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1 |  INTRODUCTION

Primary carnitine deficiency (OMIM# 212140, PCD) is 
an autosomal recessive disorder caused by mutations in 
SLC22A5 (OMIM# 603377). This gene encodes organic 
cation transporter type 2 (OCTN2), which transports car-
nitine across cell membranes. The defective activity of 
OCTN2 results in urinary carnitine wasting, low plasma 

carnitine levels, and decreased intracellular carnitine ac-
cumulation. Carnitine is necessary for the transfer of long‐
chain fatty acids from the cytoplasm into the mitochondria 
for β‐oxidation (Stanley, 2004). A lack of carnitine results 
in hypoglycemia by impairing the ability to use fat as an 
energy source during periods of fasting or stress (Mutlu‐
Albayrak et al., 2015). In addition, fat accumulation in the 
liver, skeletal muscle, and heart leads to hepatic steatosis 
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Abstract
Background: Primary carnitine deficiency (PCD) is an autosomal recessive disorder 
of carnitine transportation caused by mutations in the SLC22A5 that lead to low serum 
carnitine levels and decreased intracellular carnitine accumulation. Characteristic 
clinical findings are hypoketotic hypoglycemia and skeletal and cardiac myopathy.
Objective: To genetically diagnose 24 unrelated Chinese patients with PCD, includ-
ing 18 infants and six adults.
Methods: The entire coding region and the intron–exon boundaries of SLC22A5 
were amplified by polymerase chain reaction (PCR). In silico analyses and reverse 
transcription‐polymerase chain reaction (RT‐PCR) were used to predict variants’ im-
pact on protein structure and function.
Results: Disease‐causing variants in the SLC22A5 were identified in all 24 subjects, 
and c.288delG, c.495C>A, c.774_775insTCG, c.824+1G>A, and c.1418G>T were 
novel. The novel variant c.824+1G>A caused a truncated protein p.Phe276Tyrfs*8.
Conclusions: We identified 13 variants in the SLC22A5 in 24 PCD patients, and five 
of these variants are novel mutations. c.824+1G>A was confirmed to alter mRNA 
splicing by reverse transcription PCR. Furthermore, our findings broaden the muta-
tion spectrum of SLC22A5 and the understanding of the diverse and variable effects 
of PCD variants.
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and myopathy (Magoulas & El‐Hattab, 2012). Furthermore, 
the clinical manifestations of PCD vary depending on the 
age of onset and organ involvement, for example, hypoke-
totic hypoglycemia, hepatomegaly, and hyperammonemia 
in infants; cardiomyopathy, myopathy, and elevated cre-
atine kinase in childhood; and cardiomyopathy and fatiga-
bility in adulthood. In contrast, some individuals with PCD 
remain asymptomatic throughout their entire life. Plasma‐
free carnitine analysis by tandem mass spectrometry can be 
utilized for PCD screening. Additionally, the measurement 
of carnitine transport in fibroblasts or genetic testing of the 
SLC22A5 could assist in the diagnosis of PCD.

The estimated incidence of PCD is 1:40,000–1:142,000 
based on the results of newborn screening (Koizumi et al., 
1999; Magoulas & El‐Hattab, 2012; Therrell, Lloyd‐Puryear, 
Camp, & Mann, 2014; Wilcken, Wiley, Hammond, & 
Carpenter, 2003). In certain areas, such as the Faroe Islands, 
PCD is a common disease with an incidence of 1:300 
(Rasmussen, Kober, Lund, & Nielsen, 2014; Steuerwald et 
al., 2017). The incidence of PCD in China is approximately 
1:8,938–45,000 among diverse regions (Han et al., 2014, 
2012; Ma, 2015; Sun, Wang, & Jiang, 2017); this range is 
influenced by when and where the epidemiological data were 
collected. Because of the existence of asymptomatic individ-
uals with PCD, the prevalence of PCD in the general popula-
tion may be underestimated.

As mentioned above, mutations in the SLC22A5 cause 
PCD. The SLC22A5 spans approximately 30  kb on human 
chromosome 5q31.1 and comprises 10 exons. Over 150 muta-
tions have been reported in this gene, and most are missense/
nonsense. These mutations lead to dysfunctional proteins and 
disturb carnitine transportation in tissues.

