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Abstract: Micro-structured coatings with functional properties have been investigated due to a
wide range of applications. It is known that micro-structures can play an important role in surface
interactions determining the materials’ performance. Amongst the other materials, there has been an
increasing interest in tantalum oxide (Ta2O5). This attention is mainly due to its variety of properties:
biocompatibility and bioactivity; high dielectric constant; good thermal and chemical stability;
excellent corrosion and mechanical resistance. Moreover, there is a wide range of applications in
which the properties can be fitted. Furthermore, according to the final application, these properties
can be enhanced or tailored through surface micro-structures manipulation. Due to this purpose,
over the past decade, Ta surface modification by micro-arc oxidation (MAO) has been investigated
mostly for biomedical applications. Therefore, this review focuses on Ta surface functionalization
using the MAO technique. A clear understanding of the micro-discharge phenomena and the
formation mechanism of a Ta2O5 anodic coating by MAO is supplied. The Ta2O5 coating morphology,
topography, chemistry, and structure are explored, establishing their correlation with the MAO
parameters. Additionally, an understanding of Ta2O5’s biological, mechanical, and electrochemical
properties is provided and reviewed.

Keywords: bioactivity; biocompatibility; functionalization; micro-arc oxidation; tantalum

1. Introduction

Tantalum oxide (Ta2O5) micro-structured coatings present interesting properties that
make them suitable for a large range of applications. These coatings are used for storage
capacitors and resistors in electronic [1,2] and microelectronic industries [1,3,4] because
they show a high dielectric strength, high melting point and thermal stability [5], ex-
cellent corrosion [6–9], and abrasion resistance [10], which make them also a reliable
option for biomedical instruments [6,7,11–14] and chemical equipment (e.g., optical de-
vices) [15]. They are biocompatible [16–19] too, being a good option for bioengineering
implants application [6,11,20–24]. Ta2O5 coatings also have a wide bandgap, exhibiting a
high photocatalytic activity [25]. Furthermore, Ta-based materials (nitrides, oxynitrides)
have been suggested for photochemical [25–28] and metal-oxide-semiconductor (MOS)
transistors [29], as well as SiO-Ta2O5 films for memory and optical devices [30–32].

Micro-structured Ta2O5 film can be produced by a wide number of techniques, in-
cluding methods such as chemical solution deposition, such as sol–gel (e.g., [4]) and
polymer-assisted deposition (e.g., [6,20]); physical vapor deposition, such as magnetron
sputtering (e.g., [21,33–35]) and pulsed laser deposition (e.g., [3]); chemical vapor deposi-
tion (e.g., [13,22]); electrochemical-processes-anodization (e.g., [25,32,36–43]); and micro-arc
oxidation (e.g., [23]). One of the most common electrochemical processes used for Ta2O5
film production is anodization, which is a low-cost and industrialized technique, although
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it uses environmentally harmful chemicals [44,45]. Micro-arc oxidation (MAO) is a promis-
ing emerging technique for surface modification that offers an alternative track for the
production of well-adhered oxide coatings using weak alkaline electrolytes instead of
the highly acidic electrolytes associated with the anodizing process. The main difference
between MAO and anodization is that MAO works at higher voltages above the Ta2O5
breakdown potential (around 200 V [44]). This review paper explores the complexity of
the MAO process onto Ta surfaces and the structures’ growth mechanism from relatively
compact to porous, passing from nodular and dendric morphologies, and dissects the
attained surface properties regarding the MAO parameters, providing the opportunity to
be used in a range of applications, particularly in biomedical.

2. Understanding the Principles of the MAO Process onto Ta Surfaces

Derived from the anodization process, the MAO technique, also known as plasma
electrolytic oxidation (PEO), is distinguished since it works with a higher voltage [45–48]:
when the applied voltage is high enough (higher than the breakdown potential of the
oxide layer), a dielectric breakdown occurs through the thickness of the growing oxide
coatings [49,50]. The MAO step-up and procedure are relatively similar to conventional
anodization, although oxidation occurs when there is a combination of metal and oxygen
atoms or ions within the discharge plasma (as it cools and collapses) instead of a continuous
transport of ions through the electrolyte and within a thin oxide coating [45].

This process allows for the production of thick oxide coatings, which often result
in a harder and crystalline structure due to the large amounts of heat released by the
discharges [45,46]. The maximum thickness is not dependent on the applied voltage but
instead is reached at stable discharges [45]. Additionally, the MAO process allows for
the formation of durable and well-adherent coatings on many metals (e.g., Ti, Mg, Zr,
and Ta) [23,45,49], as well as for the creation of surfaces with a wide range of colors and
textures [45]. In addition, the resulting oxide coating can have relatively high levels of
porosity [45,48], and it can be enriched with components from the electrolyte [23,51]. The
MAO oxide coating can benefit from mechanical stability, such as a reduced stiffness and
elastic’s modulus, conferring sliding, corrosion, and fatigue resistance. MAO enables the
development of functional surfaces for biomedical applications. This process provides the
formation of porous structures, raising the specific surface area, which allows a strong
bonding to the bone [52]. Furthermore, the incorporation of species from the electrolyte,
such as calcium (Ca) and phosphorous (P), enhances bioactivity [45,49]. These surface
features can be tailored by the applied voltage, anodic current density, and electrolyte
composition and concentration [23,52]. It is important to highlight that the MAO process,
like anodization, is industrially well-accepted.

2.1. Transient Plasma Discharge Mechanism

At the initial stage of the MAO process, a large number (cascade) of micro-discharges
distributed over the surface are formed under high voltages [45], consequently initiating
a plasma formation, leading to a series of complex electrochemical, plasma, and thermo-
chemical reactions under high temperature and pressure (Figure 1) [23,53,54].

The electric field passing through the oxide (passive layer bandgap) increases, and if
the applied voltage reaches the breakdown level, i.e., the dielectric strength of the oxide, the
discharge occurs (Figure 1A) [45,55]. This discharge is initiated by the electron flow from
the electrolyte to the substrate, crossing through the passive layer, initially in particular
areas (the micro-defects). At the moment of a discharge, a gas bubble is formed, which
rapidly expands due to the heat flow, generating plasma formation and growth [45,53].
The resultant plasma contains species from the substrate (metallic cations—Mex+), the
electrolyte (cations—C+, and anions—A−, OH−), and the growing oxide coating, as well
as O2 gas, which results from the ionization of water molecules (Figure 1B). These O2
molecules can combine with metallic cations from the substrate in the plasma. In the
discharge channel, the alloy elements (from the substrate and existing oxide) are molten,
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and consequently oxidized as a result of the elevated temperature, and are transported from
inside the channel to the substrate [56]. When the electric resistance rises, the discharge
stops, the bubble shrinks [45,52,57], the plasma cools and collapses, and the reaction
products, as well as the erupted molten oxide, are deposited on the surface forming the new
oxide (Figure 1C) [56]. The new oxide condenses and is quickly redistributed within the
layer structure. Then, the coating solidifies, and a disordered microstructure architecture is
created (Figure 1C) [45,52,57].
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MAO: (A) start of the spark discharges after the rapid formation of the oxide layer; (B) formation of
the bubble and ignition of the plasma; (C) new oxide formation; (D) start of the new discharges with
a generation of a gas bubble and plasma, leading to the formation of the new oxide coating.

This process runs endlessly, the substrate is consumed at the site of the discharge,
and the oxide is gradually formed in the vicinity [45], growing simultaneously inward
and outward from the original metallic surface [47], with a continuous reconstruction
throughout the oxide thickness (Figure 1D). Moreover, several phenomena take place
during the MAO process for metallic oxidation: the melting and vaporization of the
metallic substrate, the melting of the oxide coating, the initiation and sustainment of the
plasma, the water vaporization, the electrical heating of the electrolyte, and, finally, the
metal-to-oxide conversion [45]. The developed oxide is broadly composed of two layers:
a porous outer layer and a compact inner layer (Figure 1D) [47]. As the oxide thickness
increases, a tendency for the discharge to become more energetic and more dispersed in
time and space [45,57–59] is observed, which increases the duration of the process [46].
In addition, oxygen liberation at the anode occurs at a high anodic current due to the
oxidation of water or oxide ions [47]. The lifetime of a discharge cascade is terminated
when the oxide reaches enough thickness in that specific site, presenting a higher electrical
resistance than in the vicinity.

During MAO, with anodic polarization, the electron flow through the oxide coating is
limited by the relatively slow rate of the OH− ions’ arrival through the electrolyte under the
influence of the applied potential (Figure 2). Like in anodization, electrolyte composition,
which is even aqueous and alkaline, influences the discharge ignition since it must be
conductive, and may influence the chemical reactions of ionized species, as well as the
metallic substrate oxidation [45,60].
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Figure 2. Schematic illustration of transport phenomena that takes place during the MAO process.

Using the analysis of the voltage/current density—time curve, the MAO process, car-
ried out in DC mode onto a Ta surface, can be divided into three distinct stages as displayed
in Figure 3A,B [46,58,61,62]. In the first seconds of a galvanostatic mode (constant current)
(Figure 3A), the voltage sharply increases in a short time, which is defined as the first stage
of the MAO process. Like traditional anodization, a compact oxide coating is formed in
this stage. Throughout the anodic coating growth, the electric field strength for a given
current density remains constant during the anodic growth, and the ionic current is two or
three orders of magnitude larger than the electronic component. Furthermore, the voltage
increases with the increase in the anodic coating thickness to maintain the electric field
strength constant [45,58,61]. In this stage, galvanoluminescence is not observed. During the
electrolytic oxidation, electrons are injected into the conduction band of the anodic layer
and are accelerated by the electric field producing avalanches using an ionization mecha-
nism [61]. When the electronic current avalanche reaches a critical value (the breakdown
potential of the oxide layer), dielectric breakdown occurs, which is reflected by an apparent
deflection from the linearity of the V-t curve and the appearance of small sparks. Hence, the
uniform coating thickening is terminated and starts a so-called breakdown voltage (second
stage) [45,58,61] that activates and induces a fast increase in galvanoluminescence inten-
sity [61]. The breakdown is triggered by local heating effects caused by highly localized
processes taking place at macro and micro-defects in the oxide (electrolyte-filled fissures,
micropores, flaws) [46,58]. The voltage keeps increasing continually, but the voltage–time
slope decreases, and a large number of bright spots (micro-discharges) appear over the
whole surface. The slope decreases as a consequence of the relatively low voltage required
to maintain the same total current density, because of the dependency of the electron’s
current density on the anodic coating thickness. Further, the third stage is reached when
the voltage is relatively constant, with a voltage–time slope near zero, since the total current
density is practically independent of the anodic layer thickness, as the fraction of electronic
current density in the total current density becomes dominant [46,58].
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In turn, in potentiostatic mode, when a constant potential is applied during the
MAO process carried out in AC mode, the same three stages are observed (Figure 3B) [55].
According to Ohm’s law, for this situation, the first stage is characterized by a sharp decrease
in the current density, which corresponds to the moment in which the surface oxidation
forms the anodic coating. Then, in the second stage, the current density continually
decreases, but with a lower slope, corresponding to the breakdown and beginning of
sparking. Finally, the current density is nearly constant.

