectrometry to find

out where the 13C-atoms ends up, and finally use mathematical modelling to calculate

how quickly each reaction must have flowed, for the 13C-atoms to end up like that. This

measurement thus relies on usage of the right mathematical model, which must be selected
among various candidate models. In this manuscript, we present a new way to do this

model selection step, utilizing validation data. Using an adopted approach to calculate the

uncertainty of model predictions, we identify new validation experiments, which are nei-

ther too similar, nor too dissimilar, compared to the previous training data. The model

candidate that is best at predicting this new validation data is the one chosen. Tests on

simulated data where the true model is known, shows that the validation-based method is

robust when the magnitude of the error in the measurement uncertainty is unknown,

something that conventional methods are not. This improvement is important since true

uncertainties can be difficult to estimate for these data. Finally, we demonstrate how the

new method can be used on real data, to identify fluxes and important reactions.

1. Introduction

Cellular metabolism is fundamental for all living organisms, involving thousands of metabo-

lites and metabolic reactions that together form large interconnected metabolic networks

[1,2]. While a substantial part of the human metabolic network has been reconstructed [2],

measuring fluxes through individual reactions and metabolic pathways in living cells and tis-

sues remains a challenge. This problem is central to a variety of medically relevant processes,

including T-cell differentiation [3], caloric restriction and aging [4], cancer [5,6], the metabolic

syndrome [7], and neurodegenerative diseases such as Parkinson’s disease [8].

The gold standard method for measuring metabolic fluxes in a given system is model-based

metabolic flux analysis (MFA) [9]. In this technique, cells or tissues are fed “labelled” sub-

strates containing stable isotopes such as 13C (Fig 1A). These substrates are metabolized to

products containing various isotopic isomers (isotopomers) (Fig 1B). By measuring the abun-

dance of these isotopomers, mass isotopomer distributions (MIDs, Fig 1C) are obtained for

each metabolite [10]. Fluxes are then inferred by fitting a mathematical model M to the

observed MID data D (Fig 1D).

While the above methodology is well established for assessing the fit of a given MFA model,

several problems arise when it is used for model selection. In practise, MFA models are usually

developed iteratively (Fig 1D), by repeatedly attempting to fit the same data to a sequence of

models M1;M2; . . . ;Mk with successive modifications (adding or removing reactions,

metabolites, and so on), until a model Mk is found acceptable, i.e. not statistically rejected. In

practice, this means that the model Mk passes the χ2-test for goodness-of-fit [11]. Given the

iterative nature of modifying the model structures, model development thus turns into a

model selection problem. Depending on the approach used to solve this model selection prob-

lem different model structures might be selected, given the same data set (Fig 1E). For instance,

if the traditionally iterative modelling cycle is used, the first model that passes the χ2-test might

be selected and used for flux estimation. On the other hand, there might be multiple model

structures that passes the χ2-test. In this case, the model structure that passes the χ2-test with

the biggest margin may be a better option.
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Fig 1. The basic steps in 13C MFA and the model selection problem. (A) New substrates, containing 13C (dark circles) are fed to the cells. (B) These substrates

are consumed and converted to end products in the cells, according to its biochemical reactions. (C) The labelled 13C molecules appear to various proportions

in each of the mass isotopomers, and these proportions are summed up in these distribution bar charts for each detected metabolite. (D) The iterative

modelling cycle in which a hypothesized model structure is fitted to MID data. The model fit is evaluated, usually with a χ2-test, and either rejected or not. If the

model structure is rejected it is revised and evaluated again. If the model structure is not rejected it is used for flux determination. (E) The iterative model

development in (D) results in a model selection problem. Different approaches for solving this model selection problem might result in different model

structures being selected. This paper evaluates how the uncertainty in measurement data affects uncertainty in model selection.

https://doi.org/10.1371/journal.pcbi.1009999.g001
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Generally, model selection approaches that rely solely on the χ2-test to select a model can

be problematic. First, correctness of the χ2-test depends on knowing the number of identifiable

parameters, which is needed to properly account for overfitting by adjusting the degrees of

freedom of the χ2 distribution [12], but can be difficult to determine for nonlinear models

[13]. Second, the χ2-test can be unreliable in practise since the underlying error model is often

not accurate. Typically, the MID errors σ are estimated by sample standard deviations s from

biological replicates, which for mass spectrometry data often is below 0.01, and even can be as

low as 0.001 (Fig 2A). However, such low estimates may not reflect all error sources. For exam-

ple, MI fractions obtained from orbitrap instruments can be biased so that minor isotopomers

are underestimated [14,15]. Also, s does not account for experimental bias, such as deviations

from metabolic steady-state that always occur in batch cultures. Some such problems can be

detected by repeating experiments, but some others cannot. The normal distribution assump-

tion itself is also questionable for MIDs, which are constrained to the n-simplex [16]. For these

reasons, s can severely underestimate the actual errors, making it exceedingly difficult to find a

model that passes a χ2-test. In this situation, one is left with two bad choices: either arbitrarily

increase s to some “reasonable” value to pass the χ2-test (Fig 2B), or introduce more or less

well-motivated extra fluxes into the model. The former alternative, increasing s, may lead to

high uncertainty in the estimated fluxes and does not necessarily reflect the experimental bias

one tries to account for. The latter approach, introducing additional fluxes, increases model

complexity and can lead to overfitting.

While these issues with model selection are well known, they have to our knowledge not

been treated systematically in the 13C MFA field. Indeed, MFA model selection is typically

Fig 2. Example of MID sample standard deviation (A) Example of estimated mass isotopomer distribution (MID) of citrate from epithelial cells, as

described in section 2.5. M+i indicate the fractional abundance of the i:th mass isotopomer. (B) Difference between the assumed magnitude of the standard

deviations and the measured magnitudes.

https://doi.org/10.1371/journal.pcbi.1009999.g002
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done in an informal fashion by trial-and-error, and the underlying procedure is rarely

reported [17]. However, in other contexts where model fitting is central, such as systems biol-

ogy, the problem of model selection has been treated extensively [13,18–27]. In these areas, a

widely accepted solution is to perform model selection on a separate “validation” data set,

which is not used for model fitting. Intuitively, this protects against overfitting by choosing the

model that can best predict new, independent data. In this paper, we propose a formalized ver-

sion of such a validation-based model selection approach for MFA. In a series of simulated

examples, we demonstrate that this method consistently selects the correct metabolic network

model, despite uncertainty in measurement errors, whereas “traditional” χ2-testing on the esti-

mation data does not. By quantifying prediction uncertainty using prediction profile likeli-

hood, we can avoid cases where the validation data is too similar, or too dissimilar, to the

estimation data. Finally, in an application to flux analysis on our own new data in human epi-

thelial cells, we find that the same robustness to measurement uncertainty variations still

holds, and that the validation-based model selection method can identify reactions that are

known to be active in this cell type.

