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Background & Aims: There is a growing focus on the role of dietary factors and metabolic conditions in the evolution and 
progression of iron deficiency (ID), yet few studies have examined the underlying mechanisms. Dietary Inflammatory Index (DII) is 
a metric that gauges the inflammatory potential of an overall diet. This study explores the association between DII and triglyceride 
glucose-body mass index (TyG-BMI) with ID in reproductive-age women.
Methods: This analysis utilized data from 2311 reproductive-age women in the National Health and Nutrition Examination Survey 
(NHANES) from 2005 to 2018. ID was identified using serum ferritin and transferrin receptor (TfR). The association between DII, 
TyG-BMI and ID was assessed using weighted logistic regression, linear regression and restricted cubic spline (RCS) models, with 
receiver operating characteristic (ROC) curve analysis for diagnostic power. Mediation effects of TyG-BMI were further explored by 
causal mediation analysis.
Results: Among reproductive-age women, both DII and TyG-BMI were significantly positively associated with ID (DII: OR = 1.32, 
95% CI 1.19, 1.48; TyG-BMI: OR = 1.13, 95% CI 1.02, 1.35). There is a close relationship between the DII index and TfR (β= 1.17, 
95% CI 1.03, 1.13). RCS analysis indicated that the relationships were mostly linear (P-overall < 0.05, P-nonlinear > 0.05). 
Furthermore, TyG-BMI mediated 5.19%, 12.83%, and 5.63% of the associations between DII and ID, Ferritin, and transferrin receptor 
(TfR), respectively.
Conclusion: The findings suggest that targeted interventions to enhance dietary practices, nutritional intake, and overall metabolic 
well-being may result in substantial amelioration of ID among reproductive women.
Keywords: iron deficiency, reproductive women, dietary inflammatory index, triglyceride glucose-body mass index, insulin resistance

Introduction
Iron deficiency (ID), mainly caused by insufficient iron intake or an inability to replenish iron losses, depletes the body’s 
iron stores and plays a significant role in the global disease burden.1,2 This micronutrient is crucial for hemoglobin 
synthesis, and iron-deficiency anemia (IDA) is a predominant consequence of ID. According to the Global Burden of 
Disease, IDA is the foremost cause of disability-adjusted life years (DALYs) among women,1 impacting 37% 
(32 million) of pregnant women and 30% (32 million) of non-pregnant women.3,4 Due to physiological factors such 
as menstruation, pregnancy, and lactation, the iron requirements of women of reproductive age increase significantly, as 
does the risk of developing ID. ID exerts detrimental effects on women’s health, even in the absence of anemia, leading 
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to diminished concentration, lowered physical endurance, and potentially heightening the risk of adverse pregnancy 
outcomes.5,6

There is a growing focus on the role of dietary factors and metabolic conditions in the evolution and progression of 
ID.2,7 Recent evidence has highlighted the significant role of diet-induced inflammation in this process. Dietary intake is 
recognized as a key modulator in the development of chronic inflammatory states.8 Notably, a case-control study 
indicates that the Western dietary pattern, characterized by high intake of animal fats, refined grains, and low intake 
of seeds, fruits, or vegetables, triggers postprandial inflammation and may precipitate chronic metabolic diseases.9 This 
dietary pattern is linked to an overproduction of pro-inflammatory cytokines, which in turn augment the secretion of 
hepcidin. Hepcidin reduces dietary iron absorption by binding to the iron exporter ferroportin, which inhibits the 
transport of iron from the enterocytes into the circulatory system and promotes ferroportin degradation, thereby impairing 
iron absorption.10

The Mediterranean dietary pattern, revered for its emphasis on olive oil, fish, vegetables, fruits, and whole grains, is 
correlated with notable health benefits and a decrease in inflammatory markers.11 There is a growing body of evidence 
suggesting that the antioxidant compounds in these foods contribute to the suppression of reactive oxygen species 
through multiple pathways, resulting in a reduction of pro-inflammatory cytokines.12,13 The Dietary Inflammatory Index 
(DII), a metric that gauges the inflammatory potential of an overall diet rather than focusing on a single nutrient, is 
derived from an assessment of 45 distinct dietary components. The intake of these components, which can either be 
increased or decreased, influences an individual’s inflammatory score.14

