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Abstract. Synthesis of several N-oxides with tungsten exchanged hydroxyapatite (W/HAP) in the presence

of 30% hydrogen peroxide (H2O2) as an oxidant is presented. A process with aqueous H2O2, a cheap and

clean oxidant with an active catalyst is developed to reduce waste production and meet the requirements of

green chemistry. Several tertiary amines have been efficiently oxidized to their corresponding N-oxides with
excellent yields. The as-synthesized catalyst (W/HAP) is characterized using BET, FTIR, SEM, ICP-OES and

XRD. Effect of catalyst loading , temperature and oxidants were studied. A kinetic model has been developed

to determine the reaction rate at different temperatures and activation energy for the model reaction.
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Abbreviations
A Reactant species A, pyridine

B Reactant species B, hydrogen peroxide

C Product C, pyridine N-oxide
D By-product D, water

CA Concentration of A (mol/lit)

CB Concentration of B (mol/lit)

-rA Rate of surface reaction of A (mol lit s-1)

K Second order rate constant (lit2. mol -1 sec-1 g-1)

W Catalyst loading (g/lit)

CAo Initial concentration of A, (mol/lit)

CBo Initial concentration of B, (mol/lit)

XA Fractional conversion of A

M Initial molar ratio of reactants B to A

1. Introduction

Pyridine is a six-membered heterocyclic nitrogen-

containing compound. It occupies an important role in

bioorganic and medicinal chemistry. Oxidation of

pyridine to pyridine n-oxide has found novel

applications in the field of chemistry due to its various

uses in organic and inorganic chemistry.1 The oxida-

tion of nitrogen compounds results in the synthesis of

versatile building blocks for organic synthesis.2,3

Table 1 provides an insight into different catalysts

used for the oxidation of heterocyclic nitrogen com-

pounds to their N-oxides using H2O2 as an oxidant.

A greener catalytic oxidation method is one that

utilizes dioxygen (O2) or hydrogen peroxide as an

oxidant. Aqueous H2O2 is an ideal oxidant because of

its safety in storage and handling, high oxygen con-

tent, low production, and transportation cost, and is a

green reagent that produces only water as a by-prod-

uct.1 Moreover, reactions performed in water are

environmentally friendly. There is always a need to

develop new processes to minimise the difference

between atom utilization of actual and theoretical

values for an increasingly global and environmental

problem.6

Hydroxyapatite (HAP) [Ca10(PO4)6(OH)2] is a weak

alkaline calcium phosphate. It has strong ion-exchange

property, and it can be exchanged with the majority of

metal ions. This property allows preparing the highly

dispersed and stable metal-supported catalysts. The

acidity and basicity on the surface of hydroxyapatite
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can be changed by adjusting the calcium-phosphorus

ratio. The surface of HAP is rich in hydroxyl groups,

so it has strong absorbability and can be modified by

organic compounds with polar functional groups and

better support for organometallic compounds. HAP is

used widely for the dehydrogenation of hydrocarbons,

oxidation of alcohols, C-C bond formation reactions,

and reduction reactions such as hydrogenolysis.15–20

Choudary B M 21 reported three-component coupling

to prepare propargylamine from aldehyde, alkyne, and

an amine using copper-hydroxyapatite (CuHAP) under

mild reaction parameters. Another work reported by

Choudary B M22 includes N-arylation of imidazoles

and other heterocycles with fluoroarenes and

chloroarenes using copper-exchanged tert-butoxyap-
atite and copper-exchanged fluorapatite. Kantam M

L23 synthesized N-arylimidazoles and N-arylamines at

room temperature in the presence of copper fluorap-

atite (CuFAP). A palladium-supported fluorapatite

catalyst (PdFAP) gave high activity for Suzuki cou-

pling of bromides and aryl iodides with chloroarenes

and boronic acids at 130�C and room temperature,

respectively. The catalyst was also successful for Heck

olefination of chloroarenes.24 Hydrogenation of levu-

linic acid to c- valerolactone was successfully

obtained by metal (Ru, Pt, Pd, Ni) supported hydrox-

yapatites.16 Kaneda K25 discussed the active metal

sites on the apatite compounds that display novel

catalytic activity in selective oxidations, carbon-diox-

ide chemical fixation, carbon-carbon bond forma-

tion.22 Their further review includes high-performance

apatite-based catalysts for liquid-phase organic syn-

thesis and continuous flow systems. Fihri A and Solhy

A26 highlighted the application of hydroxyapatite in

heterogeneous catalysis and its synthesis methods with

the structural properties.