2. Results

To systematically examine the effects of the model selection procedure on MFA, we adopted a

scheme where a sequence of models M1;M2; . . . with increasing complexity (increasing num-

ber of parameters) is tested by each model selection method, simulating typical iterative model

development. We considered five possible model selection methods that use all available data

for both parameter estimation and model evaluation (Table 1). Method “SSR” selects the

model with the smallest weighted summed squared residuals (SSR) based on the data, included

as a baseline. Method “First χ2” selects the model with fewest parameters (the “simplest”

model) that passes a χ2-test, while accounting for overfitting by subtracting the number of free

parameters p from the degrees of freedom in the χ2-distribution (see Section 4.3). Method

“Best χ2” selects the model that passes the χ2-threshold with the greatest margin. Methods

“AIC” and “BIC” select the model that minimizes the Akaike Information Criterion or the

Bayesian Information Criterion, respectively [28,29]. The five methods mentioned above all

depend on the noise model Eq (5), and all except “SSR” also requires knowing the number of

free parameters p. Considering common practices in the field, it is probable that some combi-

nation of the “First χ2” and “Best χ2” methods is the prevailing approach in MFA modelling

[17,30], although this is not entirely clear since the model selection process is often not

described.

In addition to these methods, we propose a validation-based model selection method (“Val-

idation”) that divides the data D into estimation data Dest and validation data Dval. For each

model, parameter estimation (model fitting) is then done using Dest, and the model achieving

the smallest SSR with respect to Dval is selected. The division into estimation and validation

Table 1. A summary of the different model selection approaches considered in this paper.

Method of model selection Model selection criteria

Estimation SSR Selects the model with the lowest SSR given Dest

First χ2 Selects the first Mk that passes the χ2 -test

Best χ2 Selects the Mk that passes the χ2-test with the greatest margin

AIC Selects the Mk that minimizes the Akaike Information Criterion

BIC Selects the Mk that minimizes the Bayesian Information Criterion

Validation Selects the Mk with the smallest SSR with respect to Dval

https://doi.org/10.1371/journal.pcbi.1009999.t001
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data must be done so that qualitatively new information is present in the validation data. This

can be done by reserving data from distinct model inputs or new model outputs for validation.

For all examples herein, data from distinct model inputs is used for validation. For the 13C

MFA examples, this means that data used for validation comes from a different tracer. Note

that this proposed method allows for the selection of the most suitable model from a given set,

but that it does not guarantee that the selected model is acceptable according to e.g. a χ2-test.

In other words, the model selected with our new Validation method would still need be sub-

jected to some form of final model testing. A detailed description of the “SSR”, “First χ2”, “Best

χ2”, and “Validation” methods can be found in S1 Algorithm: A-D respectively (S1

Algorithm).

2.1 A motivating example

Before examining the behavior of the different model selection methods on metabolic network

models, it may be helpful to illustrate their properties on a simple univariate example. For this

purpose, we considered a model with a single input x and a single output ŷ, where model Mn

is the n-th order polynomial

ŷ ¼ hnðx; uÞ ¼
Pn

k¼0
ukx

k ð1Þ

with parameter vector u. We assume that M7 is the correct model, with true parameters u0,

and sampled 20 measurements y = h7(x, u0)+� for different values of x, where � was drawn

from N(0, σr) with standard deviation σr = 0.2. To simulate uncertainty about the error model,

we considered σ to be unknown, and let the various model selection methods choose among

M1; . . . ;M14 with a “believed” standard deviation, denoted σb, in the range [0.1 σr, 10 σr]. For

the “Validation” method, we reserved 4 of the 20 measurements for Dval (Fig 3, red error bars).

An illustration of the dependency on σ for a model selection method that does not use vali-

dation is shown in Fig 3. When Dval is not considered, we would expect larger values of σb to

result in a simpler model, since almost all of the variation in the data is interpreted as noise

(Fig 3A). Further, at very small values of σb an overly complex model will be required to obtain

an acceptable fit to Dest (Fig 3C).

Applying the five model selection methods to data from this polynomial model gave differ-

ent results (Figs 4 and S1). Since the model selection process is somewhat stochastic, we resam-

pled the data 10,000 times, each time with a new error � drawn from N(0, σr), and report

results as the fraction of times a particular model was chosen. As expected, “SSR” mostly

selected the most complex polynomial M14 regardless of σb, as the most complex model always

gives the lowest SSR (Fig 4A). In contrast, “First χ2” or “Best χ2” gave different results depend-

ing on σb. “First χ2” selected the correct model M7 only when σb�σr. At σb�10σr, only the

low-degree polynomials (M1;M2 and M3) was chosen by the “First χ2” method, while at

σb�0.1σ, an overly complex polynomial was chosen (Fig 4B). The “Best χ2” method selected

the correct model M7 for σb�σr, but selected overly complex models for smaller σb (Fig 4C). If

σb were to increase further, “Best χ2” would choose a lower degree polynomial. This is because,

for these χ2-based methods, the tradeoff between model complexity and goodness-of-fit is

based on σb, and such a tradeoff is thus correct only if we happen to have σb�σr. Similar results

are seen with the “AIC” and “BIC” methods, which also depend on σb (S1 Fig).

In contrast, the “Validation” method predominantly selected the correct model, M7,

regardless of σb (Fig 4D). This happens because, even though a polynomial of the wrong degree

may fit well on Dest, it fails to predict independent validation data, resulting in large SSR on

Dval. Since the correct model structure M7 will best predict new data, agreement with valida-

tion data helps identify the right model, also in cases where the error model is inaccurate.
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Fig 3. Example of how model selection is affected by σb, for the polynomial model. Error bars indicate data sampled from a 7th order polynomial y = h7(x, u0)

+� where � is N(0, σr), σr = 0.2. Colours indicate estimation data Dest (blue) and validation data Dval (red) used by the “Validation” method. Solid curves in (A–

B) indicate polynomials chosen by an estimation-based method with different “believed” standard deviation σb. (A) σb = 2, chosen model h1. (B) σb = 0.2 (the

true value), chosen model h7 (the correct model). (C) σb = 0.02, chosen model h14.

https://doi.org/10.1371/journal.pcbi.1009999.g003

Fig 4. Model selection results for the polynomial model example. (A–D) Heatmaps represent results from the indicated selection methods, where rows

represent different values of σb and columns represent the polynomial models h1,. . .,h14. For each row, color indicates the fraction of times a model is selected

for the given σb, out of 10,000 samples, as indicated by the color scale (right).

https://doi.org/10.1371/journal.pcbi.1009999.g004
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Again, it should be recalled that the "Validation" method only is applicable to the task of select-

ing the best model, and that this selection approach should be followed by a final step that tests

the quality of the model, e.g. using a χ2-test.