Insulin resistance (IR), characterized by a diminished response of target tissues to insulin, has been implicated in the 
pathogenesis of ID through its capacity to induce systemic chronic inflammation.15,16 The Triglyceride-Glucose Index 
(TyG) offers an economical and straightforward approach to assessing IR by leveraging the relationship between fasting 
triglyceride levels and fasting blood glucose, thereby enhancing the accuracy of IR diagnosis.17 While triglyceride 
glucose-body mass index (TyG-BMI) has demonstrated significant associations with metabolic and cardiovascular 
disease risks17,18, its link to iron metabolism awaits further empirical support.

Although direct research on the relationship between DII and TyG-BMI is scant, it is well-established that pro- 
inflammatory diets exacerbate IR.19 Consequently, this study aims to investigate the correlation between DII, TyG-BMI, 
and ID in reproductive-age American women, as well as the combined predictive power of these factors for ID. In 
addition, it was explored whether TyG-BMI played an intermediary role in DII and ID, offering a novel approach to the 
prevention and treatment of iron deficiency.

Materials and Methods
Study Population and Ethics
This cross-sectional analysis included 50765 adults from the National Health and Nutrition Examination Survey 
(NHANES) spanning 2005 to 2018. The exclusion criteria omitted: (1) participants without iron intake data (n = 
39,578); (2) those lacking information for TyG-BMI and DII calculations (n = 7380 and n = 1478, respectively); 
(3) individuals with incomplete covariate data (n = 18). After these exclusions, 2311 female participants from the 
United States remained for analysis (Figure 1). The NHANES protocol was approved by the NCHS Institutional 
Review Board (https//www.cdc.gov/nchs/nhanes/index.htm), with all participants providing written informed 
consent.

Assessments of DII and TyG-BMI
DII is a scoring system developed by Shivappa, based on a literature review that assesses the potential inflammatory 
levels of dietary components. DII is a metric that evaluates a diet’s inflammatory potential based on its relationship with 
both pro-inflammatory factors such as IL-1β, IL-4, IL-6, TNF-α, and CRP, as well as the anti-inflammatory factor IL-10. 
The DII is calculated by aggregating the specific scores of 45 different food items or nutrients, yielding a total DII value 
that signifies the overall inflammatory effect of the diet. A positive DII score indicates a pro-inflammatory diet, 
a negative score points to an anti-inflammatory diet, and a score close to zero suggests little to no impact on 
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inflammation. The theoretical reference value of the DII ranges from −8.87, representing a diet with maximal anti- 
inflammatory potential, to +7.98, representing a diet with maximal pro-inflammatory potential.14 Gathering data for the 
DII involves two 24-hour dietary recall interviews with participants, which are conducted both in-person and over the 
telephone, separated by a period of 3 to 10 days. This approach ensures a comprehensive evaluation of each participant’s 
dietary habits and their associated inflammatory potential.

In this study, 28 out of 45 food parameters were used for DII calculations, including carbohydrates, protein, total 
fat, alcohol, fiber, cholesterol, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, n-3 fatty 
acids, n-6 fatty acids, niacin, vitamin A, thiamine, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, 
vitamin E, iron, magnesium, zinc, selenium, folic acid, carotene, caffeine, and energy. The steps to calculate the DII 
are as follows: First, calculate the Z-score for the exposure of individual dietary components, Z-score = (individual 
dietary component daily intake - global dietary component intake average) / global dietary component intake standard 
deviation.20

The TyG-BMI index, an indicator of IR, is derived from the combination of fasting glucose and triglyceride levels. These 
metabolic parameters are assessed at the outset when participants submit their blood samples. Concurrently, anthropo-
metric measurements such as weight and height are collected during physical examinations conducted at mobile 
examination centers. The TyG-BMI index is calculated using the following formula:21

