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We propose a highly versatile computational framework for the simulation
of cellular blood flow focusing on extreme performance without compromis-
ing accuracy or complexity. The tool couples the lattice Boltzmann solver
Palabos for the simulation of blood plasma, a novel finite-element method
(FEM) solver for the resolution of deformable blood cells, and an immersed
boundary method for the coupling of the two phases. The design of the tool
supports hybrid CPU–GPU executions (fluid, fluid–solid interaction on
CPUs, deformable bodies on GPUs), and is non-intrusive, as each of the
three components can be replaced in a modular way. The FEM-based
kernel for solid dynamics outperforms other FEM solvers and its perform-
ance is comparable to state-of-the-art mass–spring systems. We perform
an exhaustive performance analysis on Piz Daint at the Swiss National
Supercomputing Centre and provide case studies focused on platelet trans-
port, implicitly validating the accuracy of our tool. The tests show that this
versatile framework combines unprecedented accuracy with massive
performance, rendering it suitable for upcoming exascale architectures.
1. Introduction
Blood flow plays an important role in most of the fundamental functions
of living organisms. Blood transports oxygen, nutrients, waste products,
infectious parasites, tumour cells, to name a few, to tissues and organs. Despite
remarkable advances in experimental techniques [1], the type and detail of the
information provided remains limited. In the last two decades, computational
tools for the direct numerical simulation (DNS) of cellular blood flow have
been developed [2]. Except for the fully resolved simulations (the resolution
refers to the cellular nature of blood and not to numerical discretization),
there is active development on continuum and stochastic models [3,4], which
are usually calibrated by the DNS and used for clinically relevant applications
(domains of the order of cm3) due to their low computational cost compared to
the former approach. The DNS complement experiments and have become an
essential tool for in-depth investigations. These tools have been used to study
various poorly understood phenomena such as the non-Newtonian viscosity
of blood [5], thrombus formation [6], the Fåhræus effect [7], the characteristics
of the cell free layer [8] and the red blood cell (RBC) enhanced shear-induced
diffusion of platelets [4,9]. Apart from physiological conditions, numerical
tools have significantly assisted the understanding of pathological conditions
[10–12], as they offer a controlled environment for testing a large number of
parameters and classifying their effect on blood rheology. With the occurrence
of more mature tools, there is an increased focus on developing/analysing
lab-on-a-chip systems [13,14] and drug delivery systems [15,16]. Despite such
advances, we believe that there is a tremendous space for improvement in
terms of fidelity, high performance and clinically relevant scales.
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Blood is a complex suspension of RBCs, white blood cells
and platelets, submerged in a Newtonian fluid, the plasma. At
35–45%haematocrit, RBCsoccupya substantial volume fraction
ofbloodandhave therefore an important impactonblood rheol-
ogy. The accuratemodelling of the collective transport of cells in
plasma is of paramount importance, since it can help decipher
various in vivo and in vitro phenomena. A single cubic
millimetre of blood (almost a blooddrop) contains a fewmillion
RBCs, a few hundred thousand platelets and a few thousand
white blood cells. Thus, it is extremely challenging to develop
a tool capable of simulating blood at cellular level for clinically
relevant applications, using high-fidelity models and using a
reasonably limited amount of computational resources and
time. By clinically relevant applications, our focus is onmedical
devices (e.g Impact-R platelet function analyser [17], lab-on-a-
chip systems) that handle a few mm3 of treated blood and
study events that fully develop in a few seconds. Indeed, with
the current and near future hardware/software, it would be
unrealistic to focus on domains of the order of cm3 (e.g. vessels)
and on events that evolve over several minutes.

The absence of a complete cellular blood flow compu-
tational tool constitutes the motivation behind the suggested
framework. A complete framework should fulfil a number of
criteria, such as generality, robustness, accuracy, performance
and modularity. The criteria of generality, robustness and
accuracy are addressed in our first description of the tool
proposed in Kotsalos et al. [18]. In this work, we finalize the
framework by introducing an integrated environment that
obeys all the above-mentioned criteria, i.e. we introduce a
novel GPU implementation of the finite-element method
(FEM)-based solid solver and thoroughly present the high-
performance computing (HPC) design of the framework,
especially the intricate communication patterns between the
various modules and processes. The focal point of this study
is the computational aspect of the framework and the design
decisions taken for an efficient, versatile and modular HPC
tool. Our framework is tailored for the fastest supercomputers
(namely hybrid CPU/GPU clusters, which are well rep-
resented at the high end of the list TOP500 (https://www.
top500.org) but also for CPU-only machines) and it is ready
to be hosted in upcoming exascale machines. Moreover, the
suggested tool, even if it uses state-of-the-art numerical tech-
niques, is not monolithically built upon them: the structural
solver for the blood constituents can easily be replaced by
another one, such as one based on mass–spring systems. Simi-
larly, the lattice Boltzmann flow solver could be replaced by
another option, which however needs to be similarly paralle-
lizable through domain decomposition and allow interaction
with solid particles through an immersed boundary method.
In the last decade, many groups have been working on
HPC-capable cellular blood flow tools [13,19–23] dealing
with problems of increased complexity, which do however
not reach the goal of a computational framework that fulfils
simultaneously all the above-mentioned criteria.

Our team (Palabos development group [24,25]) has
developed a numerical method and an HPC software tool
for ab initio modelling of blood (freely available and inte-
grated in Palabos library, npFEM specialized module). The
framework models blood cells like RBCs and platelets
individually, including their detailed nonlinear viscoelastic
properties and the complex interaction between them. The
project is particularly challenging because the large number
of blood constituents (up to billions) stands in contrast with
the high computational requirement of individual elements.
While classical approaches address this challenge through
simplified structural modelling of deformable RBCs (e.g.
throughmass–spring systems) [5,13,26–28], the present frame-
work guarantees accurate physics and desirable numerical
properties through a fully featured FEM model [18].
The required numerical performance is achieved through a
hybrid implementation, using CPUs (central processing
units) for blood plasma and GPUs (graphics processing
units) for blood cells. The developed numerical framework is
intended to grow to be a general-purpose tool for first-
principles investigation of blood properties and to provide
an integrative and scalable HPC framework for the simulation
of blood flow across scales.

The present work is organized as follows: in Methods, we
present the structure of our computational tool and the
underlying computational modules; in Results and discus-
sion, we provide a performance analysis on the Piz Daint
supercomputer and various case studies on platelet transport.
2. Methods
The development of such a solver requires a multi-physics and
multi-scale approach as it involves fluid and solid components
that may be optimized through a description at different temporal
and spatial scales. In order to ensure flexibility and efficiency, we
propose a tool based on a modular approach in which code per-
formance and re-usability are central issues. In accordance with
the ideas and developments proposed in MMSF (Multi-scale
Modelling and Simulation Framework) [29–31], our cellular
blood flow computational tool is built on a fluid solver, and a
deformable solid bodies solver, whose implementation is poten-
tially left to the preference of the scientists. Here, however, we
propose a specific choice based on Palabos flow solver and our
deformable bodies npFEM solver. The coupling of the two solvers
is realized through a separate interface, as illustrated later, which
handles all the needed communication. Note that this coupling
interface acts independently of the details of the fluid and solid
solvers. It only requires data representing physical quantities
which are computed by the two solvers, thus ensuring the
independence with respect to the chosen numerical methods.

