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Abstract: In this paper, we propose a novel information criteria-based approach to select the di-
mensionality of the word2vec Skip-gram (SG). From the perspective of the probability theory, SG is
considered as an implicit probability distribution estimation under the assumption that there exists a
true contextual distribution among words. Therefore, we apply information criteria with the aim
of selecting the best dimensionality so that the corresponding model can be as close as possible to
the true distribution. We examine the following information criteria for the dimensionality selection
problem: the Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), and Se-
quential Normalized Maximum Likelihood (SNML) criterion. SNML is the total codelength required
for the sequential encoding of a data sequence on the basis of the minimum description length. The
proposed approach is applied to both the original SG model and the SG Negative Sampling model
to clarify the idea of using information criteria. Additionally, as the original SNML suffers from
computational disadvantages, we introduce novel heuristics for its efficient computation. Moreover,
we empirically demonstrate that SNML outperforms both BIC and AIC. In comparison with other
evaluation methods for word embedding, the dimensionality selected by SNML is significantly closer
to the optimal dimensionality obtained by word analogy or word similarity tasks.

Keywords: model selection; information criteria; minimum description length; sequentially normalized
maximum likelihood; word embedding; word2vec

1. Introduction

In recent years, word2vec has been widely applied to many aspects of Natural Lan-
guage Processing (NLP) and information retrieval such as machine translation [1,2], text
classification [3], text summarization [4], and named entity recognition [5]. Furthermore,
word2vec is used in various fields such as materials science [6], healthcare [7], and recom-
mendation engines [8–10].

The selection of the dimensionality for word2vec is important with regard to two
aspects: model accuracy and computing resources. It is crucial to have a model of dimen-
sionality high enough to learn the regularity of the data, but too high a dimensionality
tends to cause overfitting. For instance, the experiment results in [11] demonstrated that the
performance of the model in tasks such as Google word analogy, Wordsim353, MTurk771
decreased significantly when the dimensionality increased far from the optimal dimension-
ality. In addition, a large model is accompanied by a massive number of parameters for
storage in the machine during training [12], leading to wasted memory resources. Thus, it
is crucial to devise a method that can decide upon a dimensionality that satisfies the ability
to capture necessary information from training data as well as makes efficient use of the
computational resources.

However, few studies have focused on the dimensionality selection problem. Most
research evaluating the effectiveness of word embedding focuses on word analogy and
word similarity tasks [13]. These evaluation methods require handcrafted datasets for
implementation, but such datasets are currently not available to evaluate model training
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on non-English verbal and non-verbal data. To the best of our knowledge, only Yin and
Shen [11] accomplished the dimensionality selection of a word embedding model without
the use of evaluation datasets. However, two aspects of this method need further consider-
ation: the assumption that the noise signal obeys the zero mean-Gaussian distribution has
not been verified in real data, and the selected dimensionality is quite different from those
obtained by the other evaluation methods based on handcrafted datasets.

Our contributions are two-fold. First, we introduce an effective dimensionality selec-
tion method for word2vec based on information criteria. Moreover, our proposed approach
does not require handcrafted evaluation datasets, and therefore, can be applied to any type
of data not limited to English or verbal-data. This is important and necessary to be able to
choose a reasonable dimensionality of the word2vec model when applying it to various
fields in information retrieval. Second, from the perspective of information theory, we
propose the Sequential Normalized Maximum Likelihood (SNML) criterion in a novel com-
bination with some heuristics for the dimensionality selection problem. The application of
our proposed criterion enjoys valuable theoretical guarantees from information theory as
well as experimentally ensures that the selected dimensionality is able to capture regularity
from the data as well as meet the preferences of models with relatively low but sufficient
dimensionality. To the best of our knowledge, this study presents the first application
of information criteria in the field of embedding methods as well as the first heuristic
comparison of the SNML codelength. These positive results not only encourage wide use
of the proposed method in other embedding methods but also suggest a promising solution
to evaluate hyper-parameters of a machine learning model.