Figure 1 Flowchart depicting the participants’ selection.
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Assessment of ID
At the Mobile Examination Centers (MECs), blood samples were obtained by well-trained staff in a controlled environ-
ment. All samples underwent duplicate complete blood count (CBC) analyses utilizing the Beckman Coulter MAXM, 
which included the measurement of hemoglobin. To assess ID, serum ferritin and soluble transferrin receptor (sTfR) 
levels were determined; these markers are reflective of the body’s iron storage and iron transport capabilities, 
respectively.22 Given that ferritin is a positive acute-phase protein, we employed the regression adjustment method 
recommended by the biomarker panel reflecting inflammatory and nutritional determinants of anemia, which adjusts 
ferritin levels based on C-reactive protein.23

In the equation, β1 represents the regression coefficient of CRP, obs refers to the observed value, and ref indicates the 
reference value used to define low inflammation, which is equivalent to the maximum value of the logarithmically 
transformed CRP at the lowest decile. The adjustment for ferritin is only applied to individuals with a natural logarithm 
of CRP greater than the natural logarithm of the reference value for CRP, in order to avoid over-adjustment. The Roche 
e601 analyzer was employed for the quantification of serum ferritin and transferrin receptor (TfR). In this study, Cook 
formula was used to further standardize the concentration of transferrin, so as to facilitate the subsequent evaluation and 
calculation.23

Subsequently, we utilized the body iron model to identify subjects with ID, a method that has been validated and 
employed in previous NHANES studies: a negative value of less than 0 mg/kg indicates ID.22

Covariate
Covariates were selected based on prior knowledge of factors that affect iron metabolism and IR indicators, 
including age, race, poverty income ratio (PIR), marital status, education level, alcohol status, smoking status, 
hypertension, and diabetes. Race was categorized into non-Hispanic White, non-Hispanic Black, Mexican 
American, other Hispanic, and other groups. Indicators of family socioeconomic status included PIR and educa-
tion level, which was classified into less than high school, high school, or more than high school. Marital status 
was categorized into two groups: those who were married or partnered, and those who were widowed, divorced, 
separated, or never married. Smoking status was divided into those who had never smoked and those who were 
currently smoking. Hypertension was identified by systolic blood pressure of 140 mmHg or higher, diastolic blood 
pressure of 90 mmHg or higher, a physician’s diagnosis, or the use of antihypertensive medication. Diabetes was 
diagnosed if there was a physician’s diagnosis, a glycated hemoglobin (HbA1c) level greater than 6.5%, fasting 
glucose levels of 7 mmol/L or higher, random glucose levels of 11.1 mmol/L or higher, glucose levels of 
11.1 mmol/L or higher on a 2-hour oral glucose tolerance test, or if the individual was using diabetes medication 
or insulin. The presence of coronary heart disease was based on participants’ self-reports of a physician’s 
diagnosis in the study questionnaire.

Statistical Analysis
This study utilized complex survey design methodologies from NHANES, incorporating sampling weights and variables 
like clusters and strata to account for its design intricacies. To preserve sample size, precision, and statistical power, we 
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conducted multiple imputations for covariates with missing values of less than 5% using a fully random forest approach. 
Participants were stratified into two groups: those with and without ID based on their baseline characteristics. Continuous 
variables were presented as mean and standard deviation, while categorical variables were expressed as percentages 
determined by the Rao-Scott chi-square test.

Logistic regression was employed to investigate the association between the DII and TyG-BMI indices and the risk of 
ID. Cutoff points for these indices were identified using the Youden index from the receiver operating characteristic 
(ROC) curve, categorizing participants into low and high groups. Linear regression models were used for evaluating the 
relationships between DII index, TyG-BMI and Iron related metabolic indicators (ferritin and TfR). We sequentially 
applied logistic and linear regression models: a non-adjusted model (Model 1), and two adjusted models (Model 2 and 
Model 3). Model 2 was adjusted for age, gender, and race, while Model 3 included further adjustments for PIR, 
education, BMI, smoking, alcohol consumption, diabetes and hypertension.