2.1. Computational modules
Theunderstandinganddecipheringofacomplex transportphenom-
enon like themovementof platelets requires thedeployment of high-
fidelity DNS tools that resolve the cellular nature of blood. Platelets
are submerged in bloodplasma and collide continuouslywith RBCs
that arepresent inmuch larger quantities. To capture accurately their
trajectories and understand the driving mechanisms behind their
motion,wepropose amodular andgenericHPC framework capable
of resolving three-dimensional cellular blood flow simulations. The
computational tool is built upon three modules, namely the fluid
solver (blood plasma resolution), the solid solver (blood cells) and
the fluid–solid interaction (FSI).

The fluid solver is based on the lattice Boltzmann method
(LBM) and solves indirectly the weakly compressible Navier–
Stokes equations. The three-dimensional computational domain
is discretized into a regular grid with spacing Δx in all directions.
For this study, we use the D3Q19 stencil, with the Bhatnagar–
Gross–Krook (BGK) collision operator and non-dimensional
relaxation time τ = 2 (higher τ gives higher Δt). The time step is
determined through the formula n ¼ C2

s (t� 1=2)Dt, where
Cs ¼ Dx=(Dt

ffiffiffi

3
p

) is the fluid speed of sound and ν is the blood
plasma kinematic viscosity. Furthermore, external forcing terms
(like the FSI force fimm) can be incorporated in the LBM through
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a modification of the collision operator using the Shan–Chen
forcing scheme [32]. More information on LBM can be found in
[33–35].

The solid solver is based on the recently introduced nodal pro-
jective finite elements method (npFEM) by Kotsalos et al. [18],
which offers an alternative way of describing elasticity. The
npFEM framework is amass-lumped linear FE solver that resolves
both the trajectories and deformations of blood cells with high
accuracy. The solver has the capability of capturing the rich and
nonlinear viscoelastic behaviour of RBCs as shown and validated
in [18]. Platelets are simulated as nearly rigid bodies bymodifying
the stiffness of the material. The implicit nature of the npFEM
solver renders it capable of resolving extreme deformations with
unconditional stability for arbitrary time steps. Even though
the solver is based on FEM and an implicit integration scheme,
its performance is very close to the widely used mass–spring sys-
tems [5,27], outperforming them in robustness and accuracy [18].
Regarding the blood cell viscoelastic behaviour, the solver uses a
two-way approach to handle the response of a cell to the imposed
loads over time (Rayleigh and position-based dynamics damping
[18]). It should be pointed out that the interior fluid of the cell is
implicitly taken into account, as its incompressibility contributes
to the potential energy of the body and its viscosity augments
the viscosity of the membrane.

The FSI is realized by the immersed boundary method (IBM)
andmore specifically by themulti-direct forcing scheme proposed
by Ota et al. [36] (with minor modifications, see electronic
supplementary material). The IBM imposes a no-slip boundary
condition, so that each point of the surface and the ambient
fluid moves with the same velocity. The advantage of the IBM is
that the fluid solver does not have to be modified except for the
addition of a forcing term fimm. Moreover, the deformable body
and its discrete representation do not need to conform to the
discrete fluid mesh, which leads to a very efficient fluid–solid
coupling. The exchange of information, between the fluid mesh
and the Lagrangian points of the discrete bodies, is realized
through interpolation kernels with finite support. The ϕ4 kernel
[37] is used throughout the simulations of the current study. The
IBM is an iterative algorithmwhere the force estimate on a Lagran-
gian point is computed by the difference of the vertex velocity
(coming from npFEM) and the velocity interpolated by the sur-
rounding fluid nodes. Then, this force is spread onto the fluid
nodes (fimm) surrounding the Lagrangian point and the correction
affects the collision operator of the LBM. This interpolation
between the membranes and the fluid is repeated for a finite
amount of steps. For the simulations shown in this article, just
one iteration suffices for the required accuracy.

A brief butmore instructive overview of themethods presented
above can be found in the electronic supplementary material.

2.2. Towards stable and robust fluid–solid interaction
There exist two main ways to realize FSI, the monolithic and
modular respectively. The former describes the fluid and solid
phases through one system of equations and both are solved
with a single solver, using the same discretization. Examples
include tools that use dissipative particle dynamics to resolve
both the fluid and solid. An advantage of themonolithic approach
is the consistency of the coupling scheme, which leads to more
numerically stable solutions. The main disadvantage is that a
single solver potentially falls short of satisfactorily addressing
all the physics present in a complex phenomenon. In the modular
approach, there is the freedom to choose well optimized solvers
to address the different phases. However, the consistent coupling
of the solvers becomes a major challenge, especially when the
discretization (space and time) is non-conforming. Particularly,
our computational framework uses different spatial and time
resolutions for the fluid and solid phases, e.g. the solid solver is
executed every two iterations (at least), which could potentially
introduce coupling instabilities. Instabilities arise mainly from
under-resolution and from integration schemes that do not
conserve energy and momenta (linear/angular) exactly, thus
leading to spirally increasing energy oscillations between
the solvers. The remedies suggested below are tailored to the
specific framework, but could potentially give useful hints for
other implementations.

The IBM requires a match between the lattice spacing Δx and
the average edge length �l of the discretized membranes (triangu-
lated surfaces). The value of the mesh ratio�l=Dx appears to play a
minor role as long as it is comprised in the range [0.5, 1.8] [35].
An RBC discretized with 258 surface vertices exhibits a ratio
�l=Dx � 1:6 with a lattice spacing of 0.5 μm. For low shear rates,
this requirement can be further relaxed.

An accurate evaluation of the external forces acting on the
immersed boundaries plays a critical role to achieve a consistent
coupling. For higher accuracy, we use the hydrodynamic stress
tensor σ projected onto the surface normals instead of the
native force term produced by the IBM. Furthermore, compatible
with the aim to disregard the interior fluid of blood cells, we
found out that the most stable force evaluation scheme comes
from measuring σ at the exterior most distant site from the
Lagrangian point contained within the interpolation kernel.
Once the force Fext is computed, a median filtering in the one-
ring neighbourhood of every Lagrangian point attenuates force
spikes that could result in energy oscillations.