Recently, there is a review article by Kantam M L27

on C-C and C-N bond-forming reactions catalysed by

HAP. There are various methods to synthesize

hydroxyapatite. A stoichiometric HAP can be obtained

from a balanced molar ratio of the calcium and

phosphate precursors and maintaining pH.28

Pyridine N-oxides have wide applications as auxil-

iary agents, synthetic intermediates, oxidants, pro-

tecting groups, and as ligands in catalysts and metal

complexes.11,29 Ghaleb A30 successfully studied the

structure-activity relationship for a new family of

SARS-CoV 3CL pro-inhibitors, pyridine N-oxide

derivatives. Pyridine N-oxide compounds have

antiviral activity against SARS. They reported pyr-

idine N-oxide antiviral compounds to be more potent

against SARS-CoV-2 than chloroquine and

hydroxychloroquine.

Herein, we report the N-oxidation of tertiary amines

to the corresponding N-oxides using H2O2 as an oxi-

dizing agent and tungsten exchanged hydroxyapatite

(W/HAP) as a catalyst in water for three cycles at low

temperature.

2. Experimental

2.1 Materials

All the chemicals were purchased from Oxford lab fine

chem and used as received. The reaction progress was

monitored by High performance liquid chromatogra-

phy (Thermo Scientific, Ultimate 3000), Cosmosil

C-18 column, 0.132 g of Sodium acetate buffer with

30% acetonitrile and 70% water, 0.6 mL/min of flow

rate, 10 min total run time at the pressure of 65 bar.

The surface area of the optimized catalyst was deter-

mined by Micromeritics ASAP 2000 instrument by

Table 1. Different types of catalysts used for N-Oxidation.

No. Catalysts Temperature (�C) Time (h) Yield (%) Refs.

1 VS-1 60 12 90 4

2 TS-1 75 2 99 5

3 LDH-WO4 r.t. 3–5 96 6

4 Mg-Al-O-tBu hydrotalcite 75 1–5 98 7

5 Redox molecular sieves 60 5–24 90 8

6 VxSi4xO6.4x 80 3–12 45–99 9

7 Ru(PVP)/c-Al2O3 r.t. 1–2 99 10

8 Poly(maleic anhydride-alt-1-octadecene) 90 7 93 11

9 MeReO3 r.t. 6 90 12

10 m-Chloroperbenzoic acid r.t. 1–24 87 13

11 Na2WO4 2H2O - 5 and r.t. 3 40–89 14

   50 Page 2 of 10 J. Chem. Sci.          (2022) 134:50 



using Nitrogen adsorption-desorption isotherms. All

the samples were degassed under vacuum for 4 h at

350 �C. ICP-OES is carried out by Agilent model:

5110. A Fourier Transform Infrared Spectrum (FTIR)

of the catalysts was measured on a Perkin Elmer

Spectrophotometer in the range of 400-4000 cm-1.

Scanning electron microscopy (SEM) was obtained on

Philips XL, 30 SEM, The Netherlands. XRD was

obtained from Shimadzu X-ray diffractometer-6100

LabX.

2.2 Catalyst synthesis

Hydroxyapatite was synthesized using the co-precipi-

tation method.22 0.066 mol of calcium nitrate was

dissolved in 60 mL of water, brought to 11-12 pH with

concentrated ammonia solution and diluted to 120 mL.

A solution of 0.04 mol of diammonium orthophos-

phate in 100 mL of water was prepared and brought to

the pH of 11-12 using concentrated ammonia solution.

The calcium solution was stirred at room temperature

with the simultaneously addition of phosphate solution

drop-wise over a period of 30 min and the milky

solution was further stirred, boiled for 10 min at reflux.

The precipitate was filtered, dried at 353 K overnight

and calcined at 773 K for 3 h.

2.3 Tungstate exchanged hydroxyapatite

To 1 g of hydroxyapatite, 100 mL of sodium tungstate

solution was added (1.87 mM. 0.616 g) and stirred at

293 K for 24 h. The catalysts were filtered off, washed,

and dried at 353 K overnight.6,31,32 The tungsten

content in the W/HAP catalyst was found to be

0.0340 Wt.%.

2.4 Procedure for the N-Oxidation reaction

N-Oxidation of pyridine to pyridine N-Oxide was

performed in a 50 mL glass reactor equipped with a

6-blade pitched turbine impeller. The reactor was

immersed in an oil bath with PID controller to main-

tain the temperature of the oil bath. 2 mmol of pyridine

was reacted with 6 mmol of 30% hydrogen peroxide

(H2O2) in the presence of W/HAP catalyst and 10 mL

of water, 1200 rpm at 353 K for 20 h. The initial

sample was collected when the reaction reached the

desired temperature. Samples were taken out at fixed

intervals up to 20 h and centrifuged to separate the

catalyst particles. The reaction is depicted in

Scheme 1.