Furthermore, this study applied restricted cubic spline (RCS) regression to explore the dose-response relation-
ship between the DII and TyG-BMI indices and the occurrence of ID. The study performed causal mediation 
analysis to investigate the intermediary role of TyG-BMI in the relationship between DII with ID and iron related 
metabolic indicators. The extent of TyG-BMI’s mediating influence was ascertained by calculating the mediation 
percentage, defined as the ratio of the indirect effect to the overall effect. To assess the statistical significance of 
this mediating effect, we employed Bootstrap resampling methods, conducting 1000 iterations for robust estima-
tion. The ROC curve analysis was utilized to evaluate the diagnostic power of the combined DII and TyG-BMI 
indices for predicting ID, thereby assessing their collective significance. Subgroup analyses were performed to 
investigate potential interactions between the DII and TyG-BMI indices and the risk of ID across different 
demographic and health status subgroups. These subgroups were categorized based on gender, BMI, PIR, 
hypertension, diabetes and smoking habits. For each subgroup, adjustments were made for all other covariates 
to specifically discern the impact of each stratification variable on the association between the DII and TyG-BMI 
indices and ID.

All statistical analyses were performed using R software, version 4.2.3, with statistical significance defined as P < 
0.05. This rigorous statistical approach ensures that the findings are robust and the conclusions drawn are valid within the 
context of the study’s design and objectives.

Results
Baseline Characteristics of the Study Participants
Table 1 presents the general characteristics of the study population, which includes 2311 reproductive-age women 
from the United States, stratified by the presence of ID. The mean (±SD) age of the participants was 31.69±0.29 
years, with those in the non-ID group having a mean (±SD) age of 31.56±0.34 years and those with ID having 
a mean (±SD) age of 32.28±0.53 years (p=0.278). Compared to the non-ID group, individuals with ID had higher 
BMI, higher education levels, lower income and exhibited higher levels of glycohemoglobin, creatinine, DII, TyG- 
BMI, TfR and lower levels of the Functional Evaluation of Reactive Synthesis Index (FERSI) and hemoglobin (p < 
0.05 for all comparisons). The prevalence of ID in our study population was 22.67% (524 out of 2311 participants). 
The mean (±SD) value of TyG-BMI was 131.18±2.00, and the mean (±SD) and range of DII were 1.97±0.06, 
respectively.

Association of DII and TyG-BMI with ID
As shown in Table 2, after adjusting for covariates, there is a significant association between the increase in the 
prevalence of ID and both the DII and TyG-BMI when treated as continuous variables (DII: OR = 1.32, 95% CI 1.19, 
1.48; TyG-BMI: OR = 1.13, 95% CI 1.02, 1.35). Furthermore, when DII and TyG-BMI are considered as binary variables 
(cutoff points determined by the Youden index) (Table S1), a significant positive association with the prevalence of ID is 
observed, which is even more pronounced (DII: OR = 1.68, 95% CI 1.34, 2.11; TyG-BMI: OR = 1.29, 95% CI 1.06, 
1.60). Not only that, this study found that there is a close relationship between the DII and TfR (β= 1.17, 95% CI 1.03, 
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Table 1 Characteristics of the Study Population from NHANES 2005–2018

Variable Total  
(n = 2311)

Without ID  
(n=1787)

ID  
(n=524)

P

Age (years) 31.69 (0.29) 31.56 (0.34) 32.28 (0.53) 0.278

BMI (kg/m2) 27.80 (0.20) 27.50 (0.23) 29.11 (0.41) 0.001
PIR 2.89 (0.06) 2.98 (0.06) 2.52 (0.13) <0.001

Race, n(%) <0.001
Mexican American 546 (9.98) 396 (9.03) 150 (14.25)

Other Hispanic 190 (5.54) 149 (5.16) 41 (7.21)

Non-Hispanic White 811 (62.96) 690 (66.81) 121 (45.73)
Non-Hispanic Black; 574 (13.94) 393 (11.47) 181 (24.95)

Other race 190 (7.59) 159 (7.53) 31 (7.87)

Education, n(%) 0.001
Less Than 9th Grade 577 (16.13) 427 (15.12) 150 (20.62)

9–11th Grade 1177 (52.34) 901 (51.52) 276 (56.04)

High school grade and more 557 (31.53) 459 (33.36) 98 (23.33)
Marital status, n(%) 0.030