2. Materials and Methods
2.1. Related Work
2.1.1. Word Embedding

Representations of words in a vector space have been studied exhaustively in the NLP
literature. Beginning with a one-hot vector (the very first representation of words), other
word representation methods such as latent semantic analysis [14] and latent Dirichlet
allocation [15] have been proposed to improve NLP task performance over time. Various
methods that represent words as dense vectors (referred to as “word embedding”), includ-
ing GloVe [16], word2vec (SG and continuous bag of words) [17], are considered as the
state-of-the-art in this field. In this paper, we focus on SG, but the proposed approach can
be applied to any other word embedding model.

As the SG model often uses the negative sampling technique, in this study, we work
with both original SG (oSG) and Skip-gram with Negative Sampling (SGNS) to clarify the
idea behind our approach. In order to apply information criteria on the SG, we summarize
it and introduce our notations for both oSG and SGNS.

SG normally takes text data as input to the whole training process. This text data
is then processed into pairs of word and context (w, c) in order to feed into a neural
network [17]. The preprocess procedure can be applied the same way in the case of other
data types. Assume a corpus of words and their contexts are obtained after preprocessing:
D = (w, c) = (w1, c1), (w2, c2), . . . , (wn, cn); wi ∈ VW , ci ∈ VC, which are one-hot vectors,
where VW and VC are the word and context vocabularies of sizes SW and SC, respectively.
The training process of oSG attempts to learn the contextual distribution for each word by
maximizing the likelihood function seen below.

PoSG(c|w; E, F) =
n

∏
i=1

PoSG(ci|wi; E, F)

=
n

∏
i=1

exp(wT
i EF)ci

∑c′∈C exp(wT
i EF)c′

,

(1)

where E and F are the parameter matrices of the shapes (SW × d) and (d× SC), respectively.
d is the dimensionality of the embedding vector space.
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Unlike oSG, SGNS learns the probability that a particular context occurred around
a word or not: P(xi0 = 1|wi, ci; E, F). Furthermore, SGNS introduces negative sampling
by sample Sz context words: zi = {zi1, zi2, . . . , ziSz} ∈ V(Sz)

C for each particular word
wi: P(xij = 0|wi, zij; E, F); j = {1, 2, . . . , Sz}. The training process of SGNS attempts to
maximize the following likelihood function:

PSGNS(x|w, c, z; E, F) =
n

∏
i=1

PSGNS(xi|wi, ci, zi; E, F)

=
n

∏
i=1

σ(wi
TEFci)

SZ

∏
j=1

σ(−wi
TEFzij),

(2)

where σ denotes sigma function [18]. In the remainder of this paper, we denote P(D; θ) for
both PoSG(c|w; E, F) and PSGNS(x|w, c, z; E, F).

2.1.2. Dimensionality of SG

Unlike our approach, Yin and Shen [11] considered word embedding to be an implicit
matrix factorization problem [19] and approached the issue by deciding the rank of the
component matrix. Their work was conducted by introducing Pairwise Inner Product (PIP)
loss, a measure that evaluates the goodness of the rank of matrix factorization. The best
rank is chosen to minimize a given upper bound of the PIP loss.

However, the selected number of dimensions does not agree with the optimal di-
mensionality performance based on the other evaluation tasks. For example, the best
dimensionality of SG chosen by PIP loss is 129, and the best 5% dimensionalities range
from 67 to 218, while the best dimensionalities in the WordSim353 (WS), MTurk771 (MTurk),
and Google word analogy (WA) datasets are 56, 102, and 220, respectively [11]. Moreover,
the matrix factorization operation conducted during the PIP loss calculation suffers from
computational disadvantages and exceeds the calculation limit for huge amounts of data
(e.g., Wikipedia dataset in our experiments).