In another perspective, throughout the MAO process carried out in AC mode using
a silicate electrolyte to modify a Ta surface, the cell-potential–time responses (Figure 3C)
also display an increase in the positive potential (anodic potential), whilst the anodic layer
grows (also called barrier layer) until the first inflection occurs. Therefore, fine sparks
are initiated and the breakdown starts [63]. A second inflection occurs and the potential
rises slower, indicating that the sparks get more intense. In good agreement, the negative
potential (cathodic potential) increases during the growth of the barrier layer, reaching
a plateau, followed by a potential escalation coincident with the second inflection in the
anodic potential. Thus, the potential increases slowly, likewise to the anodic potential.

In particular, Sowa et al. [23,64] studied the influence of two steps of the MAO process
carried out in DC mode on the Ta surface. The MAO process was initiated in galvanostatic
mode (the first step) under a constant current density, and then, when the process reached
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the desired voltage, it was switched to potentiostatic mode (second step) under a constant
applied voltage. The recorded voltage–time (during the galvanostatic mode as the first
step) and the current-density–time curves (during potentiostatic mode) show a strong
influence of the electrolyte composition and concentration on the MAO process. As a
first notice, when adding the calcium formate (Ca(HCOO)2) or the magnesium acetate
(Mg(CH3COO)2) to calcium hypophosphite (Ca(H2PO2)2), the electrolyte conductivity
increases. Indeed, there are more charge carriers in the solution; thus, the resistivity
decreases, and, consequently, larger and more intense sparks appear at lower voltages,
creating larger pores and increasing the current density [23,64]. In agreement, using a
different electrolyte composition, the MAO process is greatly influenced by the electrolyte
concentration [62]. In effect, the third region of the V-t curve is better discerned for 0.1 and
0.5 M K2SiO3 since the most concentrated electrolyte (1 M K2SiO3) voltage oscillations are
verified, which correlates with the necessary time to reach the maximum voltage of 400 V,
as it is dependent on the K2SiO3 concentration (increasing the electrolytes’ concentration,
more time is required).

Hence, it is possible to summarize that the stages of the MAO process are dependent
on the electrolyte composition and concentration, but are independent of the operation
mode (DC or AC).

2.2. Gas Evolution Phenomena

Stojadinović et al. [61] reported two models that explain the formation of sparks.
The first model suggests that the appearance of spark discharge comes as a consequence
of the dielectric breakdown of the oxide in the presence of a strong electric field. The
second model considers spark discharges as gas discharges occurring in micropores of the
oxide, since the formation of a gas phase in micropores is generated by the initial dielectric
breakdown in the bottom of the micropores. The authors reported that both models can
occur and can be distinguished during the MAO treatment. To achieve that, the MAO
process was carried out at 70 mA/cm2 using a phosphoric acid (H3PO4) electrolyte. In the
first model, considering the V-t curve (Figure 4e), after the anodic coating growth (first
stage), the second stage is verified by the absence of ionic and atomic lines observed in
the luminescence spectrum, suggesting that, at the beginning of spark discharge, there is
continuum radiation (Figure 4d). In the third stage, when the electric field reaches a critical
value and the electronic current is high enough to cause gas discharge occurrence in the
micropores, strong ionic and atomic emission lines appear, ascribed to O2 (Figure 4a) and
H2 species (Figure 4b,c), in agreement with the second model [61]. In summary, the first
and second stages of the V-t curve are explained by the first model, whereas the third stage
is described by the second model.

Concomitant with micro-discharges, during the MAO process, carried out in pulsed
bipolar current density regime, the anodic pulses are responsible for multiple electrode
processes, such as anodic coating formation and oxygen evolution, whereas the cathodic
pulses lead to hydrogen evolution. The gas bubbles contain hydrogen and oxygen, both
generated electrochemically and by the dissociation of water molecules [63]. In this sense,
some investigations have been carried out to understand the behavior of gas bubbles and
spark formation, recording real-time images during the MAO process.

Sowa et al. [62] studied the gas bubbles’ formation and evolution through time, re-
sulting from an MAO process on Ta surfaces. The real-time images (Figure 5) demonstrate
that, first, the bubbles are formed, cover the surface, and, while their density decreases,
short micro-discharges start to be uniformly distributed over the whole surface, which
decreases in number and increases in both diameter and intensity with an increasing time
and voltage. For more concentrated electrolytes, the sparks start at lower voltages [62], as
mentioned before [23,64].
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On the contrary, Stojadinović et al. [58] carried out the MAO process at 70 mA/cm2

using tungstosilicic acid (0.001 M H4SiW12O), showing different stages of the process with
distinct micro-discharge characteristics in the real-time images. Initially, an intensive gas
formation is observed immediately after a few seconds of the process (Figure 6a). After
20 s, small micro-discharges already start to be visible, simultaneous with bubble growth
evolution (Figure 6b). During the MAO process, as already mentioned, the size of the
micro-discharges becomes larger at a reduced number (Figure 6c–f). Additionally, the
spatial density of the micro-discharges reaches the maximum after about 2.5 min; then, the
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spatial density is substantially reduced during the following 5 min, achieving a plateau.
In good agreement, the percentage of the oxide area under active discharge sites also has
a maximum after 2.5 min, which continually decreases with time. Thus, relatively small
discharges occur during the MAO process. The behavior of the micro-discharges is related
to the number of micro-discharge sites through which a higher anodic current can pass,
since the number of pores decreases whereas their size increases with the MAO duration.
The optical emission spectroscopy used to detect the presence of self-absorption for Balmer
lines in MAO spectra displays a strong line ascribed to Hα, whereas the other two weaker
Balmer lines are associated with Hβ and Hγ. The analysis of the Hβ line shape indicates
the presence of two types of discharges with a relatively low electron number density
(Ne) of around 0.9 × 1015 cm−3 and 2.2 × 1016 cm−3, respectively, due to the high melting
temperature of Ta (compared with Al, which has three types of micro-discharges). This
prevents the formation of a metallic plasma in microchannels through the oxide coating.
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In a bipolar pulsed current MAO process, the Ta surface presents an initial purple
interference color of a thin anodic coating in the first few seconds. This is accompanied by
the presence of a gas that consists of electrochemically generated hydrogen produced during
the cathodic polarization and possible oxygen created over the anodic polarization [63].
Then, the whole surface has numerous white and fine sparks that reduce in number and
increase in intensity, turning to an orange hue. In addition, more energetic gas evolution and
a wider dispersion of bubbles into the electrolyte arise in the presence of strong discharges.

2.3. Growth Mechanism of Ta2O5 Anodic Coating

During the Ta2O5 anodic coating formation, several interactions occur at different in-
terfaces. For instance, the oxide formation mechanism starts with the oxide coating growing
at both Ta/oxide and oxide/electrolyte interfaces. This results from the migration of O2−,
OH− (down from the electrolyte/oxide interface), and Ta5+ ions (up from the metal/oxide
interface) across the oxide, assisted by a strong electric field. Consequently, a small amount
of the electrolyte is incorporated into the oxide at the oxide/electrolyte interface. The
main chemical reaction at the metal/oxide interface is defined by Equation (1), whereas
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the reaction at the oxide/electrolyte interface is defined by Equation (2), and the overall
reaction is defined in Equation (3) [46] (Figure 7).

Ta→ Ta5+ + 5e− (1)

4H2O− 4e− → O2 ↑ +4H+ + 2H2O (2)

2Ta5+ + 5H2O→ Ta2O5 + 10H+ (3)
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Figure 7. Schematic illustration of Ta2O5 coating formation resulting from the chemical reaction
described in Equation (3).

According to the measurements of the total thickness (t), outward growth thickness
(tout), and inward growth thickness (tin) (Figure 8A) on the cross-sectional SEM micro-
graphs, during the MAO process, the total growth rate (V) variation in the anodic thickness
(Figure 8B) indicates that the growth process of MAO coatings can be divided into three
distinct periods [65]. In the first minute of the MAO process carried out at a bipolar pulsed
voltage, a huge increase in the total thickness occurs, as well as in the total growth rate V
of the anodic coating, so the outward growth rate (Vout) is much higher than the inward
growth rate (Vin). Thus, the outward growth rate dominates the anodic growth in the first
stage. In the second stage, after 1 min of MAO, the total thickness increases more slowly
and the total growth rate declines abruptly.
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The descendent tendency is more pronounced in the outward growth rate than in the
inward growth rate. Consequently, the outward growth behavior slows down, whereas
the inward growth is kept constant. In the final stage, the total thickness continues
increasing slightly and the total growth rate drops more gradually. The outward growth
rate continues to decrease gradually and the inward growth rate continuously increases,
as the downward tendency of the outward growth rate is still more pronounced. In
fact, in this period, the increment of the outward growth thickness is lower than the
increment of the inward growth thickness, indicating that the inward growth has a
greater contribution to the total thickness in the final stage, which is contrary to the first
stage. The described growth behavior was observed for the MAO treatment carried out
at 350 and 450 V.