A meticulous handling of the near-contact regions is deemed
highly critical to suppress instabilities. Our approach is to pseudo-
resolve these regions through a collision framework (similar to the
Morse potential in [12]), and not by refining the involved meshes
[8], as the latter approach would lead to impractical numerical
simulations due to the high computational cost. The first step of
our procedure consists of searching for Lagrangian points belong-
ing to bodies other than the investigated one, that are contained
within the interpolation kernel of the current point. If there are
no ‘foreign’ particles in the kernel, then no modification is
needed. It is then assumed that the interaction physics is appropri-
ately resolved by the fluid field in between bodies. Otherwise, the
collision framework takes over, since the evaluation of Fext is ‘con-
taminated’ by the interior fluid of a neighbouring body.
Subsequently, the forces on the Lagrangian point from the fluid
are disregarded and a collision force, coming from a quadratic
potential energy [18], is used instead. The threshold to deactivate
the forces from the fluid can be either the boundaries of the inter-
polation kernel or user specified according to the case. This
technique is named by us particle in kernel (PIK) and resolves
very accurately colliding bodies (more in electronic supple-
mentary material). We would like to highlight that the actual
IBM algorithm is not affected by the PIK technique, but only the
evaluation of Fext. Certainly, the PIK technique has limitations
for very high haematocrit in combination with coarse meshes,
where the majority of the interpolation kernels could possibly
become ‘contaminated’ by foreign particles, i.e. the motion of
many membrane vertices will be determined by the collision
force, rather than by the stress imparted from the surrounding
fluid. In our follow-up research project [38] (combining both
in vitro and in silico experiments), we performed all cellular simu-
lations with andwithout the PIK technique, andwe conclude that,
up to 35% haematocrit (higher haematocrit needs further investi-
gation), lattice spacing 0.5 μm, and blood cell resolution as in this
study, the PIK technique does not affect the resolved physics (in an
order-of-magnitude sense).

The selected IBM version [36] starts from an estimate of a force
on the Lagrangian points required to enforce a no-slip condition.
This force is spread into the neighbourhood of the points to com-
municate the constraint of a solid boundary to the fluid. The force
estimate is proportional to the difference of the vertex velocity (as
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Figure 1. Load balancing of the fluid and solid phases for a modern CPU/GPU computing system. Cubic domain at 35% haematocrit with RBCs and platelets. The
immersed bodies exist both as plain Lagrangian points ( positions and velocities for the IBM) and augmented Lagrangian points ( positions, velocities and other
properties relevant only to the solid solver). The LBM and IBM are executed on CPUs, while the npFEM on GPUs (hybrid version of the framework). In most cases,
the number of GPUs is much smaller than the available MPI tasks; see Piz Daint with a ratio 1 : 12.
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computed by the npFEM solver) and the velocity interpolated by
the surrounding fluid nodes. The component that can be con-
trolled in the above procedure is the npFEM vertex velocity
which, if it exceeds a value U*max, then it is truncated towards
this threshold. The constant U*max can be comprised between
[0.03, 0.1] [34] and is related to the fact that the simulated Mach
number (Ma) should be ≪ 1, since LBM errors increase dramati-
cally at high Ma (= umax/C where umax is the maximum
simulated velocity in the flow and C = Δx/Δt is the lattice
speed). This velocity capping proves to be very stabilizing when
necessary. If the classic IBM [39] is used instead, then a force
capping has the aforementioned stabilizing effect.

Particular attention is needed on the order of execution of the
various computational modules (namely fluid, solid and FSI),
because time lags between solvers can amplify instabilities. The
exact module order of our solver can be found in [18].
2.3. High-performance computing design
Direct numerical simulations of cellular blood flow are pushing
the computational limits of any modern supercomputer, given
the complexity of the underlying phenomena. The amount of
unknowns per second varies from millions to trillions [13], and
the proposed computational framework is built with genericity,
modularity and performance in mind, able to tackle problems
in the whole range of unknowns. This computational tool is
orchestrated by Palabos [24,25], which is responsible for data
decomposition and for the communication layer. Palabos (for
Parallel Lattice Boltzmann Solver) is an open-source library for
general-purpose computational fluid dynamics, with a ‘kernel’
based on the lattice Boltzmann method. Palabos is written in
C++ with extensive use of Message Passing Interface (MPI) and
with proven HPC capability, particularly in the domain of com-
putational biomedicine [40–42]. On top of the Palabos core
library, we have developed the npFEM solver, which is written
in C++ and CUDA (a general-purpose parallel computing plat-
form and programming model for NVIDIA GPUs), and it is
derived from the open-source library ShapeOp [43]. There are
two active branches of the npFEM library, a CPU-only implemen-
tation and a full GPU implementation leveraging NVIDIA GPUs.
The GPU parallelization strategy is based on the idea of using
one CUDA-thread per Lagrangian point and one CUDA-block
per blood cell. This is feasible since the most refined blood cell
model has fewer points (discretized membrane) than the maxi-
mum allowed number of threads per block (hardware
constraint). Keeping all points of a cell within a CUDA-block
allows us to compute the entire solver time step in one CUDA-
kernel call, and make good use of cache and shared memory [44].

Load balancing plays a critical role and impacts the efficiency
and scalability of HPC applications. For our hybrid CPU/GPU
system, three components require special attention. The first is
the representation of the fluid domain through a homogeneous
grid. The lattice sites are partitioned by Palabos and are distribu-
ted to the available MPI tasks (LBM on CPUs). The second
component of the system are the plain Lagrangian points that
describe the immersed blood cells for the IBM (see figure 1,
right-hand side image). These points are attached to their immedi-
ate fluid cells, and thus their dispatching to the available MPI
tasks is aligned with the fluid decomposition (IBM on CPUs).
The immersed bodies have a dual nature, i.e. they are seen not
only as a set of plain Lagrangian points for the IBM but also as
a set of augmented Lagrangian particles on the solid solver side
(connectivity and material properties on top of position and
velocity), see figure 1 both images, where both the plain Lagran-
gian points and the surfaces are represented. This means that
the Lagrangian points are duplicated for the IBM and the
npFEM modules. Finally, the MPI tasks that are linked with a
GPU are responsible for the solid phase. Blood cells are distribu-
ted evenly and statically to the available GPUs in a manner that
is disconnected from the attribution of the fluid cells and Lagran-
gian points to the CPUs (npFEM on GPUs). For example, let us
assume thatMPI task j (see figure 1, left-hand side image) handles
m blood cells. The blood cell with tag 1 is spatially located in the
domain managed by MPI task k. Thus, the communication of
the external forces, the colliding neighbours and the new state of
the body at t+1 is realized through MPI point-to-point communi-
cation for all surface vertices of the cell. The same parallel strategy
is adopted in the CPU-only version. This strategy may seem
counterintuitive, leading to a substantial communication load,
especially compared to an approach in which the structural
solver is attributed to nodes dynamically and retains a processor
locality with the coupled flow portions. However, the theoretical
scalability of our approach is compatible with the massively
parallel vision of the project, as the total amount of communicated
data scales with the number of blood cells, and it is independent
of the number of computational nodes (except in cases with
very few nodes). Indeed every surface vertex is involved in
exactly two point-to-point exchanges (a fluid-to-solid and a
solid-to-fluid exchange). This fact avoids an over-saturation of
the network in a situation of weak scaling, provided that the
capacity of the network scales with the number of used compute
nodes. It further guarantees that our framework can be connected
to any structural solver, as the data provided to the structural
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for advancing the physical system in time. The decoupling of the solvers leads to a framework that is agnostic to the underlying numerical methods. This diagram
remains the same for both the CPU-only version of the framework and the CPU/GPU implementation (hybrid).