2.1.3. Information Criteria

Word2vec is classified as a self-supervised machine learning model. Therefore, the
number of dimensions can be selected by comparing the value of the loss function on the
validation dataset. An alternative approach to dimensionality selection involves using
information criteria such as the Akaike Information Criterion (AIC) [20], Bayesian Informa-
tion Criterion (BIC) [21], and Minimum Description Length (MDL) [22]. Compared to the
cross-validation method, these information criteria do not require a hold-out validation
dataset, which prevents wastage of our precious data.

Since AIC, BIC, and MDL have different backgrounds with regard to the estimation
of expected log-likelihood and approximation of the log marginal likelihood, we need to
carefully choose the criteria to be used in specific cases. In fact, AIC and BIC rely heavily
on the asymptotic theory, which states that as the data size grows to infinity, the estimated
parameters converge in probability to the true values of the parameters. However, the
asymptotic theory does not apply to word2vec, i.e., as the number of data increases to
infinity, we can obtain different optimal parameters set (E, F). Therefore, AIC and BIC are
not guaranteed to work theoretically. Nonetheless, several empirical studies have applied
them successfully.

Unlike AIC and BIC, MDL with Normalized Maximum Likelihood (NML) codelength
is an accurate model selection criterion for real-world data analysis based on limited
samples. NML is also known as the best codelength in the context of the minimax optimality
property [23].

However, choosing the best method for dimensionality selection is still an experimen-
tal task in word2vec. In the next section, we describe in detail the application of MDL to
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the dimension selection problem and the reason for choosing this method. We then provide
empirical comparisons between the methods listed in this section.

In order to apply these information criteria to the dimensionality selection problem,
we introduce our notations for the AIC and BIC first.

AIC = 2(SW × d + d× SC)− 2 ln
(

P(D; θ̂(D))
)
, (3)

BIC = ln (n)(SW × d + d× SC)− 2 ln
(

P(D; θ̂(D))
)
, (4)

where, θ̂(D) = (Ê(D), F̂(D)) is the maximum likelihood estimation of the parameters on
data D.

2.2. Dimensionality Selection via the MDL Principle
2.2.1. Applying the MDL Principle, NML and SNML Codelengths

Word2vec was derived based on the distributional hypothesis of Harris [24], which states
that words in similar contexts have similar meanings. Therefore, assuming the existence
of the true context distribution for given words P∗(·|w), it is reasonable to choose the
dimensionality that has the ability to learn the context distribution most similar to the true
distribution. The MDL principle [22] is a powerful solution for model selection, and is
considered for the dimensionality selection as per our interest.

The MDL principle states that the best hypothesis (i.e., a model and its parameters)
for a given set of data is the one that leads to the best compression of the data, namely the
minimum codelength [22]. Specifically, we consider each dimensionality corresponding to
a probability model classMd.

Md = {P(D; θ) : θ = (E ∈ R(SW×d), F ∈ R(d×SC))}, (5)

Assuming that we are able to encode a data series D by a series of only 0 and 1, the
length of this binary series is called the codelength of data series D. We take the expression
L(D;Md) as the codelength of data D that can be obtained when encoding with the given
information about the model classMd. The MDL principle states that the closer the model
class Md is to the true distribution generated data P∗(·|w), the shorter the codelength
L(D;Md) that can be obtained.

Given a model class, there are many methods to estimate the shortest codelength of
a given dataset such as: two-part codelength, Bayesian codelength [25], NML or SNML
codelength. Therein, the NML codelength is the best-known codelength in the MDL literature
to achieve the minimax regret [23]. The formula for the NML codelength is given below.

LNML(D;Md) = − log P(D; θ̂(D)) + log C(Md), (6)

where log C(Md) = log ∑D∈D(n) P(D; θ̂(D)) is known as Parametric Complexity (PC); D(n)

denotes all possible data series with the length of n.
However, the PC term involves extensive computations and is not realistic to imple-

ment. Instead, we apply the SNML codelength [26] in this study to reduce the computation
cost using the formula seen below:

LSNML(D;Md) =
n

∑
i=1
LSNML(Di|Di−1;Md), (7)

where Di denotes data series D1,D2, . . . ,Di and D = D1,D2, . . . ,Dn. The SNML code-
length is calculated as the total codelength where the codelength for each datum is sequen-
tially calculated such as the NML codelength every time it is input. It is known that the
SNML codelength is a good approximation to the NML codelength [27]. Since the SNML
codelength is sequentially calculated, its computational cost at each step is much lower
than that of the NML codelength. Based on the assumption of independence between the
data records, the training process of the word2vec model comes after data records have
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been shuffled. Under this independence assumption, the independent process of SNML
does not depend on the order of data.