In more detail, during the MAO process, sparks or plasma micro-discharges in
an aqueous solution are responsible for an ionized gaseous media formation from the
solution over the metallic surface through the plasma chemical interactions [65]. Thus,
discharge and heat-affected zones are generated, and both play a fundamental role in
adsorption centers, supplying conditions to the solute anions being adsorbed on the
anodic oxide coating. Hence, under a strong electric field, the anions diffuse from the
electrolyte to the metal/oxide interface, reaching the metal cations to form a ceramic
coating, whereas the cations diffuse from the metallic surface to the oxide/electrolyte
interface and react with anions to form the anodic layer. Using an electrolyte mixture
of calcium acetate and β-glycerophosphate [65], it is reported that, in the first stage of
the MAO process, there are numerous fine sparks over the whole surface, providing
several prone adsorptive zones for anions (such as O2− and PO4

3−) to enter the oxide
coating, and plasma-chemical reactions for the cations (such as Ta5+ and Ca2+) to travel
across the oxide and compound with the anions into the outer layer; thus, the outward
growth dominates this phase. Along the MAO time, the number of sparks decreases,
and their size increases, while the diffusion and electron migration are blocked by the
increase in the anodic coating thickness. The inward migration of anions from the
electrolyte to the metal/oxide interface is easier than Ta5+ from the metallic substrate to
the oxide/electrolyte interface. Thus, inward growth gradually becomes dominant in
growth behavior at the latter stages.

To better understand the ionic incorporation into the anodic coating, Rokosz et al. [66]
studied the Ta surface modification by MAO using an electrolyte mixture of copper nitrate
(Cu(NO3)2) and calcium nitrate (Ca(NO3)2) in phosphoric acid (H3PO4). The morphology
achieved is neither porous nor flat (Figure 9A), and its top surface is mainly composed of
calcium phosphates, such as CaHPO4 and/or Ca3(PO4)2, and copper phosphates. Through
the GDOES profile (Figure 9B), concerning the erosion time (not directly related to the depth
penetration, as it is difficult to accurately estimate it on rough and porous surfaces), the
authors propose a new model of the MAO-treated Ta surface composed of three sublayers.
The top one (0–40 s) is enriched by P, copper (Cu), oxygen (O), nitrogen (N), and hydrogen
(H), with a small content of Ta and Ca. The second one, which corresponds to the erosion
time between 40 to 80 s, contains Ca, Cu, and O. The third sublayer is divided into four
different zones. The first, from 80 to 125 s, is enriched with Ca, Cu, and O, with depletion
of Ta and H, and an increasing trend of P and decreasing trend of N are recorded. At 125
to 150 s (second zone), the P content achieves a maximum with an increase in Ta and H,
whereas Ca, Cu, O, and N tend to decrease. Then, between 150 and 270 s, a maximum
signal of H is detected, whereas Ta continues increasing, and the others continue decreasing.
After 270 s, all signals decrease, except Ta. In summary, the Ca and Cu are distributed
practically over the whole volume of the anodic coating, whereas O, N, and H are mainly
at the oxide surface and Ta is mainly on the oxide bottom.
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3. Ta Surface Functionalization by MAO

MAO is a process well established and studied on Ti surfaces; however, there are just a
few published papers on Ta surfaces. Table 1 displays papers on MAO-treated Ta surfaces
and is divided into the two morphologies that can be obtained: porous and non-porous
structures. As mentioned before, the MAO process may induce non-uniform and non-
homogenous porous structures by one side, but it can also form non-porous surfaces, such
as a compact oxide coating with some pores and/or discharge channels [67], cracks, and
“alveolar” and “pancakes” features.

Although the studies on Ta surfaces modified by MAO are scarce, most of them are
based on the formation of porous structures, which allows for the incorporation of Ca and
P species from the electrolyte, developing functional surfaces for biomedical applications
as shown in Table 1. Generally, in order to perform MAO on Ta-based surfaces, most of the
papers report an electrolyte that is composed of a mixture of calcium acetate (CaA) and
β-disodium glycerophosphate (β-GP) to promote Ca and P incorporation into the anodic
coating, respectively.

In a recent review paper about Ta modification by MAO, the authors try to relate
electrolyte composition and applied voltage with the morphology achieved and the possible
growth mechanism [68], yet the assumptions are not conclusive.
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Table 1. Review table of the different types of Ta nanostructures after MAO treatment under different conditions.

Type of
Microstructures Electrolyte Working Conditions Time

(s)
Temperature

(◦C) Pre-Treatment Applications References

Porous

0.2 M CaA + 0.02 M β-GP

AC: V+ = 350, 400, 450, 480 V,
V− = 70 V, 100 Hz, duty ratio of 26% 600 20

Polished with abrasive papers;
ultrasonically cleaned in acetone,

ethanol, and DI water
Biomedical [69]

AC: V+ = 350, 450 V, V− = 70 V,
100 Hz, duty ratio of 26% 60–1200 20

Polished with abrasive papers;
ultrasonically cleaned in acetone,

ethanol, and DI water
Orthopedic implants [65]

AC: V+ = 470 V, V− = 100 V, 100 Hz,
duty ratio of 26% 300 Biomedical [70]

AC: V = 250–480 V, 100 Hz, duty
ratio of 40% 300, 600, 900 and 1800 30

Polished with abrasive papers;
ultrasonically cleaned in acetone,

ethanol, and DI water; dried at 60 ◦C
Orthopedic implants [71]

AC: 160–300 V 60–300 RT
Washed in DI water; ultrasonic clean

in acetone; cleaned in ethanol and
air-jet dried

Dental implants [72]

AC: 350, 450 and 500 V, 100 Hz, duty
cycle 60% 60–600 25–60 Sonicated in acetone, isopropyl

alcohol, and DI water baths Biomedical [55]

A: 0.35–0.7 M CaA
B: 0.7 M CaA + 0.04–0.08 M β-GP

C: 0.7 M CaA + 0.08 M β-GP +
0.01–0.1 M MgA

DC: 150–200 V 1800 RT
Ultrasonically cleaned in benzine and

ethanol for 5 min each; rinsed in DI
water and dried in air

Dental implants [73]

0.35 M CaA + 0.12 M β-GP DC: 200 V 1800 RT Ultrasonically cleaned in ethanol and
DI water for 5 min each Dental implants [74]

(0.1, 0.5, 1.0 M) K2SiO3 + 5 g/dm3

KOH
DC: 0.1 A/dm2 up to 100,

200 or 400 V 120
Etched in 1 M HF and 4 M H2SO4;

cleaned in DI water and ultrasonically
cleaned in propanol and DI water

Orthopedic implants [62]

A: 0.5 M Ca(H2PO2)2
0.5 M Ca(H2PO2)2 + 1.15 M

Ca(HCOO)2
C: 0.5 M Ca(H2PO2)2 + 1.15 M

Mg(CH3COO)2
D:0.5 M Ca(H2PO2)2+ 1.5 M

Mg(CH3COO)2

DC: 150 mA/cm2 up to 200, 300, 400
or 500 V

300
Polished with abrasive paper; etched

in 4 M H2SO4 and 1M HF;
ultrasonically cleaned in DI water

Biomedical

[23]

A: 0.5 M Ca(H2PO2)2
B: 0.5 M Ca(H2PO2)2 + 1.15 M

Ca(HCOO)2
C: 0.5 M Ca(H2PO2)2 + 1.15 M

Mg(CH3COO)2

DC: 150 mA/cm2 up to 200, 300 or
400 V [64]
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Table 1. Cont.

Type of
Microstructures Electrolyte Working Conditions Time

(s)
Temperature

(◦C) Pre-Treatment Applications References

Porous

0.001 M H4SiW12O4 DC: 70 mA/cm2 15–2400 21
Ultrasonically cleaned in acetone,

ethanol, and DI water and dried in a
warm air stream

Catalysis and
semiconductor [46]

The automotive industry,
aerospace industry, and
gas and oil industries

[58]

30 mL HF (4%) + 5 mL NH4F +
1 g glycerin + 3g EG + 2 M H3PO4

DC: 250 V 900 Polished with abrasive papers and in
Al2O3 suspension Biomedical [75]

12 g/L Na2SiO3 +10 g/L NaOH +
small amount of additives (EDTA) AC: 450 V, 1000 Hz, duty cycle 20% 300 20

Polished with abrasive papers to a
mirror finish; ultrasonically cleaned in

acetone, ethanol, and DI water for
5 min; and dried

Orthopedic implants [76]

0.3 M Ca(CH3COO)2.H2O + 0.1 M
Na3PO4

AC: 1.5 A, 500 Hz, duty cycle 10% 480 26 ± 3 Ultrasonically cleaned in acetone,
ethanol, and DI water Biomedical [77]

Non-Porous

A: 1 g/L Na2SiO3.5H2O +1 g/L
KOH

B: 5 g/L Na3PO4 + 1g/L KOH
AC: 0.085 A/cm2 1200 30 Biomedical [67]

300g Ca(NO3)2 + 300 g Cu(NO3)
in 1 L of H3PO4 (85%) DC: 450 V 180 20 Polished with abrasive papers Biomedical and catalysis [66]

10 g/L Na2SiO3.9H2O + 1 g/L
KOH

AC: j+ = 0.22 A/cm2,
j− = 0.11 A/cm2, 1000 Hz, duty

cycle 20%
1500

Polished with abrasive papers;
degreased in ethanol and rinsed in DI

water; dried in warm air
Biomedical [63]

A: 0.1 M H3PO4
B: 0.1 M oxalic acid DC: 30–70 mA/cm2 10–600 21–30 Ultrasonically cleaned in acetone Capacitor dielectric, gate

insulators in MOS devices [61]
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4. Ta2O5 Surfaces for Biomedical Applications
4.1. Properties of MAO-Treated Ta Surfaces
4.1.1. Surface and Cross-Sectional Morphology