Married or Living with partner 1886 (84.33) 1481 (85.51) 405 (79.06)

Widowed/Divorced/Never married 425 (15.67) 306 (14.49) 119 (20.94)
Moderate Activity, n(%) 0.004

Yes 1481 (62.75) 1161 (64.11) 320 (56.65)

No 830 (37.25) 626 (35.89) 204 (43.35)
Diabetes, n(%) 0.255

Yes 97 (4.46) 70 (4.25) 27 (5.43)

No 2214 (95.54) 1717 (95.75) 497 (94.57)
Hypertension, n(%) 0.944

Yes 647 (21.81) 512 (21.84) 135 (21.67)

No 1664 (78.19) 1275 (78.16) 389 (78.33)
Smoking status, n(%) <0.001

Yes 921 (37.66) 736 (39.55) 185 (29.19)

No 1390 (62.34) 1051 (60.45) 339 (70.81)
Drinking status, n(%) 0.035

Yes 1338 (62.97) 1063 (64.11) 275 (57.88)

No 973 (37.03) 724 (35.89) 249 (42.12)
Coronary Heart Disease, n(%) 0.040

Yes 107 (2.22) 71 (1.96) 36 (3.41)

No 2204 (97.78) 1716 (98.04) 488 (96.59)
Uric acid, mg/dL 4.57 (0.02) 4.60 (0.03) 4.45 (0.06) 0.032

HDL, mg/dL 58.39 (0.50) 58.30 (0.55) 58.78 (1.01) 0.664

LDL, mg/dL 105.18 (1.03) 104.58 (1.18) 107.87 (1.58) 0.085
TC, mg/dL 187.22 (1.19) 186.77 (1.34) 189.27 (2.29) 0.343

Triglycerides, mg/dL 101.38 (2.00) 103.06 (2.11) 93.87 (2.98) 0.004

Glucose, mg/dL 97.10 (0.55) 96.34 (0.51) 100.50 (1.51) 0.007
Hemoglobin, % 13.44 (0.05) 13.69 (0.05) 12.36 (0.09) <0.001

Glycohemoglobin, g/L 5.30 (0.02) 5.26 (0.02) 5.48 (0.05) <0.001

Creatinine, mg/dL 121.92 (2.41) 118.59 (2.72) 136.81 (4.70) 0.001
Ferritin, ug/L 51.08 (1.26) 58.90 (1.46) 16.12 (1.46) <0.001

TFR, mg/L 5.74 (0.08) 4.98 (0.04) 9.14 (0.27) <0.001

TyG-BMI 125.85 (1.04) 124.66 (1.18) 131.18 (2.00) 0.006
DII 1.64 (0.06) 1.57 (0.06) 1.97 (0.09) <0.001
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1.13) (Table S2). We utilized RCS curves to model and visualize the relationships between DII and TyG-BMI with ID. 
The RCS regression analysis demonstrated significant linear associations for DII with ID (p-overall < 0.05, p -nonlinear > 
0.05) and nonlinear associations for TyG-BMI with ID (p-overall < 0.05, p -nonlinear <0.05), following adjustment for 
covariates (Figure 2).

Mediation Effects of TyG-BMI on DII-ID
Taking into account the correlations between DII, TyG-BMI, and iron deficiency indicators, this study further analyzed 
the mediating effects. The study found that TyG-BMI mediated 5.19%, 12.83%, and 5.63% of the associations between 
DII and ID, Ferritin, and TfR, respectively (Figure 3).

Stratification Connection
Figures S1 and S2 present detailed analyses of the stratified relationships between DII and TyG-BMI with ID, stratified 
by age, smoking status, alcohol consumption, and the presence of hypertension and diabetes. The stratified analysis 
indicated that there were no significant interactions observed between the TyG-BMI and DII indices and ID within any of 
the subgroups except hypertension (p-values for interaction > 0.05).

ROC Curve for Evaluating the Predictive Power for ID
To further investigate the relationship between DII and TyG-BMI with ID, we employed ROC curves to predict the 
diagnostic efficacy of both indices. The ROC curves analysis demonstrated that the combined TyG-BMI and DII indices 
had the highest diagnostic efficacy for ID (AUC: 0.5973), followed by the individual diagnostic efficacies of DII and 
TyG-BMI for ID (DII: AUC: 0.5704; TyG-BMI: AUC: 0.5530) (Figure 4).