In addition, the SNML codelength function LSNML(Di|Di−1;Md) can be applied to
oGS and SGNS in the forms seen below.

LSNML(Di|Di−1;MoSG
d ) = − log PoSG(ci|wi, ci−1; θ̂(wi, ci))

+ log ∑
c∈VC

PoSG(c|wi, ci−1; θ̂(wi, ci−1, c)), (8)

LSNML(Di|Di−1;MSGNS
d ) = − log PSGNS(xi|wi, ci, zi, xi−1; θ̂(wi, ci, zi, xi))+

log ∑
x∈O(Sz)

PSGNS(x|wi, ci, zi, xi−1; θ̂(wi, ci, zi, xi−1, x)), (9)

where O(Sz) is a set of all possible one-hot vectors of Sz dimensions.

2.2.2. Some Heuristics Associated with SNML Codelength Calculation

The computation of the SNML codelength still costs nSC times to execute the maxi-
mum likelihood estimation for each data recordDi, which is also not realistic. We introduce
two techniques for saving the computational costs for SNML: heuristic comparison and
importance sampling on the SNML codelength.

Heuristic comparison

A simple observation reveals that if the codelength of data obtained with model class
Md is the shortest, then only some part of the data can also be achieved with the shortest
codelength compressed with the same model class. Therefore, instead of computing the
codelength for all n records of data, we can use the codelength of a small set of data. In
fact, the results of our experiments show that focusing on the last several thousand records
of data is sufficient to compare model classes.

Figure 1 demonstrates the differences in SNML codelengths of different dimension-
alities compared with the dimensionality that achieves the shortest codelength on the
data. The vertical axis shows the difference of data codelengths obtained by two different
dimensionalities shown in the legends (e.g., d1 vs. d2 dim); specifically, it is calculated
by L(D′; d1) − L(D′; d2) where L is the codelength function; D′ is data; d1 and d2 are
dimensionality; while the value of horizontal axis shows the number of records of D′.

To facilitate comparisons among dimensionalities that are markedly different from
one another (such as 30 dimensions versus 65 dimensions in Figure 1(1), or 200 dimensions
versus 130 dimensions in Figure 1(2)), it is sufficient to use only 6000 data records to provide
information about the best dimensionality to be chosen. Therefore, adding data thereafter
simply increases the SNML codelength but does not change our answer substantially.
However, for similar dimensionalities, such as 60, 65, and 70 dimensions in Figure 1(3),
the first one million data records cannot help us identify the optimal dimensionality. This
phenomenon leads to confusion when the codelengths between two model classes are not
too different. Furthermore, the number of data records required to determine the best
dimensionality comes from the nature of the dataset and the tasks themselves. For example,
in the case of word2vec, when SGNS randomizes only a few samples for the negative
label from a large context set, the codelength of each data record will vary more than the
codelength in oSG, which does not randomly sample negative samples.Therefore, SGNS
needs more data records to determine the difference between candidate dimensionality.
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Figure 1. Cumulative SNML codelengths of different dimensionalities compared to the dimensional-
ity result with the shortest codelength.

To ensure that the correct model is chosen, we need to increase the number of records
to estimate the SNML codelength so as to allow a better comparison of these two dimen-
sionalities. However, a small dimension error in the dimensionality selection of word2vec
does not affect the final performance considerably. Therefore, the trade-off between the
computing time and model selection accuracy is determined by the number of records
beyond those required to estimate the SNML codelength with sufficient finality.