Here, we report 24 unrelated Chinese patients with PCD, 
including 18 infants who were first suspected via newborn 
screening and six mothers whose infants failed newborn 
screening. All subjects had decreased plasma‐free carni-
tine concentrations and underwent Sanger sequencing of 
SLC22A5, which showed that 22 subjects had compound 
heterozygous variants, and the remaining two had homozy-
gous variants in SLC22A5. Among the variants, five were 
novel, and c.824+1G>A was confirmed to cause splice site 
alterations by reverse transcription polymerase chain reaction 
(RT‐PCR).

2 |  MATERIALS AND METHODS

2.1 | Patients
Twenty‐four subjects with decreased plasma‐free carnitine 
levels were initially identified through newborn screen-
ing by tandem mass spectrometry in the maternal and child 
health hospital of Hunan province, China. All infants and 

T A B L E  1  Clinical features of 18 infants with primary carnitine deficiency

Subjects Gender

Plasma‐free carnitine (normal control 10–45 μmol/L)

Clinical presentationInitial newborn screening Recall

1 F 2.21 1.59 Asymptomatic

2 M 2.95 2.83 Asymptomatic

3 M 1.54 1.41 Asymptomatic

4 M 3.47 4.6 Asymptomatic

5 M 3.8 2.44 Asymptomatic

6 M 5.46 1.41 Asymptomatic

7 M 7.94 4.46 Asymptomatic

8 F 5.28 4.24 Asymptomatic

9 M 5.57 5.57 Asymptomatic

10 F 1.94 1.94 Asymptomatic

11 F 6.16 5.41 Asymptomatic

12 F 7.52 5.85 Mild mitral and aortic valve 
regurgitation

13 F 6.63 4.8 Asymptomatic

14 F 3.66 4.01 Asymptomatic

15 M 2.35 1.52 Asymptomatic

16 M 2.48 2.52 Asymptomatic

17 F 3.9 2.14 Asymptomatic

18 M 2.46 3.54 Asymptomatic
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their mothers were recalled to repeat plasma carnitine analy-
sis. Eighteen infants sustained low carnitine levels (Table 
1), and the remaining six mothers demonstrated low carni-
tine levels with low or gradually normalized carnitine levels 
among their babies (Table 2). Other evaluations, including 
echocardiogram, electrocardiogram, preprandial blood sugar, 
creatine kinase, and liver transaminase measurements, were 
conducted for these patients. All infants and mothers were 
asymptomatic except for an infant with mild mitral and aortic 
valve regurgitation through echocardiogram and two mothers 
with easy fatigability. The study was approved by the Ethics 
Committee of Hunan Provincial Maternal and Child Health 
Care Hospital.

2.2 | Genetic analysis
The entire coding region and the intron–exon boundaries of 
SLC22A5 (NM_003060.3) were amplified by PCR. Dried 
blood spots were innovatively applied in genetic analysis 
with 2× T5 Direct PCR Mix blood (TSINGKE Biological 
Technology, Beijing, China), which was initially designed 
for the amplification of DNA from whole blood. Primer se-
quences (Table S1) were designed with PRIMER5 software 
(PREMIER Biosoft International, Palo Alto, CA, USA). PCR 
products were sequenced using an ABI PRISM 3100 Genetic 
Analyzer (Applied Biosystems, Foster City, CA, USA), and 
sequences were analyzed using DNASTAR (Madison, WI, 
USA). The genomic sequence of the SLC22A5 (NM_0030.2) 
was used as a reference.

RNA was extracted from peripheral blood leukocytes 
using the TRIzol method. RNA was reverse transcribed 
into complementary DNA (cDNA) using a RevertAid First 
Strand cDNA Synthesis Kit (Thermo Scientific, MA, USA). 
The primers (Table S2) used to amplify the coding regions 
of SLC22A5 were designed with PRIMER5. Monoclones 
were obtained from PCR products with a pClone007 Blunt 
Simple Vector Kit (TSINGKE Biological Technology, 
Beijing, China) and DH5α Chemically Competent Cell 
(TSINGKE Biological Technology, Beijing, China). 
Monoclones were sequenced using an ABI PRISM 3100 

Genetic Analyzer, and the sequences were analyzed using 
DNASTAR.