2.2 Model selection on multivariate linear models

To investigate model selection in a setting more relevant to metabolic networks, we next con-

sidered a multivariate linear model, where the output vector ŷ is a linear combination of the

inputs x weighted by the model parameters. In this case, each model structure Mk is fully spec-

ified by a matrix Ak such that

ŷ ¼ hkðx; uÞ ¼ Akx ð2Þ

and where the free parameters are elements of Ak (Fig 5). This type of model is roughly analo-

gous to a simple metabolic network, where x corresponds to labelled substrates and y corre-

sponds to metabolic products. We constructed six such models (A1−A6) of increasing

complexity, nested so that the parameter space of each Ak contains the parameter space of all

models Al for l<k. Model A3 was used to simulate data from 6 distinct input vectors x, again

with normal noise N(0, σr) where σr = 5, and with a “believed” σb in the range [0.1 σr, 10 σr].
The believed σb is not scaled homogeneously across all data points rather the scaling is approx-

imately 0.1σr and 10 σr, to reflect the more realistic scenario of σb being wrong to different

degrees for different data points (Materials and methods). Again, to account for variance in

the model selection process, the results are based on 1,000 different resamplings.

We then tested each of the six model selection methods on the generated data. As before,

the “SSR” method chose the most complex models (A5 and A6, Fig 6A). For the other four

methods that only use estimation data, the selected model again depended on σb. Method

“First χ2” selected the one of the simpler models A2 at σb�10 σr, the correct model A3 only

when σb�σ, while at σb�0.1 σr, no model passed the χ2-test (Fig 6B). The “Best χ2” method

again selected the correct model, A3, for σb�10 σr and σb�σr, and model A6 for σb�0.1 σr

Fig 5. Six different model structures for the linear model. This example is chosen as a simple representation of a mass flow model. The top row shows the

model names A1,. . .,A6. The second row shows the matrices that constitute the model structures. The third row constitute visual illustrations of how the

corresponding matrices connect the inputs xi and the outputs yi via the parameters a1,. . .,a6.

https://doi.org/10.1371/journal.pcbi.1009999.g005
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(Fig 6C). Methods “AIC” and “BIC” behaved similarly but chose somewhat different models

(S2 Fig). Thus, which model is considered “best” depends on assumptions about the measure-

ment noise, and established model selection methods give different results depending on what

assumption is made.

For the “Validation” method, simulated data from 2 of the 6 distinct inputs x were reserved

for validation data Dval (S3 Fig). Again, this method predominantly selected the true model

structure A3, regardless of σb (Fig 6D). Moreover, the model selection results for “Validation”

method are consistent across all σb.

2.3 Model selection for simulated 13C MFA models

Let us now turn to model selection for the multivariate, nonlinear MFA models. To simulate

the process of MFA model development, we designed seven stoichiometric models

M1; . . . ;M7 of the tricarboxylic acid (TCA) cycle and related reactions, with increasing

model complexity (S1 Table and Fig 7). The full, atom-level models were generated using the

EMU decomposition method (see methods). For all seven models, 51 MI fractions across nine

metabolites (present in all models) were considered as measurement data. The data was simu-

lated (Section 4.5) using model M4, with four different tracers separately used as inputs x in

order to generate four separate sets of MID data. For this example, we resampled the data 100

times. Note that, unlike the previous examples, this model is nonlinear in the parameters.

As in the previous examples, the six methods of model selection were evaluated. As before,

the “SSR” method always selected the most complex model M7 (Fig 8A). Method “First χ2”

selected different models depending on the value of σb (Fig 8B): it selects M1 for σb�10σr, M2

for σb�3σr,M4 (the true model) and M2 about 50% of the time respectively for σb�σr, and

M4 for σb�0.1σr and 0.3σr. In this example, “Best χ2” method selected the correct model M4

Fig 6. Model selection results for the linear model example. (A–D) Heatmaps represent results from the indicated selection methods, where rows represent

different values of σb and columns represent the linear models A1,. . .,A6. For each row, color indicates the fraction of times a model is selected for the given σb,

out of 1000 samples, as indicated by the color scale (right).

https://doi.org/10.1371/journal.pcbi.1009999.g006
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for σb�0.3σr and σr (Fig 8C). For σb�σr “Best χ2” show a fraction of the samples selecting M2

rather than M4 (Fig 8C) and for σb�10σr, “Best χ2” shift towards selecting the simpler model

structures M2. Compared to previous examples, the AIC and BIC methods of model selection

appear to be a bit more robust towards an unknown σb, selecting M4 for σb�0.1σr, 0.3σr, σr,
and 3σr. Nevertheless, for σb�0.1σr, both the AIC and BIC show tendencies to prefer more

Fig 7. Seven different model structures included in the simulated EMU 13C MFA example with simulated data. The added component to each model

structure, compared to the previous model, with slightly smaller complexity, is found inside the red circle. The true model used to simulate the data is model nr

4. Detailed descriptions for each model can be found in the supplementary material (S1 Table).

https://doi.org/10.1371/journal.pcbi.1009999.g007

Fig 8. Model selection results for the simulated 13C MFA model example. (A–D) Heatmaps represent results from the indicated selection methods, where

rows represent different values of σb and columns represent the MFA models M1; . . . ;M7. For each row, color indicates the fraction of times a model is

selected for the given σb, out of 100 samples, as indicated by the color scale (right).

https://doi.org/10.1371/journal.pcbi.1009999.g008
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complex models and for σb�10σr both the AIC and BIC selects too simple model structures,

namely M2 and M1 respectively (S4 Fig).

For the “Validation” method, parameters were estimated using MID data from 3 out of 4

tracers, while the fourth set of MID data was used as validation data Dval; the exact division is

described in Section 4.5. The “Validation” method selected the correct model M4 in 60–70%

of cases, for all tested values of σb (Fig 8D). The key observation here is that the validation-

based method obtains the same results independently of σb. However, it should be noted that

the “Best χ2” method does appear more robust in identifying the correct model when σ is

correct.

By selecting the wrong model structure, methods that depend on σb can lead to poor esti-

mates of metabolic fluxes. For instance, when investigating the estimated flux values for model

M2 (model selected by “First χ2” at σb�3σr) it becomes clear that the “First χ2” approach does

not always capture the correct flux value with a 95% confidence interval (Fig 9). For instance,

for the fluxes for mitochondrial Aconitase1 (ACONT1m) and Acetyl-CoA Synthetase

(ASCm), the 95% confidence interval lies several standard deviations away from the estimated

value, indicating that the confidence intervals are not reliable. In contrast, the flux solution,

with a 95% confidence interval, for model M4 (selected by the “Validation” method) does con-

tain the true flux value (Fig 9). These results show that selecting the wrong model structure

leads to errors in flux estimation, and that the “Validation” method therefore is more advanta-

geous for both of these tasks.