Importance sampling

Since the size of the context set SC is large (approximately 30,000–100,000 or above,
according to the training dataset), the computation of PC for SNML in oSG is still very
expensive. We apply the importance sampling method to approximately estimate the
SNML description length for each data record. In detail, if a distribution Q on the context
set satisfies Q(c) 6= 0 ∀ c ∈ VC, the following formula can be applied.

Let f (c) = P
(
c
∣∣wi, ci−1; θ̂(wi, ci−1, c)

)
, then

SC

∑
j=1

f
(
cj
)
= EQ

(
f (c)
Q(c)

)
≈ 1

m ∑
c∈S

f (c)
Q(c)

, (10)

where S = {c1, c2, .., cm} ∼ Q(c): set of samples draw from distribution Q.
This estimation asymptotes to the true value as m (the number of samples) increases,

and distribution Q is similar to function f (c). In our experiment, the uniform distribution
is the best choice for distribution Q, and the sampling size is chosen to be 1/10 the size of
the context set to balance the computation time and sampling error.

3. Results
3.1. Experimental Settings
3.1.1. Data

We compared the above-mentioned model selection criteria using SG trained on three
datasets: synthetic data, text8, and Wikipedia.
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Synthetic data

Synthetic data were generated based on several random questions from the WA dataset.
Assuming a numeric context set, we generated categorical distributions on this set for all
words for which the parameter vectors of the corresponding distributions satisfy the con-
straints in the questions. For example, corresponding to question: Tokyo, Japan, Paris, France,
the process involves the generation of four random contextual distributions, P̃(·|Tokyo),
P̃(·|Japan), P̃(·|Paris), P̃(·|France), such that:

cosine(P̃(·|Tokyo), P̃(·|Japan)) = cosine(P̃(·|Paris), P̃(·|France)), (11)

The implementation for generation of such categorical distributions is also available
on GitHub (https://github.com/truythu169/snml-skip-gram).

We then sampled words using a uniform distribution and contexts using P̃ adding
normal distribution noises. Using these pairs of word and context, oSG and SGNS can be
trained to achieve a 100% score on the questions used to create data with the appropriate
dimensionality. Furthermore, good dimensionality should result in contextual distributions
similar to P̃. To evaluate this similarity, we used a dissimilar function for the oSG model
and a similar function for the SGNS model as follows:

dissimilar(M(oSG)
d , P̃) =

1
SW

∑
w∈VW

DKL(PoSG(·|w; θ̂)||P̃(·|w)), (12)

similar(M(SGNS)
d , P̃) =

1
SW

∑
w∈VW

ρ( fPSGNS(·|w; θ̂), fP̃(·|w)), (13)

where, DKL denotes for Kullback–Leibler divergence, ρ denotes Spearman’s rank corre-
lation coefficient, fPSGNS(·|w; θ̂) and fP̃(·|w) are vectors that take PSGNS(x = 1|w, c; θ̂) and
P̃(c|w) (c ∈ VC) as elements, respectively. The choice of DKL for oSG comes from the
fact that oSG outputs a categorical distribution, which can be compared with the true
distribution using DKL; while SGNS results in a list of probability values that are expected
to have a strong positive correlation with values of P̃. We used dissimilar(M(oSG)

d , P̃) and

similar(M(SGNS)
d , P̃) as the oracle criterion to evaluate the optimal dimensionality for syn-

thetic data. A good dimensionality selection method is expected to select a dimensionality
that is nearby the one chosen by the oracle criterion.

Text datasets

The text8 and Wikipedia datasets were preprocessed using a window size of 5, remov-
ing words that occur less than 73 times and applying subsampling with a threshold of 10−5.
In addition, we only used the first 20,000 articles of the English Wikipedia dump for the
training process.