3 |  RESULTS

Thirteen different variants were identified in the SLC22A5 in 
24 subjects (Tables 3 and 4). Mutation c.51C>G had the high-
est frequency of ~ 27% (13/48), followed by c.760C>T and 
c.1400C>G with frequencies of ~25% (12/48) and ~18.8% 
(9/48), respectively. Six variants have not been reported in 
the Human Gene Mutation Database (http://www.hgmd.
cf.ac.uk/ac/index.php) or the OCTN2 Database at ARUP 
Laboratories (http://www.arup.utah.edu/datab ase/OCTN2/ 
OCTN2_displ ay.php). Among these variants, c.288delG 
and c.824+1G>A were classified as pathogenic; c.495C>A, 
c.774_775insTCG, and c.1418G>T were classified as likely 
pathogenic; and c.1298T>C was classified as uncertain sig-
nificance following the standards and guidelines for the in-
terpretation of sequence variants proposed by the American 
College of Medical Genetics and Genomics (ACMG) and the 
Association for Molecular Pathology (AMP) (Richards et al., 
2015).

The novel variant c.824+1G>A was confirmed to cause 
splice site alterations by RT‐PCR and comparison of the 
sequence with the reference sequence of SLC22A5 cDNA 
(NM_0030.2). This variant caused the first 13 bases of intron 
3 to be included in the coding sequence, resulting in a trun-
cated protein, p.Phe276Tyrfs*8 (Figure 1).

4 |  DISCUSSION

The broad phenotype of PCD varies from asymptomatic to 
sudden infant death. A significant number of individuals 
with PCD are asymptomatic or mildly symptomatic, with 
symptoms including easy fatigability or decreased stamina 
(El‐Hattab et al., 2010). However, PCD has risks for signifi-
cant clinical consequences, such as sudden death triggered 
by fasting or a catabolic state at any age if left untreated. 

T A B L E  2  Clinical features of six mothers with primary carnitine deficiency

Subjects Age

Plasma free carnitine (normal control 10–45 μmol/L)

Clinical presentation
Initial newborn screening of 
their infants

Recall of their 
infants

Result of 
subjects

19 34 years 2.91 5 2.32 Easy fatigability

20 24 years 3.91 4.78 3.61 Asymptomatic

21 35 years 5.52 9.22 6.82 Asymptomatic

22 31 years 4.17 6.19 3.16 Asymptomatic

23 28 years 2.56 3.65 1.89 Easy fatigability

24 25 years 1.31 8.77 4.75 Asymptomatic

http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.arup.utah.edu/database/OCTN2/OCTN2_display.php
http://www.arup.utah.edu/database/OCTN2/OCTN2_display.php
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Early diagnosis and medical interventions are essential for 
the management of PCD. Carnitine supplementation can effi-
ciently improve symptoms except for those with irreversible 
consequences, such as central nervous system involvement 
due to hypoglycemia (Cederbaum et al., 2002). Individuals 
with PCD exhibit low plasma carnitine levels without car-
nitine supplementation. There is no clear relationship be-
tween plasma carnitine levels and the SLC22A5 genotype in 
neonatus ascertained through abnormal newborn screening 
(Li et al., 2010), which was also observed in our study. No 

association between genotype and phenotype has been found, 
particularly among symptomatic patients with identical mu-
tations (Lamhonwah et al., 2002; Longo, Filippo, & Pasquali, 
2006). Various mutation types were detected in our study, 
including missense, nonsense, frameshift, in‐frame insertion, 
and splice site mutations. All infants were asymptomatic ex-
cept subject 12 whose echocardiogram indicated mild mitral 
and aortic valve regurgitation. Two mothers claimed to have 
easy fatigability, and the remaining four were asymptomatic. 
The relationship between genotype and phenotype in our 

T A B L E  3  Variants of SLC22A5 gene in 18 infants with primary carnitine deficiency

Subjects Variants at nucleotide level Variants at protein level References

1 c.495C>A(maternal) p.Asp165Glu This study

c.760C>T (paternal) p.Arg254* Tang et al. (2002)

2 c.288delG (paternal) p.Leu97Trpfs*33 This study

c.1400C>G (maternal) p.Ser467Cys Koizumi et al. (1999)

3 homozygous c.760C>T (maternal/ paternal) p.Arg254*

4 c.51C>G(maternal) p.Phe17Leu Lee et al. (2010)

c.338G>A(paternal) p.Cys113Tyr Han et al. (2014)