As mentioned above, the most reported electrolyte composition is a mixture of 0.2 M
CaA and 0.02 M β-GP as precursors for Ca and P incorporation, respectively (Table 1). This
electrolyte leads to a micro-porous surface, with diameters ranging from 1 to 5 µm [55],
where the pores are distributed over the surface [55,70,71] and its distribution is related
to the preferential growth and the dielectric breakdown of the oxide coating with the
evolution of oxygen and aqueous vapor [65]. The number of pores decreases whereas
the size of the pores increases with the applied voltage (Figure 10A) [69] and with MAO
time (Figure 10C) [65] as a consequence of the proximity of the small discharge channels
connection [71]. On the other hand, the growth of clusters with fractal-like columnar
structures (dendritic structures) on top of the micro-porous surfaces is observed when
increasing the applied voltage up to 450 V, and, at higher voltage (500 V), the dendritic
becomes larger than 20 µm, covering the surface porosity (Figure 11) [55]. In these studies,
the MAO treatment is carried out at 450 V during 600 s, but the process differs in the duty
cycle and the surface pre-treatment (i.e., polishing) (Table 1): using a polished Ta surface
and a duty cycle of 26%, only porous Ta2O5 surfaces are achieved (Figure 10A,C) [65,69],
whereas, using an unpolished Ta surface and a duty cycle of 60%, dendritic structures
appear (Figure 11) [55].
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Figure 10. (A) Surface morphologies of Ta2O5 treated by MAO at different applied potentials with
EDS spectra inset (scale bar 10 µm), and (B) the respective XRD patterns. Adapted from [69],
Copyright 2016 Elsevier. (C) Surface morphologies of Ta2O5 treated using MAO process at 450 V for
different process durations, scale bar 20 µm. Adapted with permission from Ref. [65]. Copyright
2013 Elsevier.
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We have recently reported the Ta surface treatment by MAO at 200 V, and that using
an identical electrolyte composition but with a higher concentration develops an oxide
layer with a porous morphology similar to the morphology obtained by Wang et al. [65,69],
without dendritic structures [73,74]. Moreover, the influence of the electrolyte composition
(CaA, CaA + β-GP, CaA + β-GP + MgA) and concentration on the morphology was also
studied. The CaA concentration increase leads to an increase in porosity. Although the
morphology variation induced by the β-GP concentration increase is not as significant as
the one induced by CaA concentration, for the same CaA concentration, when β-GP is
added to the electrolyte, increasing the process reactivity increases the porosity [73].

In good agreement with the morphological results of MAO-treated surfaces using an
electrolyte composed of a mixture of CaA and β-GP, when the electrolyte used is composed
of Ca(H2PO2)2 and Ca(HCOO)2 or Mg(CH3COO)2, the diameter of the pores directly
increases with an increase in the applied voltage [23]. Using more conductive electrolytes,
larger pores are created, and, up to 500 V, some dendritic structures are formed, which
are correlated to the more energetic sparks that generated these morphologies due to the
partial evaporation of the electrolyte combined with thermal and plasma effects. The anodic
coating displays a multilevel porosity since it shows small pores in its internal layer, and,
together with the thickness, they are revealed to be voltage and electrolyte-dependent since
the Mg-enriched electrolyte is responsible for the thickness’s decrease as a consequence
of the electrolyte concentration increase [23]. This may be related to the lower standard
potential of Ca concerning Mg or due to counter ions used in their respective salts [64].

The anodic coating generally shows a uniform thickness and with no discontinuity
at the oxide coating/substrate interface [65,70], with a compact inner region and a porous
outer region [55,77]. Yang et al. [77] demonstrated that the dense inner layer is about
one-third of the total oxide thickness when the MAO process uses an electrolyte composed
of calcium acetate monohydrate and sodium phosphate. This inner layer has no pores
or discontinuities, indicating a strong bonding between the ceramic coating and the Ta
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substrate. The authors also show that the current density has an important effect on the
oxide thickness. They study the MAO treatment of two Ta surfaces with different total
surface areas: the surface with the lowest total surface area results in the highest current
density and, consequently, the thickest oxide coating is formed with more small pores
(≤1 µm) as a consequence of more severe micro-arc reactions [77].

Using an electrolyte mixture of Ca(H2PO2)2 and Ca(HCOO)2 or Mg(CH3COO)2, it
was found that the anodic coating microstructure is also revealed to be dependent on the
applied voltage [64]. In this case, the microstructure can be divided into two or three
sublayers: the outer porous layer; the inner compact barrier layer at the substrate/oxide
interface; and, for MAO at voltages higher than 400 V, a third highly porous intermediate
sublayer appears, and is more porous than the outer layer (Figure 12). This microstructure
can be formed due to the solidification and oxidation of the molten substrate during the
MAO process.
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Figure 12. SEM cross-sectional images of the MAO-treated Ta surfaces obtained from different
electrolyte compositions and at different limiting voltages. Adapted from Ref. [64].

Additionally, the presence of minor cracks on the porous surfaces was reported by
Zhao et al. [71], which can be related to the thermal stress caused by the high temperature
generated by the discharges during the MAO process.

Another key point influencing the MAO Ta-treated surfaces is the electrolyte com-
position. Other than the Ca-enriched electrolytes, silicate and phosphate solutions are
also commonly used in MAO treatments (Table 1). MAO-treated Ta surfaces, using an
electrolyte mixture of different concentrations of potassium silicate (K2SiO3) and potas-
sium hydroxide (KOH), show a porous structure when the applied voltage is above the
dielectric potential [62]. The thickness of the oxide coating and the diameter of the pores
are dependent on the electrolyte concentration and applied voltage, so much so that the
increase in K2SiO3 concentration or the applied voltage produces thicker surfaces and
larger pores (Figure 13). Thereafter, in a thicker coating, as expected, higher energy is
needed for the current to pass through. In this situation, the current is localized at weak
points of the oxide coating and, consequently, the diameter of the channels increases. The
anodic coating shows a typical structure with two sublayer regions: a thin and compact
inner layer adjacent to the Ta substrate, and a porous outer layer. Similar morphology was
obtained with an electrolyte composed of sodium silicate (Na2SiO3) and sodium hydroxide
(NaOH) [76].
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Figure 13. Surface morphologies of Ta2O5 prepared by MAO under different conditions: 0.5 M
K2SiO3 at a range of 100 to 400 V, and 0.1 M K2SiO3 at 400 V. Adapted with permission from [62].
Copyright 2013 Elsevier.

Both MAO-treated nanocrystalline and microcrystalline Ta surfaces using an elec-
trolyte composed of hydrofluoric acid (HF), ammonium fluoride (NH4F), glycerin, ethylene
glycol (EG), and H3PO4 at 250 V result in the formation of porous oxide coatings with good
adhesion to the substrate [75]. For microcrystalline Ta, the oxide coating morphology is
characterized by the formation of small cylindrical pores (Figure 14a,b), whereas, for the
nanocrystalline Ta, a thicker oxide with irregular channels is obtained (Figure 14c,d). These
results reveal that the achieved morphology depends on the substrate crystalline structure:
the microcrystalline Ta is only composed of the Ta phase, whereas additional phases appear
(Ta, TaC, TaB2, TaO2) resulting from the nanocrystalline Ta bulk preparation.
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In summary, the coating thickness and its porosity increase with the applied voltage
and with the electrolyte concentration (which is responsible for exerting less resistance to
the current flow, intensifying the process [64]), as described in the MAO-treated Ta surfaces
under different electrolyte composition and operation modes (AC or DC) [23,55,64,69], as
well as increasing with the MAO duration [55,65]. The thickness and porous morphology
of the resulting Ta2O5 coating also depend on the total surface area [77] and crystalline
structure of the Ta substrate [75].

As mentioned before, besides these Ta2O5 porous morphologies achieved after MAO
treatment, other non-porous morphologies can also be obtained.

MAO-treated Ta surfaces (on a polyurethane foam) using an electrolyte mixture of
sodium metasilicate (Na2SiO3.5H2O) or trisodium phosphate (Na3PO4) and KOH are
submitted to an alkaline post-treatment to evaluate the effect on the surface bioactivity [67].
The authors reported that the pores (or holes) are already observed on the untreated Ta
surface (Figure 15A,B). After MAO treatment, the surface shows relatively more holes,
as expected (Figure 15B,E), which are completely different (small and spaced holes on a
cracked surface) from those previously reported. Therefore, this MAO-treated Ta surface
is, here, considered as a non-porous surface. Additionally, many cracks in the boundary
grains are observed before and after the MAO treatment. With the alkaline (NaOH) post-
treatment, where the samples are soaked in NaOH at 60 ◦C for 24 h, more holes are observed
(Figure 15C,F) when compared with both untreated Ta and MAO-treated Ta surfaces, and
cracks are still detected.
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Figure 15. Surface morphologies of (A,D) untreated Ta surface, (B,E) Ta2O5 prepared by MAO using
the phosphate solution, and (C,F) with NaOH treatment.; (G–I) after SBF soaking. Scale bars (A–C)
200 µm, (D–F) 30 µm, and (G–I) 20 µm. Adapted with permission from Ref. [67]. Copyright 2014
Royal Society of Chemistry.

The Ta surface modified by MAO under a pulsed bipolar current using a silicate
electrolyte (more concentrated than the previously reported silicate solution) shows tran-
sitional morphologies depending on the treatment time [63]. An initial nodular mor-
phology is observed (Figure 16A), and then smooth pancakes are formed around the
nodules (Figure 16B). These pancakes result from the unquenched discharge channels
and, thus, they become dominant with a few nodules over the surface (Figure 16C). These
morphological features are identical to those previously reported by Stojadinović et al. [61]
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in the DC MAO treatment using the H3PO4 electrolyte. Increasing the MAO time, sev-
eral coral reef features (with dendritic morphology and nodular branches) arise, and the
pancakes are still evident between the coral reef, which is non-uniformly distributed over
the surface (Figure 16D) [63]. The presence of the coral reef increases the thickness of the
anodic oxide coating.
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Figure 16. Surface morphologies of MAO-treated Ta surface using a silicate electrolyte in a bipolar
pulsed current for (A) 120 s, (B) 140 s, (C) 180 s, and (D) 600 s (scale bar: 40 µm). Inset high
magnification SEM micrographs of the (i) A, (ii) B and (iii) D morphologies (scale bar: 5 µm).
Adapted with permission from Ref. [63]. Copyright 2020 Elsevier.