Table 1. Numbers of blood cells, RBCs and platelets (PLTs), for different case studies. The y-direction is bounded by walls, while the x- and z-directions are
periodic (simulation of Couette flow).

computational domain (μm3) 50 × 50 × 50 50 × 100 × 50 50 × 500 × 50 50 × 1000 × 50 100 × 1000 × 100

PLTs : RBCs = 1 : 5 RBCs PLTs RBCs PLTs RBCs PLTs RBCs PLTs RBCs PLTs

haematocrit 35% 476 95 953 190 4765 953 9531 1906 38126 7625

haematocrit 45% 612 122 1225 245 6127 1225 12255 2451 49020 9804
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solver is always fully contained on a compute node. Our approach
further ensures a targeted communication strategy, as the data
actually needed by the solver can be handpicked. By providing
fully decoupled solvers, we favour a generic and modular
approach over ad hoc and monolithic solutions. Figure 2 presents
the decoupled structure of our framework, the communication
layer and the advancement rules.
3. Results and discussion
The goal of this section is to prove the capability of our compu-
tational framework to efficiently handle problems of varying
size. This is done through an exhaustive presentation of per-
formance metrics that are realized at Piz Daint, the flagship
system of the Swiss National Supercomputing Centre
(CSCS), ranked sixth worldwide and first in Europe according
to the list TOP500 (November 2019). This supercomputer has
5704 GPU nodes equipped with 12 cores and one NVIDIA
GPU each, and 1813 CPU nodes equipped with 36 cores
each. A complete presentation of the supercomputer can be
found in the electronic supplementary material. Our focus is
the hybrid version of the framework, where the deformable
blood cells are resolved on GPUs, while the blood plasma
and the FSI are resolved on CPUs.

For every case study performed in this work, the flow field
has a constant shear rate 100 s−1, realized with a moving top
wall and a fixed bottom wall. This low shear rate is chosen
in order to reproduce the experiments in Chopard et al. [17]
(experiments using the Impact-R platelet function analyser,
which generates a Couette flow), and is not due to a compu-
tational limitation. Table 1 summarizes all the different
domains, represented through their dimension in x × y × z
format. The flow direction is parallel to the z-axis, the height
of the channel spans along the y-direction, and periodic
boundaries are applied in x- and z-directions. Furthermore,
the haematocrit of the systems varies between 35% and 45%,
covering the whole physiological range. The domain is initia-
lized by randomly positioning blood cells (without avoiding
interpenetration) and then executing the computational frame-
work for a few thousand steps while the fluid and the FSI
solvers are deactivated. This novel cell packing approach is
based on the very efficient collision detection offered by
Palabos and the unconditional stability of the npFEM solver,
which can resolve extreme deformations and interpenetra-
tions. Platelets are simulated as nearly rigid oblate ellipsoids
with diameter 3.6 μm, thickness 1.1 μm and volume 6.8 fl,
which is an average value for non-activated platelets. The
platelet to RBC ratio is 1 : 5, and therefore substantially
larger than the physiological one (1 : 10 to 1 : 20 [4]). This is
a deliberate choice intended to provide more samples for the
statistical analysis of the platelet transport, without affecting
the physics. As for the shape of RBCs, the normal biconcave
shape is used. The fluid/solid resolutions remain fixed for
all case studies, favouring coarser representations for compu-
tational efficiency. A complete list of all parameters used in
this study can be found in the electronic supplementary
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material. The performance metrics are followed by an analysis
on platelet transport. A series of numerical experiments with
varying RBC viscoelasticity and channel height presents the
idiosyncratic behaviour of platelets and their sensitivity to
various flow factors, while the validity of our simulations is
cross-checked (with in vitro counterparts and similar in silico
studies) in an order-of-magnitude sense. This implicit vali-
dation increases our confidence in the simulated physics of
our solver.
3.1. Performance analysis
Simulations at the spatial scale of millimetres commonly
ignore the detailed particulate nature of blood because of the
tremendous computational cost, and instead model the effect
of particles through continuum modelling. On the other
hand, in publications of state-of-the-art fully resolved whole
blood simulations [5,16,42,45], the overall spatial scale of the
simulation remains very small, of the order of a few tens of
micrometres. The suggested HPC framework is built towards
the direction of simulating macroscopic flows, the order of
mm3 of whole blood, while representing the details of the
microscopic physics, thus offering users the possibility to
address a large range of problems with clinical relevance. In
the context of the current scientific goals, the performance
metrics of this HPC framework must be considered in the
light of weak scaling. Indeed, the purpose of seeking more
powerful computational resources is not to improve the resol-
ution or increase the time span of the simulation, but to extend
the physical volume of the blood considered in the model.

In the weak scaling, the computational load per processor
(either CPU or GPU) remains constant. Thus, the problem size
increases proportionally with the number of computational
hardware units. The reference case study is a 50 × 50 ×
50 μm3 domain, solved on five GPU nodes (N0) with reference
time noted as tN0 . The weak scaling efficiency is given
by tN0=tN, where tN is the time spent in N GPU nodes
for a domain N/N0 times larger than the reference one.
Figure 3 presents the weak scaling efficiency of the proposed
computational framework (hybrid version) for a problem
growth up to 80 times compared to the reference domain (at
400 GPU nodes). Even if the largest tested domain is still
distinctly smaller than 1 mm3, the direction of interest (wall-
bounded direction) approaches scales of macroscopic extent,
and the remaining directions are adequately resolved through
periodicity. Our long-term vision for macroscopic flows
includes assigning further blood cells per GPU. This on its
own requires strong CPU performance to copewith annex pre-
paratory operations (the ‘other’ section on figures 4 and 5),
which might be matched by novel, upcoming supercomput-
ing systems. The code presents good efficiency and its
performance does not degrade for higher haematocrit. Other
frameworks that are based on a modular approach for the
coupling of fluid and solid solvers [19,40,42,46] demonstrate
an efficiency between 70 and 80%. On the contrary, frame-
works that follow the monolithic paradigm [13] deliver a
more impressive efficiency, often above 90%. Nevertheless,
this is a small penalty to be paid for genericity andmodularity
over ad hoc solutions.

Figure 4 presents the average execution time per iteration
for different haematocrit levels and refers to the hybrid ver-
sion. The bottom layer of the bars labelled as ‘other’ contains
operations (executed on CPUs only) such as computation of
external forces, collision detection, particle advancement and
various book-keeping. The ‘error’ bars delimit the deviation
from the average, where the minimum corresponds to the
reference case study and the maximum to the largest case
study (table 1) in the context of weak scaling. A striking obser-
vation is that the GPU-ported npFEM solver constitutes only
approximately 6% of the total execution time, especially if
compared with other state-of-the-art implementations [40,41]
which report a contribution of the solid solver to over 50%
of the overall time. On the other hand, the fluid solver (collide
and stream operations of LBM) and the FSI account for about
30% of the execution time with a consistent scaling over larger
domains and higher haematocrit. The communication varies
around 12–20% of the execution time but does not seem to con-
stitute a bottleneck since it is realized through optimized non-
blocking point-to-point communication. The communication
refers only to the MPI part, while the CPU/GPU
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Figure 5. Comparison of execution time per iteration for the hybrid (CPU/GPU) and CPU-only versions of the framework at 35% haematocrit. The GPU nodes have 12
cores and one GPU each, while the CPU nodes have 36 cores each.
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communication is integrated on the npFEM solver, since it con-
stitutes a very small amount of the total execution time. This is
firstly because of data locality (MPI task and GPU belong to
the same node) and secondly due to the relatively small
amount of RBCs per GPU. The ‘other’ group of operations
occupy a large portion of the total time, and this hot-spot
reflects the choice of genericity and modularity. A possible
conclusion from these observations could be to port the
remaining parts of the solver to GPUs given the great perform-
ance of the solid solver. It is however debatable if this choice
would be optimal, given that modern supercomputers tend
to become ‘fatter’ in both CPUs and GPUs, as shown in the
example of Summit with two CPUs per node (21 cores each)
and six NVIDIA Volta GPUs, ranked first according to the
list TOP500 (November 2019). Thus, the best strategy is to
fully exploit the available hardware and not develop one-
sided applications. Another counter-argument is that some
numerical methods such as the IBM have a large and complex
memory footprint that renders them less GPU friendly. An
earlier attempt [44] to port the whole framework on GPUs
could not serve as a justification to move in this direction
with the main bottleneck being the irregular memory patterns
of the IBM, even if all computationswere performed in just one
GPU (data locality advantage).