5 c.338G>A(paternal) p.Cys113Tyr

c.760C>T (paternal) p.Arg254*

6 c.760C>T (maternal) p.Arg254*

c.1400C>G (paternal) p.Ser467Cys

7 c.51C>G (maternal) p.Phe17Leu

c.1298T>C (paternal) p.Met433Thr This study

8 c.51C>G (maternal) p.Phe17Leu

c.428C>T (paternal) p.Pro143Leu Lee et al. (2010)

9 c.774_775insTCG (paternal) p.Met258_Leu259insSer This study

c.1400C>G (maternal) p.Ser467Cys

10 c.51C>G(maternal) p.Phe17Leu

c.760C>T (paternal) p.Arg254*

11 c.51C>G (paternal) p.Phe17Leu

c.1400C>G (maternal) p.Ser467Cys

12 c.797C>T (maternal) p.Pro266Leu Chen et al. (2013)

c.338G>A(paternal) p.Cys113Tyr

13 c.51C>G (paternal) p.Phe17Leu

c.1400C>G (maternal) p.Ser467Cys

14 c.51C>G(maternal) p.Phe17Leu

c.1400C>G (paternal) p.Ser467Cys

15 c.338G>A (paternal) p.Cys113Tyr

c.760C>T (maternal) p.Arg254*

16 c.338G>A (maternal) p.Cys113Tyr

c.824+1G>A (paternal) p.Phe276Tyrfs*8 This study

17 c.51C>G (paternal) p.Phe17Leu

c.760C>T (maternal) p.Arg254*

18 c.51C>G (paternal) p.Phe17Leu

c.760C>T (maternal) p.Arg254*
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study was consistent with previous studies through compara-
tive analyses.

As a maternal disorder can cause secondary carnitine 
deficiency, plasma carnitine should be evaluated in mothers 
when the carnitine levels of their infants are low in newborn 
screening. Using this strategy, a certain number of clini-
cally asymptomatic mothers with mutations were identified 
(Frigeni et al., 2017; Li et al., 2010). Based on the genetic 
model of recessive heredity, a certain number of undetected 
asymptomatic fathers or male adults with PCD are highly 
probable. Currently, as adult screening might be difficult to 
implement, examining carnitine levels should be prioritized in 
individuals who have decreased stamina or easy fatigability.

OCTN2 is a transmembrane protein that transfers car-
nitine across the cell membrane in a Na+‐dependent man-
ner and other organic cations, such as tetraethylammonium 
(TEA), in a Na+‐independent manner. OCTN2 comprises 
12 transmembrane domains containing 557 amino acids 
with both the amino‐ and carboxyl‐terminus in the cyto-
plasm, similar to other organic cation transporters (Li et 
al., 2010). The first extracellular loop is highly conserved 
among organic cation transporters encoded by members of 
the solute carrier (SLC) 22 family, suggesting an essential 
role of this loop in transporter function (Burckhardt & Wolff, 
2000). Normal glycosylation of the three putative N‐gly-
cosylation sites (Asn‐57, Asn‐64, and Asn‐91) in the first 

extracellular loop is significant for substrate and sodium rec-
ognition (Burckhardt & Wolff, 2000; Wu, Prasad, Leibach, 
& Ganapathy, 1998). OCTN2 is expressed on the plasma 
membrane by entering the secretory pathway, including the 
endoplasmic reticulum and Golgi apparatus (Maekawa et al., 
2007). The variant c.824+1G>A causes the first 13 bases of 
intron 3 to be included in the coding sequence, resulting in 
a frameshift of p.Phe276Tyrfs*8, a truncation in transmem-
brane domain 6. Variant c.288delG causes a frameshift of 
p.Leu97Trpfs*33, which is a termination in the first extra-
cellular loop of OCTN2. These two mutants may lead to a 
complete absence of the gene product by lack of transcrip-
tion or nonsense‐mediated decay of an altered transcript. The 
variant c.774_775insTCG (p.Met258_Leu259insSer) occurs 
in transmembrane domain 6 and could likely disturb the bind-
ing to the cell membrane by inserting a hydroxyl amino acid 
of serine in a hydrophobic transmembrane domain (Figure 2).