These morphological transitions are coincident with the transient in cell potential.
Before the escalation of the negative potential (Figure 3C: in between the first and second
inflection points), the surface is characterized by nodule features and fine sparks, and
hydrogen evolution over the whole surface (Figure 16A). Then, the first transition occurs
(Figure 3C: after the second inflection point), leading to an escalation in the overpotential
for hydrogen evolution and an increase in sparking intensity (change in spark color and gas
generation), which creates the pancakes due to material solidification from the quenching
discharges, such as nodular material (Figure 16B,C). The sparking intensification results
from a gradual thickening of the pancake covering the surface defects, resulting in a current
concentrating in fewer favored regions for dielectric breakdown. The second transition,
associated with a further increase in the overpotential, arises more slowly and coincides
with the formation of coral reef features (Figure 16D) followed by an increase in the anodic
potential associated with the growth of the barrier layer. The growth of this barrier layer
involves the anodic and thermal oxidation of the Ta substrate (and molten ejection of Ta2O5)
caused by the stronger discharges and high temperatures.

Thus, an MAO process using silicate and phosphate solutions leads to the formation
of a relativity compact oxide coating, and, when increasing the current density, electrolyte
concentration, and/or the treatment duration, a nodular morphology with flat pancakes is
formed, and, after 600 s, a coral reef morphology can arise.
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4.1.2. Surface Chemical Composition

For certain applications, it is desired to dope the anodic coating with specific elements
to tailor specific properties. In this regard, the incorporation of Ca and P elements onto
the oxide coating has been demonstrated, which increases with the increase in the MAO
time and the applied potential (Figure 10A in insets) [55,65,69,71–73], as well as when
increasing the electrolyte concentration [73,74]. Interestingly, when increasing the β-GP
concentration in the electrolyte, a boost in Ca incorporation is also noted, besides the P
incorporation increase. This anodic coating doping is related to the phenomena of spark
generation and the local increase in temperature, which directly depends on the electrolyte
composition/concentration. Moreover, Ca and P incorporation is more effective, as revealed
by a higher surface concentration of these elements [73]. In addition, P is only observed in
the bulk when the MAO treatment voltage is higher than 450 V, as well as for times higher
than 180 s. When the applied potential is increased, electrophoresis becomes dominant
and contributes to the increase in the P species’ density near the substrate. This increase,
combined with the large available energy provided by the micro-arcs, increases the rate
of complex reactions taking place during the MAO process, leading to the formation of
calcium phosphates and hydroxyapatite (HAp) [55]. Indeed, the electrolyte ions enter into
the anodic coating via diffusion and electrophoresis, in which, Ca2+ ions mainly arrive
through diffusion, while P (in the form of PO4

3−) moves by electrophoresis along the
discharging channels [71]. Additionally, the presence of sodium (Na) and magnesium (Mg)
is reported by Goularte et al. [72] on an MAO-treated surface using an electrolyte composed
of 0.2 M CaA and 0.02 M β-GP. The authors attribute this fact to the salt deposition during
the MAO treatment. Although not explained by the authors, these contaminations can be
explained by the precursors’ chemical composition impurities; indeed, β-GP is a common
carrier of Na [78]. However, Mg contamination does not have any evident source. In
addition, the authors only report the presence of P on the surface, modified mainly at
a higher voltage (up to 300 V) and for 5 min of treatment (the highest time) [72]. Still,
P absence can be related to both Ta Mα and P Kα peaks overlapping, compromising P
identification (which can be qualitatively compared to the untreated Ta surface).

However, as expected, for all solution mixtures of Ca(H2PO2)2 and Ca(HCOO)2 or
Mg(CH3COO)2, the relative amount of elemental species’ incorporation increases with a
decrease in the Ta content. The P content remains practically static whereas the Ca and Mg
contents increase with the applied potential. Nevertheless, the addition of Mg decreases the
incorporation content of Ca [23], which can be explained by the competitive incorporation
of the cations [78]. Additionally, the results show that the incorporation of the electrolyte
species is higher in the outer region of the anodic coating [64].

For the MAO process using a Ca- and P-free electrolyte composed of a combination of
K2SiO3 and KOH, the amount of Si incorporated into the anodic coating increases with the
K2SiO3 concentration [62]. In addition, the K concentration increases towards the oxide
coating. The XRD patterns display peaks that are associated with the metallic Ta and Ta2O5,
and, using XPS, the presence of silica/silicate incorporation is confirmed, silica being the
dominant component. Using a more concentrated silicate electrolyte with KOH in a bipolar
pulsed current, the different morphologies achieved along the MAO process show different
chemical compositions [63]. The nodules are constituted by Ta, O, and Si, whereas the
pancakes are only composed of Ta and O, and the coral reefs are silicon-rich. Using a silicate
electrolyte mixture with NaOH in a bipolar pulsed voltage, the Si is uniformly distributed
over the porous Ta2O5 coating [76].

To sum up, surface modification by the MAO allows for the incorporation of chemical
elements present in the electrolyte onto the anodic coating, and this incorporation can
be tailored mainly by the electrolyte concentration/composition, applied potential, and
process duration.
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4.1.3. Roughness

Based on surface functionalities, surface roughness is one of the most important
surface properties. For example, roughness at the micro and nano-scale is related to the
improvement in biological responses [52].

The MAO process using electrolytes composed of Ca and P induces the formation
of porosity, leading to an increase in surface roughness [73,74]. In addition, by increasing
the applied voltage, the porosity is enhanced and, consequently, the surfaces become
rougher [23,55], mainly when the formation of dendritic structures occurs (Ra > 5 µm) [23].
When adding MgA to the electrolyte, for an applied potential of 200 V, any amendment of
the surface morphology and roughness is noticed [23,73].

Similarly, using silicate electrolytes, the surface roughness is revealed to be depen-
dent on the electrolyte concentration and applied voltage, so much so that an increase in
K2SiO3 concentration or applied voltage produces larger pores and consequently rougher
surfaces [62]. With a more complex electrolyte, the nanocrystalline Ta surface becomes
significantly rougher than the microcrystalline Ta surface using the same anodizing param-
eters [75], due to the different porous morphologies achieved (irregular channels and small
cylindrical pores, respectively).

Any paper on the non-porous MAO-treated Ta surfaces presents a topographical
characterization of the obtained surfaces.

To sum up, the MAO process improves the surface roughness as a consequence of
larger pores and channel formation, which depends on the electrolyte concentration and
applied potential, as well as the substrate crystalline structure.

4.1.4. Surface Wettability

In another area of knowledge, surface wettability is another crucial property, since the
hydrophobic/hydrophilic character is a determinant that modulates the surface functionality.

Generally, the surface wettability increases with the MAO treatment using electrolytes
enriched with CaA and β-GP [73,74]. On the contrary, Sowa et al. [23] reported a general
increase in the water contact angle with the MAO process, although the surface wettability
did not show a linear tendency. The authors explain this behavior based on the applied
voltage. For lower applied voltages (up to 300 V), the authors assume that some surface
features can be ascribed by the Cassie–Baxter state. In this specific case, the pores are too
small, not allowing the water droplet to easily penetrate them, forming air pockets. The
surface, therefore, presents a hydrophobic behavior. For higher applied voltages (≥400 V),
the pores are large enough for easier water penetration, behaving like a Wenzel surface
state exhibiting a hydrophilic character. The authors attribute the hydrophobicity increase
to morphological changes in the surfaces, and not to chemical modifications. On the
other hand, when adding MgA in the electrolyte, the water contact angle increases [23,73],
indicating the importance of surface chemistry in the regulation of wettability. The presence
of Ca2+ and PO4

3− groups is associated with hydrophilic components, thus enhancing the
surface wettability [73]. Similarly, using silicate electrolytes, the MAO-treated Ta surface
wettability is also revealed to be dependent on the applied voltage, as increasing the
voltage strongly decreases the contact angle, and the surface becomes hydrophilic [62].
The different obtained morphologies by MAO under the same anodizing parameters, as a
consequence of Ta substrate crystalline structure, are relevant to the surface wettability [75].
The MAO-treated nanocrystalline Ta surface is super-hydrophilic, whereas the MAO-
treated microcrystalline Ta is within the hydrophobicity limit, which can be explained by
the different porosity degrees (larger pores and channels, and smaller pores, respectively)
(Figure 14), in agreement with the results reported by Sowa et al. [23].

The water contact angle also decreases after the MAO treatment, inducing a non-
porous morphology [67]. Although the authors do not explain this phenomenon, as the
morphological changes are not significant between the untreated and the MAO-treated Ta
surfaces (Figure 15), the modification of the surface chemical composition can influence the
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surface wettability. The other non-porous morphologies (nodular, pancakes, and coral-reef)
are not characterized regarding their wettability.

The results support the idea that both topographic and chemical properties of the
MAO-treated Ta surface influence the surface wettability.

4.1.5. Structural Analysis and Phase Composition

The phase composition is another key material property that is influenced by the MAO
process [79].

On the diffractograms of Ta surfaces treated with CaA and β-GP, the expected crys-
tallized orthorhombic Ta2O5 and both bcc and tetragonal Ta (from the substrate) are ob-
served [73,74]. When the applied voltage is higher than 350 V, Ta2O5 and TaO are de-
tected, as well as another predominant phase related to the presence of calcium tantalate
(CaTa2O6) [55,65,69–71] (Figures 10B and 11). Similarly, the oxide surface achieved by the
MAO treatment using an electrolyte mixture of CaA monohydrate and sodium phosphate
in AC mode is mainly composed of CaTa2O6, Ta2O5, and Ta phases [77]. Although the
P element is uniformly distributed on the oxide coating, the XRD does not show any P-
containing phase, which indicates that Ca and P-containing compounds are amorphous [77].
On the other hand, for a higher applied potential (≥500 V), new peaks associated with
Ca3(PO4)2 and hexagonal HAp (the predominant phase) are observed (Figure 11) [23,55].
These results reveal that the MAO process can successfully produce a crystalline HAp layer
on Ta without any pre and post-treatment [55]. The MAO time only influences the intensity
of the phase diffraction peaks; no new other phase is generated [65].

The presence of diffraction lines related to HAp, independent of the MAO applied
potential, appears after hydrothermal treatment at 140 ◦C for 24 h [70]. These results are
corroborated by XPS analysis, attributing the Ca 2p peaks at 347.1 eV to CaTa2O6 and
350.7 eV to Ca3(PO4)2. The P 2p peak at 133.3 eV confirms the Ca3(PO4)2 [65,69,70,73].
Still, after a surface annealing at 800 ◦C for 3 h, a newly formed crystal phase CaTa4O11
arises [69] and any phase related to HAp appears. Wang et al. [65,69,70] revealed that
Ca is mostly compounded into CaTa2O6 and a residual Ca compound with P to form a
small amount of Ca3(PO4)2. In contrast, using an electrolyte only composed of CaA, an
orthorhombic CaTa2O6 phase is noticed, but it is not further detected when β-GP and MgA
are added, meaning that Ca is probably bound to them [73].