3.1.2. Training Process

Optimization settings

In order to speed up the training process, we implemented a momentum optimizer and
mini-batch with a batch size of 1000 for oSG training and stochastic gradient descent for
SGNS, as in [28]. A learning rate α for oSG was set to 1.0, and momentum was set to 0.9. For
SGNS, α was chosen to be 0.1, and the number of negative samples, 15. The number of epochs
was chosen so that the negative log-likelihood value is not significantly reduced. For instance,
in the case of oSG, 200 and 90 epochs, respectively, were selected for text8 and Wikipedia,
while for SGNS, 15 epochs were selected for text8. Practically, these optimization settings
achieve the best performance in our experiment. For example, the best word analogy (WA)
scores for text8 are 32.6% (SGNS) and 38.6% (oGS), the corresponding value for Wikipedia is
50.5% (oNS).

https://github.com/truythu169/snml-skip-gram
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Because of the limitations posed by the computational resources, we experimented on
a finite number of dimensionalities, which we think is sufficient to clarify the idea behind
this research. The evaluated dimensionalities are shown in the figures corresponding to
each dataset.

Importance sampling

In our experiment, the uniform distribution is the best choice for the distribution
Q to approximate the SNML codelength. In Table 1, we show the average error of the
codelength per record of data according to the sampling size using importance sampling.
The implementation is tested on the text8 dataset. Finally, we chose the sampling size to be
1/10 as the size of the context set (the context set comprises about 30,000 words) to balance
the computation time and sampling error.

Table 1. Average error of importance sampling.

Sampling Size 6000 3000 1500 600 300

Average Error 0.0022 0.0045 0.009 0.02 0.042

Estimation of SNML codelength

The estimation of SNML codelength required us to repeat the parameter estimation
θ̂(wi, ci) s×m times, where s is the number of records beyond those required to estimate
the SNML codelength, and m is the sampling size. However, repeatedly estimating
parameters from scratch is very time consuming. We can alternatively estimate θ̂(wi, ci)
from θ̂(wi−1, ci−1) by taking the gradient descent of (wi, ci).

3.2. Experimental Results
3.2.1. Synthetic Data

We compared five criteria: AIC, BIC, SNML, accuracy on the WA task, and loss value
on the validation dataset (CV) with the oracle criterion. The experimental results are shown
in Figures 2 and 3. Due to the differences between the criteria values, we scaled all the
values to range from 0 to 1 for visual purposes. Moreover, while the dissimilar oracle and
other criteria take the dimensionality that minimizes the value, WA takes the maximum.
Therefore, in the figure, we draw the line showing the negative value plus one for the
dissimilar oracle, AIC, BIC, SNML, and CV so that the higher value states better indicate
the dimensionality to be chosen. This scale procedure was also applied to Figures 4–9. The
horizontal axis in these figures shows the number of dimensions.

Figure 2. Normalized values of criteria compared with the oracle on artificial data: training with oSG.
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Figure 3. Normalized values of criteria compared with the oracle on artificial data: training with SGNS.

The results for oSG show that the BIC exhibits a monotonous decrease, while the
optimal dimensionality chosen by the oracle and SNML is 16 and 17, respectively. On the
one hand, AIC and CV choose a more distinct dimensionality: 10 and 13, respectively. For
SGNS, the oracle chooses 20 dimensions, SNML and CV choose 15, and WA achieves the
highest score at 25 dimensions. On the other hand, the BIC chooses 10 dimensions, while
the AIC chooses 30.

In both oSG and SGNS, SNML chooses the dimensionality closest to the oracle criterion.
Thus, SNML outperforms both AIC and BIC. Note that the synthetic data are designed to
achieve a 100% WA score using contextual distribution; however, the scores achieved by
using embedded vectors are sensitive to noises and change significantly according to the
dimensionality.

3.2.2. Text Data

We compared the SNML criterion with the NLP word analogy task (using WA) and
word similarity tasks (using WS, MTurk, and MEN-3k test collection (MEN)). As knowl-
edge regarding the underlying true distribution of the data is lacking, it is difficult to
determine the best dimensionality selection method. However, assuming the existence of
the true contextual distribution, NLP tasks will roughly prioritize models closest to the
true distribution. Therefore, the dimensionality selected by a good method is expected to
be close to the optimal dimensionalities for NLP tasks. Note that the evaluation method
using scores of NLP tasks is available only in the case of English text data; therefore, it
is reasonable to apply a method that achieves the same results as the NLP tasks-based
method to any other type of data.