Figure 5 presents the execution time per iteration for the
hybrid (CPU/GPU) version and the CPU-only version.
These results come from a weak scaling study for domains
up to 50 × 500 × 50 μm3 and 35% haematocrit. Figure 5
assumes one-to-one correspondence between GPU and CPU
nodes of Piz Daint, e.g. solving the computational domain
50 × 500 × 50 μm3 in 50 GPU nodes (one GPU and 12 cores
each) for the hybrid version and in 50 CPU nodes (36 cores
each) for the CPU-only version. The npFEM solver on its
own exhibits a speedup of about 4, favouring the GPU



Table 2. Energy to execute 16 000 time steps (2 ms physical time) for both hybrid (GPU nodes) and CPU-only (CPU nodes) versions on Piz Daint for 35%
haematocrit.

computational domain (μm3) 50 × 50 × 50 50 × 100 × 50 50 × 500 × 50

nodes 5 10 50

GPU CPU GPU CPU GPU CPU

energy (MJ) 0.87 0.99 1.71 2.01 10.26 11.76
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implementation. Moreover, in the CPU-only version it is
obvious that the solid solver constitutes an overwhelming
part of the overall performance, while in the hybrid version
the GPU-porting solves this problem in a very efficient
manner. We would like to highlight that in the hybrid version
only the npFEM is ported onGPUswhile all the other parts are
CPU-only. Table 2 presents the energy needed to execute both
versions for a fixed number of iterations, as given by the
output of Piz Daint. The comparison shows that GPU nodes
are more energy efficient than CPU nodes by 16% on average.
In cases where blood cells of higher resolution are used (e.g.
RBCs discretized at greater than 500 surface vertices), both
execution time and energy efficiency of the hybrid version
are superior to the CPU-only version (not shown in this
study since we focus on coarser representations), and this is
due to the better capacity of the GPU-ported part to deal
with an increased load. This can be seen from the fact that in
the CPU version there are three times more cores than in the
hybrid, but the CPU-ported parts are not three times faster
(sub-optimal scaling). To summarize, this study does not
favour any version of the framework but shows that both
are viable and can be efficiently applied, depending on the
characteristics of the available hardware.

More performance analysis results can be found in the
electronic supplementary material. The main challenge of
the computational tools for the simulation of the particulate
nature of blood is to solve systems with a sufficient number
of blood cells (≫ 1000) for a physically relevant duration
(approx. 1 s) in a reasonable time (less than a week) with
the smallest possible amount of computational resources.
More concretely, given the parameters of the current case
studies (see electronic supplementary material), the simu-
lation time step is Δt = 0.125 μs. To simulate 1 s physical
time, one needs 8 × 106 time steps. For an average execution
time of 60ms per time step (figure 4), the simulation needs
approximately five and a half days. The proposed compu-
tational framework achieves the aforementioned goals and
can be compared with other state-of-the-art solvers [40–42].
The main novelty is that we are able to achieve this by
using high-fidelity models for blood cells which have a
richer physical content than simple mass–spring systems.
To the best of our knowledge, there is no other computational
framework using a fully validated FEM-based solid solver
that can achieve these target values.
3.2. Platelet transport with varying RBC viscoelasticity
RBC viscoelastic behaviour, a collective term for the contribu-
tion of both the membrane and the cytoplasm, is a widely
accepted factor with critical impact on health and disease.
Pathological alterations in RBC deformability have been
associated with various diseases [1] such as malaria, sickle
cell anaemia, diabetes, hereditary disorders and chronic
obstructive pulmonary disease. Despite its crucial role, RBC
viscoelasticity is overlooked in the majority of the compu-
tational tools for cellular flows. Here, we study the effect of
RBC viscoelasticity on platelet transport and discriminate
each case with the use of platelet mean square displacement
(MSD) in the wall-bounded direction. The parameter altered
is κdamping as presented in Kotsalos et al. [18], which affects
the viscoelastic behaviour of RBCs (the higher the more vis-
cous the RBC). The MSD is defined as 〈(yi(t)− yi(t0))

2〉,
with yi the position of platelet i in the wall-bounded y-direc-
tion. The averaging spans either over all available platelets,
i.e. RBC-rich layer (RBC-RL) and cell free layer (CFL), or
only over platelets of the RBC-RL. For the current study, we
did not measure the properties of the CFL (lack of experimen-
tal data to support our findings) and thus we use for the
thickness of the CFL a value taken from the study of Vahid-
khah et al. [8], which is approximately one platelet diameter
(3.6 μm). Nonetheless, the impact of this value on the overall
study is negligible. The flow set-up includes a constant shear
rate at 100 s−1, a domain of size 503 μm3 and a haematocrit of
35% (table 1). From the simulations, we track at every time
step the positions of platelets, and we sample the output at
every 10 ms to extract further information, like the MSD or
the average distance of platelets from the walls.

Figure 6 presents the MSD over all platelets of the domain
for three different values of the RBC viscoelastic parameter
κdamping. There is a clear distinction between the less viscous
RBCs (κdamping = 0.5) and the more viscous (κdamping = 0.9)
and their projected effect on platelet transport is apparent
on the MSD graphs.