When the MAO treatment is carried out at ≥350 V [55,65,69–71], the formation of
calcium tantalate can be described by the reactions of Ca2+ ions with the amorphous Ta2O5
previously developed by the substrate oxidation under a high temperature generated by
the micro-arcs [55]; Equation (4).

Ta2O5 + Ca2+ ++O2− → CaTa2O6 (4)

During the annealing treatment, when the temperature is high enough, a great amount
of Ta2O5 is immediately crystallized and then reacts with Ca2+ and O2− in the anodic
coating, and CaTa4O11 is formed; Equation (5) [69].

2Ta2O5 + Ca2+ ++O2− → CaTa4O11 (5)

After the MAO treatment is performed at higher voltages (≥450 V), during the anneal-
ing treatment, the amorphous phase converts to crystalline Ta2O5 and then reacts directly
with CaTa2O6; Equation (6) [69].

Ta2O5 + CaTa2O6 → CaTa4O11 (6)

As mentioned, the heat treatment (HT) of MAO-modified Ta surfaces induces the
formation of HAp. After 0.5 h of HT, short nanorods, containing Ca and P, are nucleated
into the porous coating (Figure 17(a1,a2)). When increasing the HT duration, the nanorods
became larger and more evident, covering the micro-porous surface (Figure 17(b1,b2)) and,
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after 24 h, the nanorods turn into parallel HAp nanofibers (Figure 17(c1,c2)). These results
might be explained by the migration tendency of the incorporated Ca2+ and PO4

3− ions
out of the oxide coating during the HT, since the intensity of the CaTa2O6 diffraction peaks
decreases, whereas the Ta2O5 increases. This suggests that a partial conversion occurs due
to the Ca2+ loss, and CaTa2O6 turns into Ta2O5. The Ca2+ ions will then react with the
PO4

3− ions present on the surface, forming calcium phosphates. Consequently, the HAp
diffraction peaks start to appear. In addition, it is possible to observe that the MAO-treated
surface has the highest ions concentration release, which decreases with HT time as more
HAp is formed (which has a low solubility) and fewer ions are in the oxide coating [70].
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Figure 17. (a1–c1) Surface and (a2–c2) cross-sectional SEM images of the outermost parts of the
internal walls of macropore, HT for (a1,a2) 0.5, (b1,b2) 3, (c1,c2) 24 h, respectively. Adapted with
permission from Ref. [70]. Copyright 2015 Royal Society of Chemistry.

It is interesting to note that the MAO process using an electrolyte of Ca(H2PO2)2 at 500 V
leads to the formation of an amorphous oxide coating, but when the Ca(HCOO)2 is added
to the electrolyte, several new peaks arise that are ascribed to Ca3(PO4)2, Ca5(PO4)3(OH),
and CaTa2O6. On the other hand, when MgA is introduced into the electrolyte, the peaks
become assigned to Ca(PO3)2·2H2O, Ca2P2O7, Ca4Mg5(PO4)6, and MgCO3, and, thus,
the surface crystallinity is modified [23]. The presence of phosphates and carbonates is
corroborated by the XPS results, although the authors [23] do not justify the presence of
nitrogen (N) and silicon (Si) in the survey.

Using Ca- and P-free electrolytes, both Ta and Ta2O5 phases also appear on porous
Ta surfaces [62,75]. Similar results are observed on the X-ray diffraction of non-porous
MAO-treated Ta surfaces [67].
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4.2. Functional Properties of MAO-Treated Ta Surface
4.2.1. Surface Bioactivity and Biocompatibility

As cellular responses are related to the surfaces’ properties [52], MAO-treated Ta
surfaces have been widely developed to be used in biomedical devices, tailoring its surface
to manipulate both bioactivity and biological responses.

The surface properties of tantalum oxide, such as surface morphology, crystallinity,
oxygen content, and surface wettability, have a strong impact on the surface bioactivity (as a
bioactive surface can promote the formation of new apatite) [21,52]. Concerning this, porous
CaP-enriched MAO-treated Ta surfaces at 350 and 450 V were characterized regarding their
apatite-inducing ability by the bioactivity assay, which consists of the sample’s immersion
in simulated body fluid (SBF) for different time points [69]. New spherical-like particles are
indeed detected after 42 days of immersion on the Ta surface MAO-treated at 350 V. After
48 days these particles cover the whole surface. If the MAO-treated Ta surface is submitted
to a post-annealing, the first particles are detected after 24 days, and, after 30 days, they
cover the complete surface. In turn, when the applied voltage is increased up to 450 V, the
precipitated particles are detected at 32 days and cover the surface at 40 days (Figure 18a–c).
The FTIR spectra of this surface before and after SBF immersion confirm the presence of
phosphates on the oxide coating, but also demonstrate that this new apatite formed is
carbonated (Figure 18h). The XRD patterns show new diffraction peaks ascribed to apatite
after immersion in SBF, revealing that the spherical-like particles are assembled of tiny
apatite crystals (Figure 18g). After annealing, an immersion of 9 days is enough for the
apatite formation (Figure 18d–f) [69]. In a similar bioactivity assay of an MAO-treated
Ta surface doped with CaP at 470 V, the spherical particles are observed after 22 days of
immersion in SBF, and, after 28 days, the surface is completely covered. Once more, the
post-HT accelerates the apatite formation [70].
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Figure 18. Surface morphologies of Ta2O5 modified by MAO at 450 V after immersion in SBF for
(a) 32, (b) 36, and (c) 40 days; surface morphologies of the Ta2O5 modified by MAO annealed at
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In summary, the apatite-inducing ability can be greatly improved generally by Ca and
P-enriched porous Ta2O5 coatings, and also due to a more crystalline phase formed [69].
Moreover, a better apatite-inducing ability is attributed to the higher applied voltage
(≥450 V) [69,70], performing post-heat treatments, and the presence of a CaTa2O6-based
coating with well-crystallized HAp nanorods/nanofibers (Figure 17) [70], as well as the
presence of crystalline CaTa4O11 [69]. However, some authors [69] describe the atomic
arrangement of CaTa4O11 as a crystal structure as being more suitable for the epitaxial
nucleation of apatite crystals, whereas the structure of CaTa2O6 (200) hardly matches the
apatite structure (0004).

Protein adsorption is the first critical step that determines cell adhesion. Only one
paper evaluates the amount of total protein adsorbed on the Ta2O5 coating from the
cellular medium (DMEM) after 24 h of culture. The porous CaP-enriched Ta2O5 surface
significantly improves the protein adsorption when compared to untreated Ta, which can
even be enhanced with HT post-treatment [70].

A porous Ta2O5 surface doped with Ca and P is not toxic for osteoblastic cells, sup-
porting the cells’ adhesion and proliferation [55,70,73,74]. After 14 days of cell culture,
Fialho et al. [74] observed that the MG-63 osteoblastic cells fully permeate the porous
structure (Figure 19A), showing some thin and long cytoplasmatic extensions in the pores
(Figure 19B), as well as significantly promoting the cell viability (translating the initial
cell attachment and growth) compared to the untreated Ta surface (Figure 19C). As the
cell adhesion to the surface material is mediated by focal adhesions, the vinculin, actin,
and nucleus of the osteoblasts on the porous oxide coating are analyzed to demonstrate
the cell-binding responses. Well-defined focal adhesions are observed on porous Ta2O5
surfaces, meaning that the cell adhesion is enhanced by MAO modification [70,73] and,
further, HAp post-formation by HT [70]. However, HAp nanofibers resulting from longer
durations of HT show a reduced number of focal adhesion and collagen secretion (the main
component in the extracellular matrix), inducing cell apoptosis responses, caused by the
unstable cell adhesion on the Ta2O5 surface heat-treated for 24 h [70], which can be related
to the surface morphology, as the HAp nanorods become nanofibers, increasing the HT time.
Thus, the HAp crystalline phase improves cell adhesion depending on its morphology.
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Cell differentiation is also improved by CaP-enriched porous Ta2O5 surfaces. as these
surfaces enhance osteopontin (OPN), integrin-binding sialoprotein (IBSP) [73] (Figure 20),
and the alkaline phosphatase (ALP) [55] levels in comparison to both the positive control
and an untreated-Ta surface. This confirms the surface ability to maintain the cells’ pheno-
type (inducing the conversion of osteoblasts to bone) [55], thus promoting osteogenesis [73].
Alves et al. [73] studied the influence of the surface properties on the cellular responses.
The authors state that the surface properties have a great impact on cell responses, mainly
surface chemical composition and wettability, since cell adhesion and gene expressions
results are significantly better in the rougher surface with hydrophilic behavior, containing
amorphous calcium phosphates, with a higher Ca content on the surface and a Ca/P ratio
near the HAp value. They also observe that the surface with the CaTa2O6 phase (Ca-
enriched Ta2O5 surface) is the MAO-treated Ta surface with a lower focal adhesion area,
indicating that this crystalline phase does not promote cell adhesion, which corroborates
the explanation reported by Wang et al. [69], which relates the crystalline structure of the
predominant phase and the structure of apatite.
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Zhao et al. [76] studied the cytotoxicity of the MAO-treated Ta surface using a sil-
icate electrolyte combined with NaOH and under a higher AC potential (450 V). The
Si-containing porous Ta2O5 surface has no cytotoxicity of MG-63 osteoblastic cells, and the
integrity of the cells is preserved. The cell proliferation rate of the MAO-treated Ta surface
is significantly higher than the untreated Ta surfaces, corroborated by the fluorescence
images, where a higher expression of actin microfilaments is observed, which indicates that
the porous morphology and the presence of Si promote the osteoblastic growth and spread.