Table 2 Association of DII and TyG-BMI with ID

Continuous or Categories Model1 Model2 Model3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

DII
Continuous variable 1.33 (1.20, 1.48) <0.001 1.29 (1.16, 1.44) <0.001 1.32 (1.19, 1.48) <0.001
Low (<1.38)

High (≥1.38) 1.71(1.38, 2.13) <0.001 1.72(1.38, 2.16) <0.001 1.68(1.34, 2.11) <0.001

Q1[−3.43,0.0422)
Q2[0.0422,1.11) 2.13(1.44, 3.14) <0.001 2.10(1.41, 3.12) <0.001 2.09(1.41, 3.12) <0.001

Q3[1.11,1.97) 2.27(1.55, 3.32) <0.001 2.26(1.54, 3.34) <0.001 2.25(1.52, 3.33) <0.001

Q4[1.97,3.3] 2.72(1.84, 4.02) <0.001 2.74(1.83, 4.09) <0.001 2.66(1.77, 4.00) <0.001
p for trend <0.001 <0.001 <0.001

TyG-BMI
Continuous variable 1.22 (1.11, 1.34) <0.001 1.15 (1.04, 1.28) 0.006 1.13 (1.02, 1.35) 0.018
Low (<116.05)

High (≥116.05) 1.49(1.22, 1.82) <0.001 1.31(1.06, 1.62) 0.013 1.29(1.06, 1.60) 0.020

Q1[1.57,2.8)
Q2[2.8,3.69) 1.21(0.95, 1.54) 0.127 1.18(0.92, 1.52) 0.182 1.19(0.93, 1.53) 0.168

Q3[3.69,4.85) 1.46(1.13, 1.89) 0.004 1.37(1.05, 1.79) 0.020 1.38(1.06, 1.80) 0.017

Q4[4.85,9.09] 1.65(1.15, 2.36) 0.007 1.51(1.04, 2.20) 0.031 1.55(1.07, 2.23) 0.020
p for trend <0.001 <0.001 <0.001

Notes: Data are expressed as odd ratio (OR) and 95% CI. Adjusted Mode: Model 1 (unadjusted), Model 2 (adjusted for sex, age, and race), 
and Model 3 (further adjusted for gender, age, race, education, PIR, BMI, smoking, alcohol consumption, hypertension and diabetes). Bold 
indicates P value < 0.05.
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Figure 2 Associations between DII and TyG-BMI with ID. (A) The relationship between DII and ID (unadjusted RCS Model). (B) The relationship between DII and ID (fully 
adjusted RCS Model). (C) The relationship between TyG-BMI with ID (unadjusted RCS Model). (D) The relationship between TyG-BMI with ID (fully adjusted RCS Model). 
Adjustments in the model accounted for the following variables: age, educational level, ethnicity, marital status, family PIR, smoking status, drinking status, BMI, diabetes, and 
hypertension.

Figure 3 Mediation effects of TyG-BMI on the associations of DII with ID, Ferritin and TfR. (A) The relationship between DII and ID mediated by TyG-BMI. (B) The 
relationship between DII and Ferritin mediated by TyG-BMI. (C) The relationship between DII and TfR mediated by TyG-BMI. 
Note: Arrows and rounded heads indicate promotion and inhibition, respectively. 
Abbreviations: ACME, average causal mediation effects; ADE, average direct effects.

https://doi.org/10.2147/IJWH.S507765                                                                                                                                                                                                                                                                                                                                                                                                                                        International Journal of Women’s Health 2025:17 362

Ding et al                                                                                                                                                                            

Powered by TCPDF (www.tcpdf.org)



Discussion
This pioneering study delves into the dietary influences on ID risk in women of reproductive age, illuminating the 
potential involvement of metabolic disorders in its pathogenesis. Our findings indicate that while elevated DII and TyG- 
BMI are both linked to a significant rise in ID risk, the association between DII and ID is more pronounced. Notably, this 
correlation persists even after adjusting for various covariates. Furthermore, TyG-BMI was identified as a mediator in the 
relationship between DII and ID. We also examined the interrelations between DII, TyG-BMI, and iron metabolism— 
including ferritin and TfR—offering insights into the mechanisms by which DII might influence ID. The combination of 
these two indices enhances the predictive power of ID, suggesting a synergistic effect that merits further investigation. 
Moreover, a comprehensive stratified analysis was conducted to enhance the study’s sensitivity, providing a nuanced 
perspective on the multifaceted factors influencing ID in women of reproductive age.