3. Results and Discussion

3.1 Catalysts characterization

The Brunauer-Emmett-Teller (BET) surface area of

W/HAP was measured to be 91.4 m2/g, and the pore

volume was 0.1318 cc/g. The nitrogen adsorption-

desorption isotherm for W/HAP is shown in (Fig-

ure S1, SI) was found to be type IV with the charac-

teristic of mesoporous material having a small plateau

at high relative pressure.

The FTIR spectra (Figure 1) of W/HAP displays

PO4 vibrational frequencies in agreement with the

literature,33,34 bands were observed at 962 cm-1, for

the symmetric P-O stretching 01, at 1029 and

1060 cm-1 for the asymmetric P-O stretching 03. 450,
562, 602, 635, and 718 cm-1 for the O-P-O bending

modes 03 and 04.
The SEM technique was used to investigate the size

and shape of the synthesized material. The (Figure S2,

SI) image (a) clearly indicates the particles are in the

nanosize range. There are irregular agglomerates for

the W/HAP sample from image (b) and literature.35

Scheme 1. N-oxidation of Pyridine to Pyridine N-Oxide.

Figure 1. FTIR of W/HAP.
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These agglomerates consist of fine crystallites that are

not visible individually because of their small size.

The surface of the particles was found to be rough

from image (c).

The XRD data of hydroxyapatite well matched with

the reported JCPDS #09-0432. The XRD of W/HAP

catalyst matches with the reported data (JCPDS#

11-0693). The crystallinity of the catalyst can be

confirmed by the peaks reflection at 32� and 34� and

planes corresponding are (300) and (112), respec-

tively.34 The other peaks are at the reflection of 25�,
26�, 29�, 30�, 38�, 40�, 41�, 46�, 49�, 50�, 51�, 53� are

in corresponding with (229), (105), (350), (300), (100),

(99), (95), (105), (106), (98), (97), (101).

3.2 Catalytic activity

2 mmol of pyridine was reacted with 6 mmol of

30% hydrogen peroxide (H2O2) in the presence of

different catalysts and 10 mL of water at 353 K for

20 h. The conversion was 90 and 86%, respectively,

with W/HAP and HAP. No by-products were formed

in this reaction. The lowest conversion of 36% was

found with FAP (Fluorapatite). Sodium tungstate and

sodium molybdate afforded conversion of 70 and

75%, respectively. Whereas tungstate and molybdate

loaded layered double hydroxides showed 58 and

44% conversion (Figure 3). A series of experiments

were done using 5 wt% to 50 wt% of W/HAP

catalyst, and 20 wt% catalyst gave 90% conversion

(Figure 4). Catalyst loading was studied with respect

to the limiting reactant. The optimization studies

were conducted with 20 wt% of W/HAP catalyst

(Figure 4).36 The reaction was tested with different

oxidants. 30% H2O2 was found to be the best oxi-

dant for the reaction with 90% conversion, and the

conversion was less with the use of 70% aqueous

TBHP and air, as shown in (Figure 5). The reaction

was studied at varying molar ratios of pyridine to

H2O2 (Figure 6). We obtained an increase in yield

with an increase in the amount of H2O2.
4 The speed

of agitation was studied from 800 to 1200 rpm.

There was a negligible difference in the rate of

reaction and thus proves the absence of external

mass transfer resistance in the reaction (Figure 7).

Temperature study was carried out at 323, 333, 343,

and 353 K. The highest conversion, 90%, was

obtained at 353 K, and the lowest 60% at 323 K.

Low conversion of 20% was obtained at room

temperature, and water was found to be the best

solvent for the reaction. Sample was analysed with

time at all temperatures to determine the progress of

the reaction as shown in (Figure 8). The TON and

TOF are calculated as 5.05 and 0.25 h-1,

respectively.

3.3 Substrate study

Substrates with structural diversity were studied at the

optimized reaction conditions. We observed that all

the aromatic nitrogen compounds were transformed

into their corresponding N-Oxides, as shown in

(Table 2).