Fig 9. Comparison of estimated flux solutions for the simulated 13C MFA example. The resulting flux values with 95% confidence intervals for seven of the

fluxes that are overlapping between all model structures in the simulated 13C MFA example. The confidence intervals correspond to the estimated fluxes for

model M2 (Blue), model M4 with all data available (Green) and model M4 with the data split into Dest and Dval (Red). The figure illustrates the selecting the

wrong model structure may result in incorrect flux estimations.

https://doi.org/10.1371/journal.pcbi.1009999.g009
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2.4 Assessing the novelty of a validation experiment using prediction

uncertainty

As showed in the previous examples, validation data can be used for the purpose of model

selection. However, one important aspect to consider for this new method in 13C MFA, is the

degree of novelty of the validation data used. There are essentially two pitfalls that one wants

to avoid: 1) the validation data may be too similar to the estimation data (i.e. then the new data

does not provide any new information), 2) the validation data may be too dissimilar from the

estimation data (i.e. then no model is able to predict the validation data). Both of these pitfalls

can be avoided by looking at the uncertainty of the model predictions for the chosen validation

experiment. The model’s prediction uncertainty is essentially a confidence interval for the pre-

dictions. In our case of 13C MFA models, a confidence interval is an interval for the predicted

MIDs. This prediction uncertainty will depend on the uncertainty of the estimated fluxes, the

model structure, and on the connection between the validation data and the estimation data. If

the validation data is not novel enough (pitfall 1 above), models will produce identical predic-

tions which do not differ from the estimation data (Fig 10A). On the other hand, if the valida-

tion data is too novel (pitfall 2), the estimation data does not contain any new information

regarding the predicted MIDs, and the uncertainty will be very large (Fig 10B). Together, this

means that the degree of uncertainty in the model predictions, compared to the difference in

predictions between estimation and validation data, can be used to assess the novelty of the

validation data. The desired scenario would be to have validation data such that the predictions

are well-determined and are different between estimation and validation data (Fig 10C). A

general approach for determining prediction uncertainty has been outlined in previous work

[31] and has been implemented here for 13C MFA models in the EMU framework. A detailed

description of this implementation is provided in Materials and methods, Section 4.4.

Another aspect that is important to consider for the case of 13C MFA, if the validation data

consists of MIDs from a new tracer experiment, is that the new tracer is suitable to be used for

validation. One approach to ensure that the new tracer generates data that is truly independent

of the estimation data is to perform an EMU basis vector analysis [32]. This approach ensures

that the tracers for the estimation and validation data produce linearly independent EMU

basis vectors, which guarantees that the experiments give complementary information. This

also ensures that one avoids the pitfall of having the validation data containing the same infor-

mation as the estimation data, i.e. that the validation data is too similar to the estimation data.

To demonstrate that the validation data used in the simulated 13C MFA example above

does not fall into these pitfalls, the prediction uncertainties for the chosen model structure M4

has been determined (Fig 11). As can be seen, the prediction uncertainties (light blue bars’

error bars) are well determined for all MIDs. We have thus avoided pitfall 2 above, i.e. the vali-

dation data is not too novel. We have also avoided pitfall 1, since i) the predicted MIDs (light

blue) are non-overlapping with the estimation data MIDs (red bars), for many of the MIDs, ii)

the EMU basis vectors are linearly independent.

2.5 Model selection on cultured epithelial cells

Finally, we applied validation-based model selection on data from batch cultures of human

cells. We performed two isotope labelling experiments with immortalized human mammary

epithelium cells (HMECs), cultured with either U-13C-glucose or U-13C-glutamine for 6 cell

doublings to achieve isotopic and metabolic steady-state (Materials and Methods, Section 4.6).

MID data for nine metabolites were used as measurement data for this example, and the

model structures used were the same as those presented previously in Section 2.3. The sample

standard deviations from biological replicates were very small, around s = 0.005. In contrast to
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the previous theoretical examples for this system, the true σr and the true model structure is

now unknown. However, by evaluating the six model selection approaches for a range of dif-

ferent believed σb, it is clear that the results are consistent even for these data (Fig 12). The

“SSR” method always chose the most complex model (M7, Fig 12A). The “First χ2” method

selected model M4 for σb�0.03 (Fig 12B), while for the smaller σb, no model passed the χ2-

test. The “Best χ2” method selected model M6 for σb�0.3, 0.015, 0.003 (Fig 12C). Similarly, the

BIC approach selects model M6 for all values of σb,while the AIC selects model M6 for

σb�0.03 and 0.015, and model M7 for σb = 0.003 (S5 Fig).

Similarly, the validation-based approach selected M6, regardless of σb (Fig 12D). Model

M6 excludes reactions for unlabeled acetyl group entry into acetyl-CoA (included in M7),

which represents catabolism of pre-existing fatty acids or acetate. Hence, the choice of M6

suggests that such entry does not occur in these cultures. This seems reasonable since the

Fig 10. How prediction uncertainty can be used to assess the novelty in the validation data. (A) If there is too little novelty in the validation data, differences

between estimation data and validation data will typically be smaller than the prediction and measurement uncertainty. (B) If there is too much novelty in the

validation data, there is no information about the corresponding MIDs, and the prediction uncertainty will be large, approaching [0,1]. (C) An ideal design of

validation data is thus to have well-determined predictions that are different compared to the estimation data. To be sure that there really is new information,

one should also check that the new fluxes generate linearly independent EMU basis vectors (Section 2.4).

https://doi.org/10.1371/journal.pcbi.1009999.g010
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culture medium did not contain acetate, and was also free from serum and therefore contained

very little fat. On the other hand, M6 includes the pyruvate carboxylase reaction while M5

does not, suggesting that this reaction was necessary to explain the data. Also, the pyruvate car-

boxylase flux was nonzero (95% confidence interval [0.08 0.98]). Interestingly, pyruvate car-

boxylase has been shown to be present in mammary epithelium in vivo, where it is important

for de novo fatty acid synthesis [33] by replenishing the TCA cycle carbon that is consumed by

citrate export (“anaplerosis”). To investigate if fatty acid synthesis also occurred in the cultured

HMEC cells, we measured the MID of cellular lysophosphatidylcholine (LPC) 16:0 as a proxy

for palmitate, which was not detectable with the methods used, after 7 days of 13C labeling (Fig

13). The observed MID indicated that LPC 16:0 was a mixture of 13C-labeled and unlabeled

species, with higher mass isotopomers indicating that fatty acid synthesis indeed occurred. To

further test the selected model structure M6, we used the estimated MID for cytosolic acetate

(Fig 13B) from the fitted model to predict the MID of palmitate and LPC 16:0, assuming a lin-

ear mixture of pre-existing (unlabeled) and newly synthesized (labeled) species (Fig 13A). We

found a reasonably good fit to the observed MID data at 82% newly synthesized LPC 16:0,

indicating that the selected model M6 reflects actual lipid metabolism in this model system

(Fig 13D).