Only one paper of non-porous Ta2O5 surfaces obtained by MAO investigates the
surface bioactivity and the biological responses [67]. After being soaked in SBF for one week,
the MAO-treated Ta surfaces display greater spherical-particles precipitation (Figure 15H)
than on the untreated Ta surface (Figure 15G). The number of precipitates was significantly
higher on the surface submitted to both MAO and NaOH treatments (Figure 15I) [67].
In good agreement, the samples reveal diffraction peaks ascribed to apatite, except for
the Ta-untreated surface, maybe due to the small size and low concentration of particles.
Besides the strong diffraction lines of Ta, the authors describe the presence of diffraction
peaks ascribed to Ta2O5 and sodium tantalates that are neither represented nor observed
in the XRD patterns. Regarding biological characterization, the MTT assay (a colorimetric
assay for measuring cell metabolic activity) displays a reduction in viable cells for the
MAO-treated surfaces, from 24 h to 72 h of cell culture, revealing some cytotoxic effect,
whereas the surface treated by both MAO and NaOH soaking shows biocompatibility.
According to the authors, this cytotoxicity can be related to the free ions dissolved from
the substrate, or with complex toxic organic species from the scaffold, or with reactive
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oxygen species (ROS) and reactive nitrogen species involved in cell death. After 24 h of
culture, cells show adherent protrusions that are much larger after 72 h and spread over
the whole surface, where some calcium crystals are observed. Moreover, the in vivo study
shows that both neovascularization and new bone ingrowth occur after 4 and 12 weeks,
respectively, confirming the MAO-modified Ta surface as a suitable option for biomedical
applications. Although the authors do not present an explanation, the in vitro cytotoxicity
can be attenuated in vivo due to the dynamic extracellular fluid flow.

To sum up, CaP-enriched porous Ta2O5 surfaces reveal no or minimal cytotoxicity to
osteoblastic cells, promoting cell adhesion, proliferation, and differentiation when com-
pared to untreated Ta. These cellular responses can be improved with HT or changing
the MAO parameters to tailor the chemical composition and surface hydrophilicity. The
non-porous Ta2O5 surface shows some cytotoxicity in vitro but good in vivo outcomes.
Regarding these promising outputs, further in vivo studies should be carried out to under-
stand them as a proof-of-concept using both porous (including different porous structures)
and non-porous morphologies.

4.2.2. Antimicrobial Activity

Up until now, found only two papers were found that investigate the antimicrobial
activity of MAO-treated Ta surfaces. Sopata et al. [75] studied the antibacterial activ-
ity against S. aureus and P. aeruginosa bacteria on porous Ta2O5 surfaces with different
surface properties. Both MAO-treated surfaces have no activity against P. aeruginosa (Gram-
negative bacteria), whereas a growth inhibition zone is observed only in the MAO-treated
nanocrystalline Ta surface against S. aureus (Gram-positive bacteria), which means that the
oxide coating can reduce the bacteria growth and the biofilm formation. This modified
Ta surface has an irregular channel morphology with larger pores (Figure 14c,d), and is
the thickest, roughest, and most super-hydrophilic surface compared to the MAO-treated
microcrystalline Ta (more uniform small pores, thinner and hydrophobic oxide coating)
(Figure 14a,b). It is well known that the morphological and physical surface properties
have a strong influence on bacteria growth, as well as chemical composition, although the
authors do not show any chemical characterization. Using the resazurin assay (a fluoromet-
ric/colorimetric assay that indicates the cell viability), Fialho et al. [74] showed that the
CaP-enriched porous Ta2O5 surface does not affect the S. aureus viability (Figure 21B) when
compared to the untreated Ta surface (Figure 21A), and they demonstrate that the bacteria
grow and adhere preferentially inside and around pores, where it is possible to observe an
initial biofilm formation. Interestingly, this CaP-enriched porous Ta2O5 surface has a water
contact angle similar to the MAO-treated microcrystalline Ta reported by Sopata, although
with a distinct roughness, size pore distribution, and chemical composition.
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In this regard, it is fundamental that more studies have to be conducted to understand
how the porosity degree, surface roughness, chemical composition, and wettability can
influence the bacteria adhesion on MAO-treated Ta surfaces.

4.2.3. Mechanical Properties and Corrosion Resistance

In another area of knowledge, MAO-treated Ta surfaces exhibit interesting proper-
ties for mechanical and corrosion applications, which are highly dependent on coating
porosity [80–82]. A new material implant should be mechanical and corrosion-resistant [13].

Concerning this, the porous Ta2O5 anodic coating formed by the AC MAO process
adheres firmly to the Ta substrate with cohesive strength [65], and shows long-term adhe-
sive strength stability, which decreases with an increase in the applied voltage [69] and HT
(attributed to the migration of Ca2+ and PO4

3− ions out of the anodic coating) [69,70]. On
the contrary, Sowa et al. [23], who used a DC regime in the MAO process, reported that the
adhesion strength is improved with the increasing voltage.

Generally, MAO-treated oxide surfaces have a strong corrosion resistance when com-
pared with metallic surfaces. However, the porous morphology attained by the MAO
surface treatment may influence the corrosion resistance of the surface.

In particular, the OCP and potentiodynamic polarization measurements of MAO-
treated Ta surfaces under the DC regime demonstrate that the corrosion properties are
generally improved with the MAO treatment [62]. However, for an electrolyte composed
of K2SiO3, increasing the applied potential during MAO (from 200 V up to 400 V) does not
further improve the Ta corrosion resistance, since the sample that is treated at 200 V has
the best corrosion performance, meaning that, under 200 V, the surface features are more
compact and denser [62].

A more recent paper carries out a deep corrosion resistance investigation of the
modified Ta surfaces using different electrolytes mixtures of Ca(H2PO2)2 and Ca(HCOO)2
or Mg(CH3COO)2 combined with an applied potential range from 200 to 400 V (Table 1) [64].
Electrochemical impedance spectroscopy (EIS) is used to determine the total resistance of
the biomaterial/electrolyte interface in a corrosion environment (Ringer solution). The
results demonstrate that the untreated Ta surface is characterized by a single time constant
that can be ascribed with a parallel RC connection (Figure 22a), instead of the MAO-treated
Ta surfaces that have at least two-time constants. The RC circuit is based on the resistance
of the electrolyte between the reference electrode capillary tip and the sample (Rs) and
the parallel resistance of the barrier layer (Rb) and capacitance (Qb) of the passive barrier
layer on the flooded untreated Ta surface. Ta surfaces treated by MAO at 200 and 300 V
show two well-separated time constants (Figure 22b), where the extra time constant is
caused by the presence of a porous layer on top of a dense Ta anodic coating, which is
translated by the Ro (electrolyte resistance in the pores of the outer oxide layer) and Qc
(total capacitance of the anodic coating) extra pair. For MAO treatments at 400 V, the
impedance becomes dependent on the Ta anodic coating composition determined by the
MAO electrolyte composition. The electrolytes composed of Ca(H2PO2)2 (electrolyte A) and
Ca(HCOO)2 (electrolyte B) have more complex spectra inducing Ca and P incorporation,
thus exhibiting an almost linear region in the low range of frequencies, suggesting that
the ions diffusion phenomenon plays a crucial role in limiting the corrosion rate of treated
Ta surfaces. Thus, the correspondent electrochemical circuit has an additional Warburg
impedance (W) (Figure 22c), representing the surface elemental diffusion, to improve the
fitting of the low-frequency range. The authors conclude that the main factor determining
the overall corrosion resistance of MAO-treated Ta surfaces is the polarization resistance
of the barrier Ta anodic dense sublayer (Rb), since the best corrosion resistance occurs at
low voltages (i.e., 200 V). When the MAO voltage is low enough, the intense sparking is
absent, resulting in the development of a thin and porous anodic layer over a bottom dense
anodic layer. Independently of the voltage of the MAO process, no evidence of pitting
corrosion or oxide breakdown is observed in potentiodynamic polarization measurements.
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The higher polarization resistance is observed for the more resistive coating, even in more
porous coatings.

Nanomaterials 2022, 12, x FOR PEER REVIEW 31 of 37 
 

 

 
Figure 22. Equivalent electrical circuits used for fitting the impedance spectra of (a) the untreated 
Ta surface; (b) the MAO samples that showed two-time constants, and (c) those that exhibited two-
time constants with a linear constant-phase region. Adapted from Ref. [64]. 

Sopata et al. [75] also used a Ringer’s solution to test the corrosion behavior of MAO-
treated Ta surfaces using an electrolyte composed of a mixture of HF, NH4F, glycerin, EG, 
and H3PO4. In this case, the influence of the crystallinity of a Ta bare substrate is studied, 
and, in particular, microcrystalline Ta vs. nanocrystalline Ta before and after MAO treat-
ment. Generally, MAO treatment promotes a corrosion behavior enhancement when com-
pared with the Ta bare substrates. In more detail, although the corrosion resistance be-
tween microcrystalline Ta and MAO-treated microcrystalline Ta does not reveal a signif-
icant difference, the MAO surface modification over nanocrystalline Ta led to a significant 
improvement in the corrosion performance. This results from the difference in the grain 
boundary volume, since a higher volume of grain boundaries into nanocrystalline Ta led 
to higher electrochemical activity. After MAO treatment, the anodic oxide coating of 
MAO-treated nanocrystalline Ta significantly inhibits its electrochemical activity and im-
proves the corrosion resistance [75]. 

In addition, the electrochemical properties of porous MAO-treated Ta surfaces are 
investigated using a 3.5 wt.% NaCl corrosion environment using an electrolyte composed 
of Ca(CH3COO)2·H2O and Na3PO4 [77]. The Nyquist plots show a single capacitive loop, 
which is influenced by the electric double layer at the interface between the surface and 
electrolyte. However, the bode-phases’ values of MAO-treated surfaces are slightly lower 
than the untreated Ta surfaces, indicating that the oxide coatings exhibit relatively poor 
dielectric properties due to the hierarchical porous structures of the MAO layer, jeopard-
izing the matrix corrosion resistance. However, at low frequencies, the impedance modu-
lus is more than one order of magnitude higher, meaning that the MAO-treated surfaces 
have a better corrosion resistance. The potentiodynamic polarization curves display that 
the untreated Ta surfaces have a passivation current two orders of magnitude higher than 
MAO-treated surfaces, indicating that the modified surfaces have superior behavior dur-
ing the corrosion process. The results demonstrate that the double layer of Ta2O5 provides 
a positive protection effect for the Ta surface. 