The variants c.495C>A and c.1418G>T are considered 
pathogenic based on deleterious predictions by the SIFT 
(http://sift.jcvi.org) and PolyPhen‐2 (http://genet ics.bwh.harva 
rd.edu/pph2/) algorithms, while c.1298T>C is predicted to be 
tolerated by SIFT and pathogenic by PolyPhen‐2. Frigeni et al. 
(2017) reported that prediction algorithms failed to determine 
the functional effects of amino acid substitutions in OCTN2 
in approximately 20% of cases. Therefore, functional study is 
the gold standard to confirm the pathogenicity of variants. The 

T A B L E  4  Variants of SLC22A5 gene in six mothers with primary carnitine deficiency

Subjects Variants at nucleotide level Variants at protein level Variants of infants References

19 c.760C>T p.Arg254* —

c.1400C>G p.Ser467Cys Heterozygous

20 c.51C>G p.Phe17Leu —

c.1400C>G p.Ser467Cys Heterozygous

21 c.760C>T Homozygous p.Arg254* Heterozygous

22 c.51C>G p.Phe17Leu —

c.1340A>T p.Tyr447Phe Heterozygous Rahbeeni et al. (2002)

23 c.51C>G p.Phe17Leu Heterozygous

c.1400C>G p.Ser467Cys —

24 c.51C>G p.Phe17Leu Heterozygous

c.1418G>T p.Gly473Val — This study

F I G U R E  1  Result of reverse 
transcription PCR of c.824+1G>A. The 
variant caused the first 13 bases of intron 3 
being included into the coding sequence to 
form a frameshift of p.Phe276Tyrfs*8

http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
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measurement of carnitine transport activity in cultured fibro-
blasts is reliable for diagnosing PCD. Carnitine transport in 
PCD patients is universally reduced to less than 20% of normal 
transport in fibroblasts (Longo, Frigeni, & Pasquali, 2016). As 
this method is time‐consuming and invasive due to the needed 
skin biopsy, it has not been applied in most medical institutions 
in China. Moreover, the lack of measurement of carnitine trans-
port activity in cultured fibroblasts is a limitation of this study.

The most frequent mutations of SLC22A5 have been re-
ported in specific geographical areas, such as c.136C>T 
in the United States (Frigeni et al., 2017; Li et al., 2010), 
c.396G>A and c.1400C>G in Japan (Koizumi et al., 1999), 
and c.95A>G in the Faroe Islands (Rasmussen, Nielsen, et al., 
2014). In this study, c.51C>G, c.760C>T, and c.1400C>G 
were the most frequently occurring mutations, confirm-
ing previous findings in the Chinese population (Tables 5). 
Because of geographical differences and the limited number 
of test samples, the most frequent mutation is uncertain, but 
we can safely infer that the three mutations mentioned above 
are the most frequent mutations of SLC22A5 in China.

All individuals with PCD in this study maintained normal 
plasma carnitine levels with oral levocarnitine (L‐carnitine) 
immediately after the initial diagnosis. The infantile meta-
bolic disturbance and childhood myopathy caused by PCD 
can be fatal without early treatment. Treatment with L‐car-
nitine supplementation should be initiated early before irre-
versible organ damage occurs(Magoulas & El‐Hattab, 2012). 
Antenatal diagnosis has rarely been performed because PCD 
is treatable, and the treatment method is simple, safe, and 
effective.

5 |  CONCLUSIONS

In conclusion, we identified 13 variants in the SLC22A5 in 
24 PCD patients, and five of these variants are novel muta-
tions. c.824+1G>A was confirmed to alter mRNA splicing 
by RT‐PCR. Furthermore, our findings broaden the mutation 
spectrum of SLC22A5 and the understanding of the diverse 
and variable effects of PCD variants.

F I G U R E  2  Schematic of the OCTN2 carnitine transporter with location of variants identified in this study. Positions of functional domains 
are based on the information provided by the Universal Protein Resource (UniProt) (http://www.unipr ot.org/)

T A B L E  5  Frequencies of c.51C>G, c.760C>T, and c.1400C>G of the SLC22A5 in China

Area

Frequencies

Referencesc.1400C>G c.760C>T c.51C>G

Zhejiang 34.3% (23/67) 19.4% (13/67) 11.9 (8/67) Ma (2015)

Shanghai 2.6% (1/39) 25.6% (10/39) 15.4% (6/39) Han et al. (2014)

Fujian 31.3 (5/16) 37.5% (6/16) 12.5% (2/16) Lin et al. (2017)

Jiangsu 50% (7/14) 7.1% (1/14) 14.3% (2/14) Sun et al. (2017)

Hunan 18.8% (9/48) 25% (12/48) 27.1% (13/48) This study

http://www.uniprot.org/
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