Fig 11. Usage of prediction uncertainty to demonstrate that the validation data has neither too little, nor too much, novelty, compared to the estimation

data. This analysis shows the result from the simulated 13C MFA example (Fig 7–9). The model was trained on estimation data corresponding to three tracers:

Tracer 1 = 1,2-13C-glutamine (dark red), Tracer 2 = 3-13C-pyruvate (red), and Tracer 3 = U-13C-glutamine (light red). The validation data (dark blue) came

from usage of tracer U-13C-pyruvate. For the experimental data, the error bars represent standard deviation, and for the model predictions (light blue), the

error bars represent model uncertainty (Section 4.4).

https://doi.org/10.1371/journal.pcbi.1009999.g011
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Fig 12. Model selection results for the cultures epithelial cell example. (A–D) Heatmaps represent results from the indicated selection methods, where rows

represent different values of σb and columns represent the MFA models M1; . . . ;M7. For each row, color indicates the fraction of times a model is selected for

the given σb, out of 1000 samples, as indicated by the color scale (right).

https://doi.org/10.1371/journal.pcbi.1009999.g012

Fig 13. Validation of lipid synthesis in HMEC cultures. (A) Schematic of the model for lysophosphatidylcholine (LPC)

16:0 synthesis from acetate (ac). (B) Predicted MID of ac from the model selected by the “Validation” method. (C) Measured

MID of glycerol-3-phosphocholine (g3pc). (D) Fitted (gray) and measured (black) MID of LPC 16:0. Mean values of

biological triplicates are shown in (C, D). Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pcbi.1009999.g013
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3. Discussion

Since estimation of metabolic fluxes using 13C MFA critically depends on the metabolic net-

work model used, a systematic approach to model selection is of great importance. As we have

demonstrated, commonly used model selection criteria such as the χ2-test can give unpredict-

able results if the measurement error model is not accurate. Generally, we find that standard

model selection methods that rely on a compensation for model complexity will choose differ-

ent models depending on the “believed” standard deviation σb both for polynomial (Fig 4), lin-

ear model (Fig 6) and non-linear MFA models (Fig 8). Hence, when σb is inaccurate, these

methods will over- or underfit the data, which naturally leads to errors in the estimated fluxes

(Fig 9). Herein, we suggest remedying this problem by performing model selection on inde-

pendent validation data, which is not used for estimating model parameters (“Validation”

method). From our simulation studies, it is clear that this validation-based selection method

indeed is more robust and selects the correct model in a way that is independent of errors in

the size of σb (Figs 4, 6 and 8). Further, we demonstrate the importance of analysing the mod-

el’s prediction uncertainty in order to generate confidence that the selected model accurately

approximates the true metabolic system (Figs 10–11) Finally, to illustrate the potential with

validation-based model development in MFA, we also applied it to new experimental data. For

this data, the validation-based method consistently identifies a single model structure, whereas

“traditional” methods that exclusively rely on estimation data again select different models

depending on σb (Fig 12). Furthermore, we also support the choice of model by predicting the

MID of LPS 16:0 with reasonable accuracy (Fig 13), which is synthesized as a result of the com-

bination of factors that differentiates the selected model structure and the other alternatives.

This illustrates yet another usage of validation data for model testing and model selection. In

summary, validation-based model selection offers a more reliable approach to MFA model

development when measurement errors are uncertain.

There are several reasons why the model (Eq (5)) of normal-distributed, independent errors

may not be accurate for MID data. First, the since mass isotopomer fractions are constrained

within [0,1] and sum to 1, strictly speaking they cannot be normal-distributed, nor indepen-

dent. The normal assumption is particularly inaccurate for values close to 0 or 1, where the

variance becomes very small. A better noise model for MIDs might be log-normal or other dis-

tributions on the n-simplex [16]. Moreover, MI fractions obtained from mass spectrometry

can be biased for technical reasons: peak integration methods can affect MID accuracy [34],

and minor isotopomers may underestimated due to limited sensitivity [15]. Finally, there are

biological sources of error that are difficult to avoid. For example, in batch cultures, cells can

never attain perfect metabolic steady-state, and there may be unforeseen kinds of compart-

mentalization, such as cell subpopulations, organelles, or reaction channeling [35]. Taken

together, the result of these “hidden” factors is that observed standard deviations s will be arti-

ficially small compared to the residuals yi � ŷi. While it could be argued that such biases con-

stitute model error, and that the χ2-test is correct in rejecting such models, it may be

unrealistic to expect a perfect model fit in every scenario. Indeed, in many cases the estimated

s is so small that it is exceedingly difficult to find a model that passes a χ2-test, even for

minor deviations from the error model. An important topic for future research is to address

these issues by developing more suitable error models for MFA. However, in the meantime,

validation-based model selection could offer a pragmatic way forward.

The rational for why the new validation-based method is robust with respect to errors in

the magnitude of σb comes from general theory from the field System identification. This the-

ory says that if the data has been generated by a “true” model structure M0 for some “true”

parameters, θ0, the estimated parameters will converge to θ0 as the number of data points goes
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to infinity. This theory assumes that the data used for model training is informative, i.e. that

one would not gain any information regarding model distinction by exciting the system fur-

ther, and that there is no redundancy of parameters, as is the case e.g. in structurally unidenti-

fiable models. The convergence of the parameters to θ0 holds for a large class of nonlinear

model structures, which include all examples considered herein [36]. Furthermore, the overall

magnitude of σb can be broken out from the cost function, and will thus not impact the loca-

tion of any minima. These two facts together means that if the magnitude of sigma is the only

thing that is wrong with sigma, the true model structure will still converge to the true parame-

ters, while a too simple or too complex model structure will converge to the wrong parameters.

This simple observation is the underlying motivation behind the validation-based method.

Finally, note that the underlying theory from System identification assumes that in practice,

the magnitude or scaling-error of σb is not necessarily the exact same for all datapoints, and

the results herein indicate that the new validation-based method is a good choice also in such

situations. In other words, the validation-based method is useful also in cases when the error

in the believed σ is not homogeneously scaled for all data points. Furthermore, note that if one

knows that the magnitude of the uncertainty for one metabolite is different form another

metabolite, σb can still reflect this difference, and the presented results will still hold as long as

the same difference in magnitude between metabolite measurement uncertainties also is the

case for the true measurement uncertainty, σr. Finally, we believe that a validation-based

approach is beneficial also in situations where σ is completely unknown, since a model that

successfully predicts independent validation data probably is a decent description of reality.

Note however that if the believed value of sigma, σb, is scaled wrong for some datapoint but

not for others, the parameter estimation will be biased towards those datapoints and will con-

verge to the wrong parameters. In this case, the predictions will be wrong, and the validation

method may select the wrong model structure.

A key issue with the new validation method concerns how one divides data into an estima-

tion and a validation data set. Clearly, the validation data must contain truly “novel” data: it is

not sufficient to merely divide up replicate measurements y from the same experiment, which

only differ by random noise. Herein, we have always used independent experiments with dif-

ferent inputs (tracers) x for validation data. In this form, validation-based model selection for

MFA requires parallel experiments with distinct tracers, which naturally increases the experi-

mental effort. An alternative might be to reserve certain measurement components yi for the

validation data set. In principle, the same methods for calculations of prediction uncertainty

and validation-based model selection (Section 2.4) should be applicable also then, and prelimi-

nary analysis shows that this is indeed the case (S6 Fig).