Figure 2. XRD of a HAP and b W/HAP c Inset of a and
b showing detailed view.
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3.4 Reaction mechanism and kinetic model

The reaction mechanism is presumed to be similar to

that reported in the literature.6,37

Aþ B ! Cþ D

A = Pyridine, B = H2O2, C = Pyridine N-Oxide, D =

Water

�rA ¼ �dCA

dt
¼ �dCB

dt
¼ K CACBW

�rA ¼ CAo

dXA

dt
¼ K CAo� CAo � XAð Þ CBo�CAo � XAð Þ

Let M = CBo

CAo
be the initial molar ratio of reactants, we

obtain

�rA ¼ CAo

dXA

dt
¼ KC2

Ao 1� XAð Þ M� XAð Þ

Integrating the above equation, we get

Z CA

CAo

dXA

ð1� XAÞðM � XAÞ
¼ KCAoW

Z t

0

dt

ln
M � XA

Mð1� XAÞ
¼ KCAo M� 1ð ÞWt ð1Þ

Plotting the above equation as a graph with the

slope as K CAo (M-1) W,

Graph of ln
M � XA

Mð1� XAÞ
V=s Time:

The experimental data were used to verify the

validity of the equation (1) and plotted as shown in

(Figure 9). Using equation (1), plots were made for

different temperatures with respect to time, and the

rate constants were calculated mentioned in

(Table 3). These rate constants were used for the

calculation of activation energy by plotting an

Arrhenius plot (Figure 10) as 50 Kcal/mol, which

supports the fact that the N-oxidation of pyridine

was kinetically controlled.

Figure 3. Effect of different catalysts on the yield of Pyridine N-oxide. Reaction conditions: Pyridine: 2 mmol, H2O2:
6 mmol, catalyst: 200 mg, 10 mL water, 1200 rpm, 353 K, 20 h.

Figure 4. Effect of catalyst loading on yield of pyridine
N-oxide. Reaction conditions: Pyridine: 2 mmol, oxidant:
6 mmol, W/HAP, 10 mL water, 1200 rpm, 353 K, 20 h.
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3.5 Reusability of catalyst

The reusability of catalysts was studied. The catalyst

was separated by centrifuging the reaction mixture

after the reaction. The catalyst separated was refluxed

in water for 5 h to remove the adsorbed materials from

the catalyst surface and dried at 373 K overnight.

There was no loss of catalyst during the separation

process. The catalyst was used three times. During the

third use, we observed a slight decrease in conversion.

The leaching experiments were also performed after

each cycle, and the amount of tungsten was deter-

mined after each cycle. There was marginal leaching

of tungsten after each cycle. This must be the reason

for a slight decrease in the performance of the catalyst

(Figure 11).

4. Conclusions

A simple and efficient procedure is developed for the

synthesis of N-oxides using eco-friendly H2O2 as an

oxidant and reusable W/HAP catalyst. Several cata-

lysts were studied among which W/HAP was found to

be the best catalyst among all the screened catalysts.

The as-prepared and optimized catalyst was charac-

terized by various analytical techniques such as N2

adsorption-desorption, SEM, XRD, ICP-OES and

Figure 5. Effect of different oxidants on the yield of
Pyridine N-Oxide. Reaction conditions: Pyridine: 2 mmol,
oxidant: 6 mmol, 20% W/HAP, 10 mL water, 1200 rpm,
353 K, 20 h.

Figure 6. Effect of mole ratio on the yield of Pyridine
N-Oxide. Reaction conditions: Pyridine: 2 mmol, 20%
W/HAP, 10 mL water, 1200 rpm, 353 K, 20 h.

Figure 7. Effect of speed of agitation on the yield of
Pyridine N-Oxide. Reaction conditions: Pyridine: 2 mmol,
oxidant: 6 mmol, 20% W/HAP, 10 mL water, 353 K, 20 h.

Figure 8. Effect of temperature on the yield of Pyridine
N-oxide. Reaction conditions: Pyridine: 2 mmol, H2O2:
6 mmol, 20% W/HAP, 10 mL water, 1200 rpm, 20 h.
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Table 2. N-Oxidation of various tertiary amines in the corresponding N-Oxide.
Sr. No Substrate Product Yield (%)

1 90
a

2 89
a

3 47
a

4 69
a

5 20
a

6 94
b

7 92
b

8 89
b

9 94
b

10 92
b

11 91
b

Reaction conditions: Pyridine: 2 mmol, H2O2: 6mmol, 10 mL water, 1200 rpm, 353 K, 20% W/HAP, 20 h
aSubstrates analysed by HPLC
bSubstrates analysed by GC
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FTIR. A broad substrate study was done and a kinetic

study was also carried out.

Supplementary Information (SI)

Supplementary Information contains the nitrogen adsorp-

tion-desorption isotherm and SEM images of W/HAP cat-

alyst, LCMS and GCMS data of products. Supplementary

information is available at www.ias.ac.in/chemsci.
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