Research has established that dietary factors are instrumental in modulating iron metabolism.8,24 The study utilized 
the DII score to assess individual inflammatory responses comprehensively and identified a positive correlation between 
higher DII scores and the prevalence of ID among women of reproductive age. We discovered that a pro-inflammatory 
diet, rich in high-energy nutrients with elevated trans fat and sugar content, not only escalates the intake of these 
substances but also enhances the expression of pro-inflammatory cytokines. This dietary pattern further modulates the 
activation of protease caspase-1, which is pivotal for the cleavage of cytokine precursors IL-1β and IL-18.13 The 
processing of these cytokine precursors can regulate the hepcidin antimicrobial peptide gene expression, impede the 
function of the iron transporter, curtail iron uptake in the intestinal mucosa, and hinder iron recycling in macrophages, 
ultimately leading to ID.25,26 Conversely, adherence to the Mediterranean diet has been shown to significantly diminish 
the serum concentrations of multiple pro-inflammatory cytokines, demonstrating the capacity of dietary patterns to 
mitigate systemic chronic inflammation.27 Among pregnant women, adherence to this anti-inflammatory dietary approach 
has been associated with a reduced incidence of ID,28 offering robust evidence for the potential of dietary interventions in 
alleviating ID through the reduction of inflammation.

Furthermore, the study’s findings reveal a positive correlation between DII and TfR levels, with a significant direct 
impact on transferrin observed in both mediation analysis and linear regression (P<0.05). This suggests that DII may 
predominantly induce ID by influencing TfR. The current dearth of research on the association between dietary 
inflammation and TfR is noteworthy. A case-control study focusing on rheumatoid arthritis indicated that patients’ levels 
of TfR were markedly elevated compared to controls, hinting at a link between inflammatory states and TfR levels.29 

Additionally, a cross-sectional study by Doherty et al reported elevated hepcidin levels in individuals on a pro- 
inflammatory diet,30 a protein known to be regulated by TfR2. Evidence suggests that TfR2 stimulates hepcidin 
expression in the liver, and that the deletion of the murine TfR2 gene or mutations in the human TfR2 gene can result 
in reduced hepcidin expression.31,32 While these findings offer a potential explanation for our observations, the precise 
mechanisms involved should be subjected to further scrutiny in prospective studies.

Although research on the link between IR and ID is scant, the interplay between iron metabolism and glucose 
homeostasis has garnered significant interest.33,34 Vaquero et al, utilizing transferrin saturation (TAST) classification, 

Figure 4 ROC curve for evaluating the predictive power for ID. (A) DII; (B) TyG-BMI; (C) DII and TyG-BMI.

International Journal of Women’s Health 2025:17                                                                               https://doi.org/10.2147/IJWH.S507765                                                                                                                                                                                                                                                                                                                                                                                                    363

Ding et al

Powered by TCPDF (www.tcpdf.org)



revealed that overweight and obese adults with iron deficiency exhibited higher insulin levels than their non-iron 
deficient counterparts (P < 0.05). These findings echo the results of a substantial prospective study and an analysis 
based on the NHANES database. Notably, Podmore et al observed that this association was particularly pronounced in 
women.35–37 This provides a compelling basis for further investigation into the relationship between TyG-BMI and ID.