The computation of the diffusion coefficient (D) of plate-
lets demands the MSD to be averaged over platelets of the
RBC-RL, and its slope corresponds traditionally to 2D.
Figure 7a presents the MSD and a linear fitting on the curves
(see slopes). The diffusion coefficient in all cases is about
O(10�10) m2 s�1, in agreement with previously reported
values [8,47,48], thus implicitly validating the accuracy of
the tool. It is two to three orders of magnitude higher than
the Brownian diffusivity, suggesting RBC-augmented diffu-
sion. An interesting observation in conjunction with the
study of Kumar and Graham [3,49], assuming that the more
viscous RBCs are more ‘rigid’ (slower response to external for-
cing), is that the less viscous RBCs κdamping = 0.5 lead to higher
platelet diffusivity and thus faster concentration towards the
walls. The varying diffusivity can be explained by the fact
that in heterogeneous collisions the net displacement of the
stiff particle (platelet) is substantially larger than that of
the floppy particle (RBC) and the displacement is larger for
larger rigidity ratio [49]. Thus for less viscous RBCs we
expect higher displacements of platelets and thus larger diffu-
sion coefficient, as shown in figure 7. Platelets that reach the
walls tend to stay in the CFL and behave as being trapped in
this layer. Figure 7 presents as well the average distance of
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Figure 9. Shear flow generated by our computational framework for fully resolved blood flow simulations. (a) Two different viewpoints of the 503 μm3 domain at
35% haematocrit. (b) A domain 50 × 100 × 50 μm3 at 35% haematocrit.
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platelets from the walls over time, proving that platelets move
towards the walls. It should be noted that there is an agree-
ment between the slopes of MSD and the average distance
from walls, i.e. the less viscous RBCs present larger slopes
than the more viscous.

3.3. Platelet transport for larger geometries
Most studies are boundedbydomains of a fewmicrometres and
low haematocrit due to the high computational cost. Neverthe-
less, interesting phenomena can amplify as sizes increase [50].
Given our HPC-capable framework, we are interested in quan-
tifying the diffusivity of platelets as the channel height varies.
Here, a flow field with constant shear rate 100 s−1 and 35% hae-
matocrit is considered. The wall-bounded direction takes three
different sizes H ¼ {50, 100, 500}mm, while the other periodic
directions remainat 50 μm(see table 1). Thedimensionless num-
bers that describe the dynamics of the problem are the capsule
Reynolds number Recapsule ¼ _gr2=n, with _g the shear rate and r
the characteristic length of the capsule, and the capillary
number Ca ¼ m _gr=BSkalak, with μ the dynamic viscosity of
blood plasma and BSkalak the membrane shear modulus (see
electronic supplementary material and [18]). Figure 8 shows
the mean square displacement in the RBC-RL, and the average
platelet distance from the walls, qualitatively validating exper-
imental findings on platelet transport and deposition [17]. The
diffusion coefficients for all the different experiments are
about two to three orders of magnitude higher than the Brow-
nian diffusivity [8,47], while the increasing diffusivity with the
problem size (see slopes in figure 8) is an indication of platelet
anomalous diffusion. For a thorough analysis on platelet
anomalous diffusion, the reader could consult our follow-up
research project [38]. Figure 9 summarizes some of the
simulations conducted for the varying channel case study.
4. Conclusion
In this study, we provided a computational framework for
digital blood, freely available under the Palabos library. The
full resolution of the particulate nature of blood is a challen-
ging venture, especially when it is compiled into a framework
that is based on generality, modularity and performance
without compromising robustness and accuracy. The individ-
ual numerical techniques used for the simulation of blood
constituents (LBM for the fluid and FEM for the solid
phase) are characterized by their high fidelity for capturing
physical phenomena, and their coupling has shown to suffi-
ciently resolve the complex interaction between the blood
cells.

This kind of computational tool complements the toolset for
a digital laboratory. More precisely, the present project comp-
lements another research activity based on a coarse-grained
approximation of blood using stochastic methods and random
walks. The fully resolved models, apart from providing
in-depth investigations on various case studies, are used to
fine-tune the coarse-grained models, e.g. providing diffusion
coefficients of various particles, thus constituting a critical com-
ponent in this integrative approach towards digital blood. Our
future scientific endeavours will be moving to this multi-scale
direction as recently depicted in [51].



royalsocietypublishing

11
Data accessibility. This article has no additional data. The results can
be reproduced by the open-source library Palabos and its specialized
module for cellular blood flow simulations (Palabos-npFEM, https://
palabos.unige.ch/).

Authors’ contributions. C.K. performed the research, developed the
majority of the computational framework, carried out the simulations
and wrote the paper. J.L. wrote part of the framework, supervised the
research and revised the manuscript. J.B. wrote a major part of the
GPU implementation. B.C. conceived and supervised the research
.

and revised the manuscript. All authors approved the final version
of the manuscript.

Competing interests. We declare we have no competing interests.
Funding. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 823712 (CompBioMed2 project).

Acknowledgements. We acknowledge support from the PASC project
2017-2020, Virtual Physiological Blood: an HPC framework for
blood flow simulations in vasculature and in medical devices.
org/journal/r
References
sfs
Interface

Focus
11:20190116
1. Tomaiuolo G. 2014 Biomechanical properties of red
blood cells in health and disease towards
microfluidics. Biomicrofluidics 8, 51501. (doi:10.
1063/1.4895755)

2. Freund JB. 2014 Numerical simulation of flowing
blood cells. Annu. Rev. Fluid Mech. 46, 67–95.
(doi:10.1146/annurev-fluid-010313-141349)

3. Kumar A, Graham MD. 2012 Margination
and segregation in confined flows of blood and other
multicomponent suspensions. Soft Matter 8, 10
536–10 548. (doi:10.1039/C2SM25943E)

4. Mehrabadi M, Ku DN, Aidun CK. 2015 A continuum
model for platelet transport in flowing blood based
on direct numerical simulations of cellular blood
flow. Ann. Biomed. Eng. 43, 1410–1421. (doi:10.
1007/s10439-014-1168-4)

5. Závodszky G, van Rooij B, Azizi V, Hoekstra A. 2017
Cellular level in-silico modeling of blood rheology
with an improved material model for red blood
cells. Front. Physiol. 8, 1–14. (doi:10.3389/fphys.
2017.00563)

6. Fogelson AL, Neeves KB. 2015 Fluid mechanics of
blood clot formation. Annu. Rev. Fluid Mech. 47,
377–403. (doi:10.1146/annurev-fluid-010814-
014513)

7. Barbee JH, Cokelet GR. 1971 The Fahraeus effect.
Microvasc. Res. 3, 6–16. (doi:10.1016/0026-
2862(71)90002-1)

8. Vahidkhah K, Diamond S, Bagchi P. 2014 Platelet
dynamics in three-dimensional simulation of whole
blood. Biophys. J. 106, 2529–2540. (doi:10.1016/j.
bpj.2014.04.028)

9. Zhao H, Shaqfeh ESG. 2011 Shear-induced platelet
margination in a microchannel. Phys. Rev. E 83,
061924. (doi:10.1103/PhysRevE.83.061924)

10. Fedosov DA, Caswell B, Suresh S, Karniadakis GE.
2011 Quantifying the biophysical characteristics of
Plasmodium-falciparum-parasitized red blood cells
in microcirculation. Proc. Natl Acad. Sci. USA 108,
35–39. (doi:10.1073/pnas.1009492108)

11. Li X, Li H, Chang H-Y, Lykotrafitis G, Karniadakis GE.
2017 Computational biomechanics of human red
blood cells in hematological disorders. J. Biomech.
Eng. 139, 0210081–02100813. (doi:10.1115/1.
4035120)

12. Chang H-Y, Yazdani A, Li X, Douglas KA, Mantzoros
CS, Karniadakis GE. 2018 Quantifying platelet
margination in diabetic bloodflow. Biophys. J. 115,
1371–1382. (doi:10.1016/j.bpj.2018.08.031)
13. Rossinelli D et al. 2015 The in-silico lab-on-a-chip:
petascale and high-throughput simulations of
microfluidics at cell resolution. In SC ’15: Proc. Int.
Conf. for High Performance Computing, Networking,
Storage and Analysis, Austin, TX, 15–20 November,
pp. 1–12. IEEE.