The issue of which data points to reserve for the validation set is more difficult in our setting

than in traditional cross-validation over statistically independent samples from a fixed data

distribution. On one hand, highly dissimilar data points will be more difficult to predict, and

should therefore provide a more stringent test for model selection. On the other hand, too dis-

similar validation data (“extrapolation”) may not be predictable by any model. To judge this

tradeoff, the prediction uncertainty method in Section 2.4 is useful. This topic is also relevant

for experimental design, which could be adapted to generate data suitable for informative vali-

dation data. Finally, an interesting aspect of these results is that also too simple models have a

too large prediction uncertainty (S7 Fig), which is contrary to the traditional principle of bias-

variance tradeoff, which says that only too complex models have a too high variance. This fur-

ther emphasizes the fundamental differences between statistical methods based on sampling

from the same distribution, compared to methods for mechanistic modelling, where data from

different distributions can be used for the validation analysis. These results argue for a revision

of such previously established truths, coming from statistics [13,31,37].
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It is important to distinguish between model selection and model testing. As mentioned

earlier, while our method allows selecting the best model from a given set, it does not guaran-

tee that the best model is indeed acceptable. While a goodness-of-fit test could be performed

on the validation data for the selected best model, such a test will in general be optimistic due

to multiple testing over models. For proper model testing, a third “test” data set should be

used, which is not used for either parameter estimation of model selection.

The analysis in Fig 8 is only meant to illustrate that errors in model structure can lead to

errors in flux estimation, and is not an exhaustive analysis of what these errors might look like.

The fluxes depicted in Fig 8 is considered a representative selection of the fluxes that overlaps

between all model structures. The overall fact that errors in model structure may lead to more

or less large errors in flux estimations should hold true.

Based on our results, we suggest that validation-based model selection should always be

considered when developing MFA models. Nevertheless, for small errors in σb, the less compu-

tationally expensive methods, such as AIC and BIC may give the same results. The problem,

however, is that one does not know when the dependency on errors in σb make those methods

unreliable in cases were the magnitude of the experimental error is uncertain, and in such

cases it is therefore safer to use a validation-based approach. Validation-based approaches also

have important advantages related to interpretation, and are therefore common-place in other

field.

We believe that the field of MFA modelling should take inspiration from such other fields

of computational biology, where the ability to correctly predict independent data not used for

parameter estimation is a standard criterion for model quality, and where such validation tests

often are a requirement for publication [20,21,23,24,26,27]. Given that models are always sim-

plifications of reality, such independent validation is important both for the modelling process

and for communicating results to non-experts users. In other words, while it is almost always

wrong to assume steady-state metabolism occurring in a single average cell, such a model may

still be a good enough approximation of reality to produce realistic fluxes. Importantly, one

way to demonstrate the realism and general predictive power of the chosen model is to show

that it can predict new independent validation data. Notably, in guidelines issued by the US

Food and Drug Administration (FDA), testing on independent validation data is necessary

condition for a model to be considered trustworthy [38]. All in all, we believe that validation-

based model selection provides sound and reliable checking of metabolic models, which we

hope will be of value also to the 13C MFA field.

4. Materials and methods

4.1 13C Metabolic flux analysis

As stated previously, the gold standard method for measuring metabolic fluxes in a given sys-

tem is model-based metabolic flux analysis with isotopically labelled tracers. The model M
includes the stoichiometry and atom mappings for each reaction, and is parameterized by the

metabolic fluxes v, or more precisely, by the independent fluxes u. At steady state, the model-

predicted MIDs ŷ are uniquely determined by u together with the known isotope distributions

x of the network substrates [9,39],

ŷ ¼ hðx; uÞ ð3Þ

where the function h is determined by the model M. Model fitting is done by seeking the vec-

tor u that minimizes the sum of the squared weighted residuals (SSR) between the model-
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predicted and measured MIDs [40],

f uð Þ ¼ SSR ¼
Pm

i¼1

Pn
j¼1

ŷij � yij
sij

 !2

ð4Þ

yij ¼ hjðx
i; u0Þ þ �ij �ij � Nð0; sijÞ ð5Þ

Here each measurement yij is assumed to derive from the model prediction ŷij at the true

flux vector u0, plus a normal-distributed noise �ij with standard deviation σij. If there are sev-

eral experiments with different tracers xi, the sum is taken over all resulting measurement vec-

tors yi [41] Under these assumptions, f(u) follows a χ2-distribution, and so the χ2-test can be

used to assess model fit [42]. If this test does not reject, the model M and the inferred fluxes u
are considered valid.

4.1 Construction of mathematical models: Predictors and the EMU

framework

The mathematical models presented herein are formulated such that a mathematical structure

describes one or more predictors ŷiðyÞ, given a set of model parameters θ. These mathematical

structures or models can exist in different forms, such as polynomial models or ordinary dif-

ferential equation (ODE) models. For MFA, a common approach for model formulation is the

Elementary metabolite units (EMUs) framework [34]. In short, the EMU framework allows

for a decomposition of the model such that only the information necessary to calculate a

desired set of MIDs remains. The metabolic network is broken down into EMU subnetworks

that are used to formulate equations, of the form in Eq (6) below [43].

An;kðvÞ � Xn;k ¼ Bn;kðvÞ � Yn;kðx;Xn� 1; . . . ;X1Þ ð6Þ

where index n indicates the size of the EMU network and index k is used to index several net-

works of the same size; where matrices A and B contains the model structure for the fluxes v,

which can be parameterized according using a smaller set of independent fluxes u; where

matrices Xn,k and Yn,k contains the unknown and known EMU variables, respectively; and

where x are the EMU variables that correspond to the system tracer [43]. In other words, for

EMU models θ = u.