It is recognized that a higher BMI is generally linked to an elevated risk of ID. A meta-analysis38 indicated a higher 
prevalence of ID in individuals who are overweight and obese compared to those with normal weight; however, no 
correlation was found between obesity and ID. This may be attributed to the fact that a small proportion of obese 
individuals with occult ID or early-stage IDA might not present with clinically identifiable anemia. Furthermore, Laillou 
et al39 noted that BMI was not significantly associated with the occurrence of IDA. In our study, the integration of TyG 
index with TyG-BMI and IDA demonstrated significant statistical relevance, suggesting that IR may contribute to the 
development of ID in individuals with elevated BMI.

The research indicates an interactive effect between a high-inflammatory diet and IR. Higher DII has been implicated 
in the promotion of obesity, which is considered a critical link between chronic inflammation and IR.40 Adipose tissue 
macrophages (ATMs) undergo a phenotypic shift from an M2-like anti-inflammatory state to an M1-like pro- 
inflammatory state, releasing excessive free fatty acids (FFA), ROS, and pro-inflammatory cytokines.41 This leads to 
persistent tissue inflammation, a key contributor to decreased insulin sensitivity, leading to IR. Furthermore, IR can 
induce a chronic low-grade inflammatory state, and adipose tissue in patients is more likely to accumulate macrophages 
and release pro-inflammatory cytokines (such as IL-6, TNF-α).16 IL-6 upregulates hepcidin gene expression through the 
JAK/STAT3 pathway, leading to ID.25,26 The inflammatory environment, especially elevated levels of TNF-α, can reduce 
the expression of ferroportin 1(FPN1), the only iron export protein in the body, causing intracellular iron release 
disorders.42,43 These researches also support the result of this study that IR plays a mediating role between DII and 
iron metabolism, providing a new perspective on the interaction between iron deficiency anemia and these dietary and 
metabolic mechanisms, however, future longitudinal cohort studies and randomized controlled studies should be 
conducted to reveal the specific causal relationship and mechanism of action.

The research benefits from several methodological strengths. Notably, it utilizes data from NHANES, which provides 
a representative sample of the US population. This allows for the adjustment of various confounding factors, thereby 
amplifying the statistical power of our findings. However, it is essential to acknowledge the study’s limitations. As 
a cross-sectional study, we are unable to infer causality between TyG-BMI, DII, and the risk of ID in American women, 
a relationship that should be further validated in longitudinal studies. Secondly, the project applied Cook’s equation for 
the quantitative assessment of body iron, and although CRP was considered in the calculation of ferritin to exclude the 
interference of inflammation, there was no data on α1-acid glycoprotein (AGP) in the database, and we did not adjust for 
transferrin saturation.23,44 Thirdly, the DII was derived from 24-hour recall data obtained through face-to-face interviews, 
a method that is susceptible to reporting biases. Moreover, while the DII typically incorporates 45 different food items or 
nutrients, our analysis was based on 28. Nonetheless, previous research has indicated that utilizing this reduced subset 
does not diminish the predictive value of the DII.45,46 Lastly, despite accounting for multiple covariates, we acknowledge 
the possibility of residual confounding due to unmeasured variables, such as heavy menstrual bleeding and pregnancy 
history. These are major risk factors for iron deficiency in this group and must be considered in future research to better 
understand the risk of ID in this population.

To summarize our findings, the study establishes a significant correlation between the DII and TyG-BMI with ID in 
reproductive-age women. The data suggest that pro-inflammatory diet may increase the incidence of ID by exacerbating 
IR, and there is a synergistic effect between pro-inflammatory diet and IR. The interplay between TyG-BMI, DII, and ID 
merits deeper investigation. It is plausible that interventions aimed at improving dietary habits, nutritional status, and 
metabolic health could lead to significant improvements in the ID status of women in their reproductive years.

Data Sharing Statement
The data associated with this study been deposited into NHANES. The NHANES data and survey methodology are 
publicly available and accessible on the website (https//:www.cdc.gov/nchs/nhanes/index.htm). Further inquiries can be 
directed to the corresponding authors.
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Highlights
1. DII and TyG-BMI are significantly linked to ID risk in reproductive-age women.
2. Combined DII and TyG-BMI enhance predictive power for ID.
3. TyG-BMI mediates the relationship between DII and ID.
4. Improving diet and metabolic health could improve iron status in reproductive-age women.
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