Although it is well-known that the anodic coating chemical composition greatly in-
fluences the MAO-treated Ta surface corrosion performance, its influence was not studied 
or reported. 

Furthermore, the electrochemical measurements of a non-porous Ta MAO-treated 
under a bipolar AC constant current density in the absence of anodic sparks indicate that 
the overpotential for hydrogen evolution has an ohmic dependence on the current density 
due to the resistance of the anodic coating and electrolyte. The overpotential is enhanced 
by anodic discharges, which are proposed to be due to the oxygen gas generated during 

Figure 22. Equivalent electrical circuits used for fitting the impedance spectra of (a) the untreated Ta
surface; (b) the MAO samples that showed two-time constants, and (c) those that exhibited two-time
constants with a linear constant-phase region. Adapted from Ref. [64].

Sopata et al. [75] also used a Ringer’s solution to test the corrosion behavior of MAO-
treated Ta surfaces using an electrolyte composed of a mixture of HF, NH4F, glycerin,
EG, and H3PO4. In this case, the influence of the crystallinity of a Ta bare substrate is
studied, and, in particular, microcrystalline Ta vs. nanocrystalline Ta before and after
MAO treatment. Generally, MAO treatment promotes a corrosion behavior enhancement
when compared with the Ta bare substrates. In more detail, although the corrosion resis-
tance between microcrystalline Ta and MAO-treated microcrystalline Ta does not reveal
a significant difference, the MAO surface modification over nanocrystalline Ta led to a
significant improvement in the corrosion performance. This results from the difference in
the grain boundary volume, since a higher volume of grain boundaries into nanocrystalline
Ta led to higher electrochemical activity. After MAO treatment, the anodic oxide coating
of MAO-treated nanocrystalline Ta significantly inhibits its electrochemical activity and
improves the corrosion resistance [75].

In addition, the electrochemical properties of porous MAO-treated Ta surfaces are
investigated using a 3.5 wt.% NaCl corrosion environment using an electrolyte composed
of Ca(CH3COO)2·H2O and Na3PO4 [77]. The Nyquist plots show a single capacitive
loop, which is influenced by the electric double layer at the interface between the surface
and electrolyte. However, the bode-phases’ values of MAO-treated surfaces are slightly
lower than the untreated Ta surfaces, indicating that the oxide coatings exhibit relatively
poor dielectric properties due to the hierarchical porous structures of the MAO layer,
jeopardizing the matrix corrosion resistance. However, at low frequencies, the impedance
modulus is more than one order of magnitude higher, meaning that the MAO-treated
surfaces have a better corrosion resistance. The potentiodynamic polarization curves
display that the untreated Ta surfaces have a passivation current two orders of magnitude
higher than MAO-treated surfaces, indicating that the modified surfaces have superior
behavior during the corrosion process. The results demonstrate that the double layer of
Ta2O5 provides a positive protection effect for the Ta surface.

Although it is well-known that the anodic coating chemical composition greatly
influences the MAO-treated Ta surface corrosion performance, its influence was not studied
or reported.

Furthermore, the electrochemical measurements of a non-porous Ta MAO-treated
under a bipolar AC constant current density in the absence of anodic sparks indicate that
the overpotential for hydrogen evolution has an ohmic dependence on the current density
due to the resistance of the anodic coating and electrolyte. The overpotential is enhanced by
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anodic discharges, which are proposed to be due to the oxygen gas generated during anodic
discharges that impede ionic migration during subsequent cathodic polarization [63].

In summary, the MAO process leads to the formation of a protective Ta2O5 coating,
inhibiting the surface corrosion, which has a positive effect on preventing metallic ions
release for biomedical applications.

5. Conclusions and Further Perspectives

Micro-arc oxidation (MAO) is effectively a complex process that embraces different
reactions at the same time, as well as different stages, initiated by micro-discharges and
plasma formation, followed by gas bubbles evolution, and culminating in the micro-
structures formation. Simultaneously, the oxide formation mechanism starts with the oxide
coating growing at both Ta/(oxide and oxide/)electrolyte interfaces, which results from
the migration of oxygen and tantalum ionic species, along with the oxide coating. The
surface morphology and chemical composition development can be tailored by the applied
potential/current density and/or electrolyte composition changes. Ta surfaces modified
by MAO are reported in a small number of papers, but, globally, all of them agree on
the surface properties achieved according to the anodizing parameters, as summarized in
Figures 23 and 24.
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Most of the papers report that Ta2O5 microstructures developed by MAO have
a very good perspective for biological applications. A Ca- and P-enriched electrolyte
(e.g., 0.2–0.7 M CaA and 0.02–0.12 M β-GP with an applied potential ≥200 V) is mostly
used to embed these species on the outer porous layer in order to enhance the biological
responses, and mostly shows great adhesion to the Ta substrate (Figure 23). In this specific
case, if the applied voltage is high enough (>350 V) or if a thermal treatment is used as
post-treatment, crystals of calcium phosphates are detected that, combined with the pres-
ence of calcium tantalate, significantly enhance the surface bioactivity and, consequently,
the cellular interactions, as protein adsorption and the osteoblastic cells’ adhesion, prolif-
eration, and differentiation are enhanced, translating into a quicker healing process and,
consequently, leading to the acceleration of osseointegration. Moreover, the reported results
show that a porous Ta2O5 coating promotes a reduction in bacteria growth, and thus the
biofilm formation inhibition. This antibacterial activity is enhanced for pore sizes ranging
from 0.5 to 2 µm and for channels above 5 µm. Still, similar surfaces show opposite results,
addressing some concerns about the antibacterial activity. Although the overall results are
promising for the biomedical field, until now, it is still not possible to assert the influence
of the surface microstructure (porous vs. non-porous and the different types of porous
structures) on both biological responses and antibacterial activity. Through the literature, it
is also found that the MAO process (with an applied potential of 200 V) generally leads
to the formation of a protective Ta2O5 coating, inhibiting surface corrosion. However, the
MAO coating polarization resistance depends on the chemical composition of the oxide
coating and porosity degree, which is greatly influenced by the applied voltage.

Using CaP-free electrolytes (e.g., phosphate and silicate solution), MAO treatment
leads to the formation of non-porous Ta2O5 with two sublayers: an inner compact layer and
an outer layer (Figure 24). This outer compact layer can be characterized by the presence
of some holes and cracks, which improve the Ta surface bioactivity. When increasing the
electrolyte concentration and the applied current density, nodular structures appear in
the outer Ta2O5 coating, which develop towards a mix of nodular and pancakes, and end
up as coral-reef features as the MAO time progresses. These morphologic modifications
compromise the corrosion protection of the surface.

From a long-term perspective, MAO is primarily used at the industrial scale, and
some approaches have been developed to make this technique cost-effective and highly
competitive at that scale. However, MAO-treated tantalum surfaces have not been entirely
industrialized, mainly due to Ta’s high cost, which makes Ta less profitable.

As a further challenge, a synergetic effort between experimental and simulation studies
on the fundamental MAO process over tantalum surfaces should be encouraged, aimed at
understanding and developing both high-quality MAO-treated tantalum tailored surfaces
and cost-effective solutions for biomedical applications. In particular, it will be interesting
to correlate the effect of MAO-treated Ta surfaces with different crystal structures (such
as crystalline CaTa4O11) and morphologies (porous, dendritic structures, nodular, and
pancakes) on cellular responses and corrosion protection, as well as in vivo investigations
as proof of concept.

The presented results create a playground for designing new micro-scale functional
materials with tailored morphologies and chemical compositions in which it is possible to
control the surface properties. Hence, from a future perspective, MAO-treated Ta surfaces
can be a sustainable alternative to MAO-treated Ti surfaces for high-end products such as
electronics, nuclear, naval, aerospace, and automotive industries.
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79. Benčina, M.; Iglič, A.; Mozetič, M.; Junkar, I. Crystallized TiO2 Nanosurfaces in Biomedical Applications. Nanomaterials 2020,
10, 1121. [CrossRef]

80. Saeed, E.M.; Dawood, N.M.; Hasan, S.F. Improvement Corrosion Resistance of Ni-Ti Alloy by TiO2 Coating and
Hydroxyapatite/TiO2 Composite Coating Using Micro Arc Oxidation Process. Mater. Today Proc. 2021, 42, 2789–2796.
[CrossRef]

81. Pesode, P.A.; Barve, S.B. Recent Advances on the Antibacterial Coating on Titanium Implant by Micro-Arc Oxidation Process.
Mater. Today Proc. 2021, 47, 5652–5662. [CrossRef]

82. Li, C.-Y.; Yu, C.; Zeng, R.-C.; Zhang, B.-C.; Cui, L.-Y.; Wan, J.; Xia, Y. In Vitro Corrosion Resistance of a Ta2O5Nanofilm on MAO
Coated Magnesium Alloy AZ31 by Atomic Layer Deposition. Bioact. Mater. 2020, 5, 34–43. [CrossRef] [PubMed]

http://doi.org/10.1680/jsuin.20.00045
http://doi.org/10.1016/j.surfcoat.2021.127880
http://doi.org/10.1016/j.apsusc.2019.143573
http://doi.org/10.3390/nano10061121
http://doi.org/10.1016/j.matpr.2020.12.723
http://doi.org/10.1016/j.matpr.2021.03.702
http://doi.org/10.1016/j.bioactmat.2019.12.001
http://www.ncbi.nlm.nih.gov/pubmed/31956734

	Introduction 
	Understanding the Principles of the MAO Process onto Ta Surfaces 
	Transient Plasma Discharge Mechanism 
	Gas Evolution Phenomena 
	Growth Mechanism of Ta2O5 Anodic Coating 

	Ta Surface Functionalization by MAO 
	Ta2O5 Surfaces for Biomedical Applications 
	Properties of MAO-Treated Ta Surfaces 
	Surface and Cross-Sectional Morphology 
	Surface Chemical Composition 
	Roughness 
	Surface Wettability 
	Structural Analysis and Phase Composition 

	Functional Properties of MAO-Treated Ta Surface 
	Surface Bioactivity and Biocompatibility 
	Antimicrobial Activity 
	Mechanical Properties and Corrosion Resistance 


	Conclusions and Further Perspectives 
	References