4.2 Optimization of model parameters to fit the data

The objective of the parameter estimation step in any modelling problem is to minimize an

objective function f(θ) which determines the agreement with data for a given the set of param-

eters θ. The general optimisation problem, which determines the optimal parameters θ�, is for-

mulated as

y
�
¼ arg min

y

f ðyÞ

s:t:gjðyÞ � 0 8j ð7Þ

where gj(θ) are functions describing constraints applied to the optimization problem. Again,

for 13C MFA modelling, the parameters θ are the independent fluxes, herein denoted u. Also,
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for 13C MFA modelling, two constraints are usually placed on these independent fluxes:

g1ðuÞ : nullðSÞ � u � 0

g2ðuÞ : ub � u � lb

where null(s) is a null space matrix of the network’s stoichiometry matrix; and where ub and lb
are the upper and lower bounds of u, respectively. The first condition ensures that all fluxes,

which are given by the product of null(S) and u, are positive. The second condition ensures

that the independent fluxes are constrained within a predetermined interval. As for the

detailed form of the objective function, f, it can vary depending on the specific analysis con-

ducted, but will generally be some variant of the weighted SSR function, since this objective

function has sound theoretical properties [36]. The SSR used herein is given by Eq (4). For the

EMU model, the relationships between y; ŷ; s, and the state variables X are given by:

ŷiðuÞ ¼ Xn;kðl;mÞ ð8Þ

where yi is the measured value for the mth mass fraction of the lth EMU in Xn,k, i.e. a specific

bar in Fig 1C. If ŷi is a mean value of multiple original data points, then the residuals

(yi � ŷiðuÞ), should be weighted with the standard error of the mean (SEMi) rather than σi
should be used in Eq (4). The relation between the two is given by:

SEMi ¼
siffiffiffiffi
N
p ð9Þ

where N is the number of sample points. However, all of these are theoretical truths; which

denominator to use in Eq (4) is an unresolved issue for 13C MFA models (see Section 3.2).

4.3 χ2-test

In the 13C MFA modelling field, the χ2-test is the statistical hypothesis test that most com-

monly is employed to evaluate whether the SSR is small enough, i.e. if the model can be consid-

ered an accurate representation of the target system. In practice, the SSR is compared with the

inverse cumulative χ2-distribution, where the degrees of freedom is given by the number of

datapoints adjusted for the fact that some independence between the datapoints and the model

is lost by estimating parameters to the same data that is used for testing. This compensation

can be done in different ways; the naive way is to do no compensation at all, and the most con-

servative way is to compensate for all parameters (free fluxes) in the model. The most accurate

version is to instead use the number of practically identifiable parameters. In reality, this

adjustment is done in different ways, often without justification, and these differences may be

the reason why a model is, or is not, rejected. This ambiguity is one of the reasons arguing

against the usage of this test. Its dependency on the value of σi is another such argument. With

the most conservative choice, the algorithm becomes:

Input: model structure M, parameters θ, data D with N datapoints.

1. Calculate the combined SSR for all data points N, using (Eq (4)).

2. If SSR < w2;cuminvðp ¼ 0:95;N � yÞ, i.e. the cumulative inverse of a χ2 distribution, then

model structure M is accepted

else model structure M is rejected.

Output: FAIL if model structure M is rejected OR PASS if model structure M acceptable

with respect to D.
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4.4 Determining model prediction uncertainty

In this work two main approaches were used to determine the prediction uncertainties. The

first and primary approach was a prediction profile likelihood (PPL) analysis. A prediction

profile likelihood analysis is used to determine the uncertainty of a predicted model value or

property [44–46]. The PPL-analysis was implemented by modifying the function for the SSR,

seen in Eq (4), such that it contained an additional term such as:

f yð Þ ¼
Pm

i¼1

Pn
j¼1

ŷij � yij
si;j

 !2

þW � ðpotarget � posimðyÞÞ
2

ð10Þ

where posim is the simulated relative abundance of mass fraction ω and is determined by the

parameters θ. potarget is a set target value for mass fraction ω and W is an integer with an arbi-

trary large value. By assigning a very large value to W, any difference between posim and potarget
will be magnified. Thus, the optimization process will select parameters that minimizes this

difference. Then, potarget was gradually stepped away from the optimal simulated value of the

mass fraction ω, until a cutoff value is reached. This stepping process is repeated for all mass

fractions that are included in the prediction.

The second approach used for determining the model prediction uncertainty was estima-

tion through Markov chain Monte Carlo (MCMC) sampling. For this analysis a posterior dis-

tribution of parameter values is generated, and all parameter sets that are acceptable with

respect to the estimation data are collected. The model prediction uncertainty is then deter-

mined by the interval:

CIa;Dof ¼ ½f ðyÞ � f ðy�Þ � Daðw
2

DoFÞ� ð11Þ

where f(θ) is the generalise form of the SSR objective function described in Eq (4); f(θ�) is the

SSR function value for the optimal parameters; α is the confidence level; Δα(χ2) is the quantile

of the χ2-statistic; DoF is the degrees of freedom; and θ� are the optimal parameters. In this

work, the DoF is equal to the number of model parameters, i.e. in the 13C MFA examples the

number of free fluxes, and 105 samples were used for the sampling.

4.5 Simulated data generation

For the examples presented in this paper, simulated data is utilized to create scenarios for

model estimation in which the ground truth is known. In each of these examples, a given

model M0 with parameters θ0 has been used to generate values for selected variables of inter-

est, given a predetermined set of model parameters and inputs. To these values, a normally dis-

tributed noise was added, with a given true sigma, σr.
For the polynomial exampled a seventh order polynomial were used as true model (see S2

Table, for true parameter values), and a normally distributed noise was added with σr = 0.2.

The model was then fitted to data corresponding to one realisation of this noise i.e. i = 1, using

Eq (4).

For the linear model example, the model A3 (Fig 5) was used as the true model (see S2

Table for true parameter values). A normally distributed noise was added with a true sigma of

σr = 5 The model was then fitted to data corresponding to five realisations of this noise i.e.

i = 5, using Eq (4).

For the EMU-model example, model 4 (Fig 7) was used as the true models (see S2 Table for

true parameter values). A normally distributed noise was added with a true sigma of σr = 0.03

The model was then fitted to data corresponding to 3 realisations of this noise i.e. i = 3, using
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Eq (4). The data was generated from four different tracers. These tracers were U-13C-pyruvate,

U-13C-glutamine, 3-13C-pyruvate, and 1,2-13C-glutamine. For the “Validation” method the

data from tracers U-13C-glutamine, 3-13C-pyruvate, and 1,2-13C-glutamine was used as Dest

while data from U-13C-pyruvate was used as Dval

To generate the different values of σb, the sample standard deviation for each observation

was scaled by a number drawn from a uniform random distribution. For σb�10�σr the distri-

bution range was between [8 12], for σb�σr the distribution range was between [0.8 1.2], and

for σb�0.1�σr the distribution range was between [0.08 0.012].

4.6 Cell culture and isotope tracing

Human Mammary Epithelial Cells (HMECs) were obtained from the laboratory of William C.

Hahn (Dana-Farber Cancer Institute, Boston, USA) and have been previously described [47].

HMECs were grown in custom-synthesized Mammary Epithelial Basal Medium (MCDB) 170

[48] supplemented with 1% Mammary Epithelial Growth Supplement (MEGS) (S0155,

Gibco), 100 units/ml penicillin and 100 μg/ml streptomycin (15140122, Thermo Fisher Scien-

tific). Cells were kept in a humidified atmosphere of 5% CO2/95% air at 37˚C and washed and

detached using ReagentPack Subculture Reagents (CC-5034, Lonza).