14. Krüger T, Holmes D, Coveney PV. 2014
Deformability-based red blood cell separation in
deterministic lateral displacement devices—a
simulation study. Biomicrofluidics 8, 054114.
(doi:10.1063/1.4897913)

15. Sen Gupta A. 2016 Role of particle size, shape, and
stiffness in design of intravascular drug delivery
systems: insights from computations, experiments,
and nature. Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 8, 255–270. (doi:10.1002/wnan.
1362)

16. Vahidkhah K, Bagchi P. 2015 Microparticle shape
effects on margination, near-wall dynamics and
adhesion in a three-dimensional simulation of red
blood cell suspension. Soft Matter 11, 2097–2109.
(doi:10.1039/C4SM02686A)

17. Chopard B et al. 2017 A physical description of the
adhesion and aggregation of platelets. R. Soc. Open
Sci. 4, 170219. (doi:10.1098/rsos.170219)

18. Kotsalos C, Latt J, Chopard B. 2019 Bridging the
computational gap between mesoscopic and
continuum modeling of red blood cells for fully
resolved blood flow. J. Comput. Phys. 398, 108905.
(doi:10.1016/j.jcp.2019.108905)

19. Rahimian A et al. 2010 Petascale direct numerical
simulation of blood flow on 200k cores and
heterogeneous architectures. In SC ’10: Proc. 2010
ACM/IEEE Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA,
13–19 November, pp. 1–11. IEEE.

20. Peters A, Melchionna S, Kaxiras E, Lätt J, Sircar J,
Bernaschi M, Bison M, Succi S. 2010 Multiscale
simulation of cardiovascular flows on the IBM
Bluegene/P: Full heart-circulation system at red-
blood cell resolution. In SC ’10: Proc. 2010 ACM/IEEE
Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA,
13–19 November, pp. 1–10. IEEE.

21. Bernaschi M, Bisson M, Endo T, Matsuoka S, Fatica
M, Melchionna S. 2011 Petaflop biofluidics
simulations on a two million-core system. In Proc.
2011 Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, SC ’11, Seattle,
WA, 12–18 November, pp. 4:1–4:12. New York, NY:
ACM.

22. Xu D, Kaliviotis E, Munjiza A, Avital E, Ji C, Williams
J. 2013 Large scale simulation of red blood cell
aggregation in shear flows. J. Biomech. 46,
1810–1817. (doi:10.1016/j.jbiomech.2013.05.010)

23. Xu D, Ji C, Avital E, Kaliviotis E, Munjiza A, Williams
J. 2017 An investigation on the aggregation and
rheodynamics of human red blood cells using high
performance computations. Scientifica 2017, 1–10.
(doi:10.1155/2017/6524156)

24. Latt J et al. 2020 Palabos: Parallel Lattice
Boltzmann Solver. Comput. Math. Appl. (doi:10.
1016/j.camwa.2020.03.022)

25. Palabos. See https://palabos.unige.ch/.
26. Dupin MM, Halliday I, Care CM, Alboul L,

Munn LL. 2007 Modeling the flow of dense
suspensions of deformable particles in three
dimensions. Phys. Rev. E 75, 066707. (doi:10.1103/
PhysRevE.75.066707)

27. Fedosov DA, Caswell B, Karniadakis GE. 2010
A multiscale red blood cell model with accurate
mechanics, rheology, dynamics. Biophys. J. 98,
2215–2225. (doi:10.1016/j.bpj.2010.02.002)

28. Reasor DA, Clausen JR, Aidun CK. 2011 Coupling the
lattice-Boltzmann and spectrin-link methods for the
direct numerical simulation of cellular blood flow.
Int. J. Numer. Methods Fluids 68, 767–781. (doi:10.
1002/fld.2534)

29. Chopard B, Borgdorff J, Hoekstra AG. 2014
A framework for multi-scale modelling. Phil.
Trans. R. Soc. A 372, 20130378. (doi:10.1098/rsta.
2013.0378)

30. Borgdorff J, Falcone J-L, Lorenz E, Bona-Casas C,
Chopard B, Hoekstra AG. 2013 Foundations of
distributed multiscale computing: formalization,
specification, and analysis. J. Parallel Distrib.
Comput. 73, 465–483. (https://doi.org/10.1016/j.
jpdc.2012.12.011)

31. Borgdorff J et al. 2014 Performance of distributed
multiscale simulations. Phil. Trans. R. Soc. A 372,
20130407. (doi:10.1098/rsta.2013.0407)

32. Shan X, Chen H. 1993 Lattice Boltzmann model for
simulating flows with multiple phases and
components. Phys. Rev. E 47, 1815–1819. (doi:10.
1103/PhysRevE.47.1815)

33. Feng YT, Han K, Owen DRJ. 2007 Coupled lattice
Boltzmann method and discrete element modelling
of particle transport in turbulent fluid flows:

https://palabos.unige.ch/
https://palabos.unige.ch/
https://palabos.unige.ch/
http://dx.doi.org/10.1063/1.4895755
http://dx.doi.org/10.1063/1.4895755
http://dx.doi.org/10.1146/annurev-fluid-010313-141349
http://dx.doi.org/10.1039/C2SM25943E
http://dx.doi.org/10.1007/s10439-014-1168-4
http://dx.doi.org/10.1007/s10439-014-1168-4
http://dx.doi.org/10.3389/fphys.2017.00563
http://dx.doi.org/10.3389/fphys.2017.00563
http://dx.doi.org/10.1146/annurev-fluid-010814-014513
http://dx.doi.org/10.1146/annurev-fluid-010814-014513
http://dx.doi.org/10.1016/0026-2862(71)90002-1
http://dx.doi.org/10.1016/0026-2862(71)90002-1
http://dx.doi.org/10.1016/j.bpj.2014.04.028
http://dx.doi.org/10.1016/j.bpj.2014.04.028
http://dx.doi.org/10.1103/PhysRevE.83.061924
http://dx.doi.org/10.1073/pnas.1009492108
http://dx.doi.org/10.1115/1.4035120
http://dx.doi.org/10.1115/1.4035120
http://dx.doi.org/10.1016/j.bpj.2018.08.031
http://dx.doi.org/10.1063/1.4897913
http://dx.doi.org/10.1002/wnan.1362
http://dx.doi.org/10.1002/wnan.1362
http://dx.doi.org/10.1039/C4SM02686A
http://dx.doi.org/10.1098/rsos.170219
http://dx.doi.org/10.1016/j.jcp.2019.108905
http://dx.doi.org/10.1016/j.jbiomech.2013.05.010
http://dx.doi.org/10.1155/2017/6524156
http://dx.doi.org/10.1016/j.camwa.2020.03.022
http://dx.doi.org/10.1016/j.camwa.2020.03.022
https://palabos.unige.ch/
https://palabos.unige.ch/
http://dx.doi.org/10.1103/PhysRevE.75.066707
http://dx.doi.org/10.1103/PhysRevE.75.066707
http://dx.doi.org/10.1016/j.bpj.2010.02.002
http://dx.doi.org/10.1002/fld.2534
http://dx.doi.org/10.1002/fld.2534
http://dx.doi.org/10.1098/rsta.2013.0378
http://dx.doi.org/10.1098/rsta.2013.0378
http://dx.doi.org/10.1016/j.jpdc.2012.12.011
http://dx.doi.org/10.1016/j.jpdc.2012.12.011
http://dx.doi.org/10.1016/j.jpdc.2012.12.011
http://dx.doi.org/10.1098/rsta.2013.0407
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815


royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190116

12
computational issues. Int. J. Numer. Methods Eng.
72, 1111–1134. (doi:10.1002/nme.2114)

34. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O,
Silva G, Viggen EM. 2017 The lattice Boltzmann
method. Graduate Texts in Physics. Cham,
Switzerland: Springer. (doi:10.1007/978-3-319-
44649-3)

35. Krüger T 2012 Computer simulation study of
collective phenomena in dense suspensions of red
blood cells under shear. Wiesbaden, Germany:
Vieweg+Teubner. (doi:10.1007/978-3-8348-2376-2)

36. Ota K, Suzuki K, Inamuro T. 2012 Lift generation by
a two-dimensional symmetric flapping wing:
immersed boundary-lattice Boltzmann simulations.
Fluid Dyn. Res. 44, 045504. (doi:10.1088/0169-
5983/44/4/045504)

37. Mountrakis L, Lorenz E, Hoekstra AG. 2017
Revisiting the use of the immersed-boundary
lattice-Boltzmann method for simulations of
suspended particles. Phys. Rev. E 96, 013302.
(doi:10.1103/PhysRevE.96.013302)

38. Kotsalos C, Boudjeltia KZ, Dutta R, Latt J, Chopard
B. 2020 Anomalous platelet transport & fat-tailed
distributions. (http://arxiv.org/abs/2006.11755).

39. Peskin CS. 1972 Flow patterns around heart valves:
a numerical method. J. Comput. Phys. 10, 252–271.
(doi:10.1016/0021-9991(72)90065-4)
40. Mountrakis L, Lorenz E, Malaspinas O, Alowayyed S,
Chopard B, Hoekstra AG. 2015 Parallel performance of
an IB-LBM suspension simulation framework. J. Comput.
Sci. 9, 45–50. (doi:10.1016/j.jocs.2015.04.006)

41. Zavodszky G, van Rooij B, Azizi V, Alowayyed S,
Hoekstra A. 2017 Hemocell: a high-performance
microscopic cellular library. Procedia Comput. Sci.
108, 159–165. (doi:10.1016/j.procs.2017.05.084)

42. Tan J, Sinno TR, Diamond SL. 2018 A parallel fluid–
solid coupling model using LAMMPS and Palabos
based on the immersed boundary method.
J. Comput. Sci. 25, 89–100. (doi:10.1016/j.jocs.2018.
02.006)

43. ShapeOp, 2014 https://www.shapeop.org/.
44. Bény J, Kotsalos C, Latt J. 2019 Toward full GPU

implementation of fluid–structure interaction. In
2019 18th Int. Symp. on Parallel and Distributed
Computing (ISPDC), Amsterdam, The Netherlands,
3–7 June, pp. 16–22. IEEE.

45. Blumers AL, Tang Y-H, Li Z, Li X, Karniadakis GE.
2017 GPU-accelerated red blood cells simulations
with transport dissipative particle dynamics.
Comput. Phys. Commun. 217, 171–179. (doi:10.
1016/j.cpc.2017.03.016)

46. Clausen JR, Reasor DA, Aidun CK. 2010 Parallel
performance of a lattice-Boltzmann/finite element
cellular blood flow solver on the IBM Blue Gene/P
architecture. Comput. Phys. Commun. 181,
1013–1020. (doi:10.1016/j.cpc.2010.02.005)

47. Zydney AL, Colton CK. 1988 Augmented solute
transport in the shear flow of a concentrated
suspension. Physicochem. Hydrodyn. 10, 77–96.

48. Affeld K, Goubergrits L, Watanabe N, Kertzscher U.
2013 Numerical and experimental evaluation of
platelet deposition to collagen coated surface at low
shear rates. J. Biomech. 46, 430–436. Special Issue:
Biofluid Mechanics. (doi:10.1016/j.jbiomech.2012.
10.030)

49. Kumar A, Graham MD. 2011 Segregation by
membrane rigidity in flowing binary suspensions of
elastic capsules. Phys. Rev. E 84, 066316. (doi:10.
1103/PhysRevE.84.066316)

50. Mountrakis L, Lorenz E, Hoekstra AG. 2013 Where
do the platelets go? A simulation study of fully
resolved blood flow through aneurysmal vessels.
Interface Focus 3, 20120089. (doi:10.1098/rsfs.2012.
0089)

51. Herschlag G, Gounley J, Roychowdhury S,
Draeger EW, Randles A. 2019 Multi-physics
simulations of particle tracking in arterial
geometries with a scalable moving window
algorithm. In Proc. 2019 IEEE Int. Conf. on Cluster
Computing (CLUSTER), Albuquerque, NM, 23–26
September, pp. 1–11. IEEE.

http://dx.doi.org/10.1002/nme.2114
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1007/978-3-8348-2376-2
http://dx.doi.org/10.1088/0169-5983/44/4/045504
http://dx.doi.org/10.1088/0169-5983/44/4/045504
http://dx.doi.org/10.1103/PhysRevE.96.013302
http://arxiv.org/abs/2006.11755
http://arxiv.org/abs/2006.11755
http://dx.doi.org/10.1016/0021-9991(72)90065-4
http://dx.doi.org/10.1016/j.jocs.2015.04.006
http://dx.doi.org/10.1016/j.procs.2017.05.084
http://dx.doi.org/10.1016/j.jocs.2018.02.006
http://dx.doi.org/10.1016/j.jocs.2018.02.006
https://www.shapeop.org/
https://www.shapeop.org/
http://dx.doi.org/10.1016/j.cpc.2017.03.016
http://dx.doi.org/10.1016/j.cpc.2017.03.016
http://dx.doi.org/10.1016/j.cpc.2010.02.005
http://dx.doi.org/10.1016/j.jbiomech.2012.10.030
http://dx.doi.org/10.1016/j.jbiomech.2012.10.030
http://dx.doi.org/10.1103/PhysRevE.84.066316
http://dx.doi.org/10.1103/PhysRevE.84.066316
http://dx.doi.org/10.1098/rsfs.2012.0089
http://dx.doi.org/10.1098/rsfs.2012.0089

	Digital blood in massively parallel CPU/GPU systems for the study of platelet transport
	Introduction
	Methods
	Computational modules
	Towards stable and robust fluid–solid interaction
	High-performance computing design

	Results and discussion
	Performance analysis
	Platelet transport with varying RBC viscoelasticity
	Platelet transport for larger geometries

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