For isotope tracing experiments, 400,000 cells were seeded at day 0 in a T25 flask in 5mL

medium and incubated overnight. On day 1, medium was changed to an MCDB 170 medium

of the same molar composition, but with glucose or glutamine exchanged for U-13C-glucose or

U-13C-glutamine (Cambridge Isotope Laboratories), respectively. On day 2, each T25 flask cul-

ture was detached and seeded into in two T25 flasks, using the same medium. On day 4, cells

were detached and seeded into 6-well plates at 250,000 cells/well in 2mL of medium, in tripli-

cate for each tracer. On day 7 (after roughly 6 cell divisions in the presence of each 13C tracer),

each multi-well plate was placed on ice, medium was aspirated and cells were washed twice

with 1 mL of cold PBS. Then, 1 mL cold (–80˚C) methanol (JT Baker, BAKR8402.2500, VWR)

was added to each well, cells were scraped using a 17mm cell scraper (83.1830, Sarstedt), and

the extracts were carefully transferred to a new tube, vortexed for 30 seconds to break up

aggregated cell material, and stored in -80˚C until analysis. LCMS analysis of cell extracts was

performed using a pHILIC LC column coupled to a Thermo QExactive orbitrap mass spec-

trometer, as previously described [49]. All metabolite peaks reported were confirmed against

pure standards. Peak areas were integrated directly from instrument data using the mzAccess

data access framework [50] and Mathematica v.11.1 (Wolfram Research). Mass isotopomer

distributions were calculated as the areas of each mass isotopomer peak, divided by the total

peak area for all mass isotopomers.

4.7 Model for the LPC 16:0 MID

The MID xac for acetate (ac) was obtained from the fitted model as described above in section

2.5. The MID xpmt of total cellular pool was modeled as a linear mixture

xpmt ¼ a x
new
pmt þ ð1 � aÞx

old
pmt ð12Þ

where xnewpmt is the MID of newly synthesized palmitate (pmt), computed by convolution of xac
eight times, modeling the condensation of eight ac molecules by fatty acid synthase; xoldpmt is the

natural MID, representing pre-existing palmitate; and α is the unknown mixture coefficient.

The lysophosphatidylcholine MID xlpc was modeled as a convolution of xpmt and the measured

glycerol-3-phosphocholine (g3pc) MID xg3pc. This can be written as:

xlpc ¼ Cðxg3pcÞxpmt ð13Þ
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where C(xg3pc) is a matrix whose elements depend on xg3pc. This yields an equation system lin-

ear in the unknown α, which was solved using the least-squared method.

4.8 Software

All analysis presented here were performed in MATLAB by The MathWorks Inc., release

2020b. For the models presented in this paper the open source MATLAB toolbox OpenFLUX2

[51] was employed to transform the network structure to the EMU equation systems.

Supporting information

S1 Fig. Model selection results for the polynomial model example. Heatmaps represent

results from the AIC (left) and BIC (right) methods, where rows represent different values of

σb and columns represent the polynomial models h1,. . .,h14. For each row, colour indicates the

fraction of times a model is selected for the given σb, out of 10,000 samples, as indicated by the

colour scale (right).

(EPS)

S2 Fig. Model selection results for the linear model example. Heatmaps represent results

from the AIC (left) and BIC (right) methods, where rows represent different values of σb and

columns represent the polynomial models A1,. . .,A6. For each row, colour indicates the frac-

tion of times a model is selected for the given σb, out of 1 000 samples, as indicated by the col-

our scale (right).

(EPS)

S3 Fig. Illustration of the data and simulation for the Linear example. The simulated data

for the linear example plotted with the different input vectors x along the x-axis and the model

output y on the y-axis. The three different output variables are indicated by the different col-

ours, y1−purple, y2−Green, and y3−orange. The division into estimation data (left) and valida-

tion data (right) is indicated by the vertical line.

(EPS)

S4 Fig. Model selection results for the simulated 13C MFA model example. Heatmaps rep-

resent results from the AIC (left) and BIC (right) methods, where rows represent different val-

ues of σb and columns represent the polynomial models M1; . . . ;M7. For each row, colour

indicates the fraction of times a model is selected for the given σb, out of 100 samples, as indi-

cated by the colour scale (right).

(EPS)

S5 Fig. Model selection results for the epithelial cell example. Heatmaps represent results

from the AIC (left) and BIC (right) methods, where rows represent different values of σb and

columns represent the polynomial models M1; . . . ;M7.

(EPS)

S6 Fig. Usage of Validation data with prediction uncertainty where a sub part of a single

data set has been reserved for validation. This preliminary analysis shows the result of using

validation with prediction uncertainty in a scenario where a portion of a complete data has

been reversed as validation data. In this example the model was trained on estimation data

(dark red) consisting of MIDs from 8 metabolites, from two tracers, with the model fit to the

estimation data (light red) is illustrated for each MID. The validation data consisted of the

MID for α-ketoglutarate (dark blue) and the model prediction is illustrated (light blue) and

shows good agreement with the validation data. For the experimental data, the error bars rep-

resent standard deviation, and for the model predictions, the error bars represent model
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uncertainty (Section 4.4). The tracers are Tracer 1 = U-13C-glutamine, Tracer 2 = U-13C-pyru-

vate.

(EPS)

S7 Fig. A comparison of model predictions with uncertainties compared to the validation

data for the simulated 13C MFA example. The validation data for the simulated 13CMFA

example consisted of MIDs for nine metabolites from a [U-13C] pyruvate tracer. The metabo-

lites are from top-left to bottom-right, pyruvate, citrate, cis-aconitic acid, alpha-ketoglutarate,

L-glutamate, L-glutamine, fumarate, L-malate, and L-aspartate. The purple bars indicate the

simulated MIDs, and the corresponding error bars indicate the experimental uncertainty of σr.

The red bars indicate the predicted MIDs of model structure M4 and the corresponding error

bars indicate the prediction uncertainty. The green bars indicate the predicted MIDs of model

structure M2 and the corresponding error bars indicate the prediction uncertainty.

(EPS)

S1 Algorithm. Algorithm used for the model selection problem. The model selection algo-

rithm takes a set of model structures and a set of data as inputs and selects the most appropri-

ate model structure based on the sub type (A-D) and the data. Subtype A selects the model

structure that yields the smallest summed squared residuals (SSR) given the entire data set.

Subtype B selects the first/simplest model structure that can pass a χ2-test. Subtype C selects

the model structure that passes a χ2-test with the largest margin. Finally, subtype D selects the

model structure that yields the lowest SSR with respect to a validation subset of the data.

(DOCX)

S1 Table. Breakdown of reactions for the TCA-cycle models. The table contains a detailed

breakdown of the reactions that are included in the TCA-models. In general, the model struc-

tures are derived from the most complex model structure M7 by successively removing and

combining reactions and thus make each successive model structure simpler.

(DOCX)

S2 Table. A summary of the parameter values that were used to generate the simulated

data for the three different examples that are used in the manuscript. The full parameter

vector for the polynomial, linear and metabolic flux analysis model examples are given by the

respective columns.

(DOCX)
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