We experimented with at least three runs for each dataset, and the average results are
shown in Figures 4–6. The comparison of SNML with the information criteria, CV, and PIP
is depicted in Figures 7–9.

The main results of the study are shown in Table 2, and the actual values of experi-
ments are summarized in the Appendix A. The optimal dimensionalities chosen by the
proposed method were compared with the optimal dimensionality in word analogy and
word similarity tasks in NLP [13]. Accordingly, for oSG, SNML and CV chose the same
dimensionality, which is closer to the optimal dimensionality in NLP tasks than AIC, BIC
and PIP. For SGNS, SNML chose the dimensionality closer to the optimal dimensionality
for three (WS, WA, MEN) in four tasks (WA, WS, MEN and MTurk) implemented when
compared to CV; and four in four tasks implemented when compared to BIC and PIP.
We conclude that SNML is better than CV, AIC, BIC and PIP in almost all implemented
NLP tasks. Note that we are unable to implement PIP on Wikipedia because the com-
putational complexity was beyond the capabilities of our servers. We are also unable to
find the minimum values of BIC and AIC (for text8 train with oSG) for dimensions over a
long range.
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Figure 4. Normalized values and scores on NLP tasks with SNML: text8 training with oSG.

Figure 5. Normalized values and scores on NLP tasks with SNML: Wikipedia training with oSG.

Figure 6. Normalized values and scores on NLP tasks with SNML: text8 training with SGNS.
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Figure 7. Normalized values of information criteria, CV, and PIP: text8 training with oSG.

Figure 8. Normalized values of information criteria, CV, and PIP: Wikipedia training with oSG.

Figure 9. Normalized values of information criteria, CV, and PIP: text8 training with SGNS.

Table 2. Optimal dimensionalities chosen by different criteria (-: unknown).

SNML WS WA MEN MTurk CV AIC PIP

Text8 (oSG) 65 75 80 60 60 65 - 120
Wikipedia (oSG) 130 130 180 100 110 130 200 -
Text8 (SGNS) 70 70 95 70 60 60 70 105
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Furthermore, the SNML criterion tends to favor smaller dimensions, although it is
sufficient to ensure good performance on other NLP tasks while heavily penalizing model
classes that tend to overfitting. This characteristic of SNML helps us avoid choosing large
models, and therefore, the available resources should be fully utilized. On the other hand,
although AIC favors bigger dimensions and the performance of the model is slightly
reduced, this approach is computationally advantageous over SNML. This advantage
makes AIC useful in some situations.

4. Discussion

To the best of our knowledge, this is the first study that applies information criteria to
dimensionality selection for embedding methods.

In order to demonstrate the basic property of our method, we applied it to the very
basic model of this field (i.e., Skip-gram model). Our proposed framework can be applied to
other embedding methods as well as other neural network-based models once a likelihood
function corresponding to any embedding method is defined. For example, in the case
of BERT [29], the likelihood function can be defined using a joint probability distribution
of a masked token and the next sentence. This likelihood function is then substituted for
distribution P in Equations (7)–(9) to obtain SNML codelengths.

The optimal dimensionality selected by SNML is low; however, it is sufficient to en-
sure good performance in terms of significant closeness of optimal dimensionality in NLP
tasks. However, deep learning models (DL) usually benefit from over-parameterization
properties, i.e, the performance of models is not significantly reduced due to the increasing
number of parameters. Furthermore, there exist other approaches to the overfitting prob-
lem, such as regularization, early-stopping, randomly drop-out, etc., or strategies to adopt
large DL models to small data, such as transfer learning, semi-supervised learning, etc. In
the paper, we introduce an alternative method to the same problem from an information-
theoretic view. The optimal dimensionality selected by the proposed framework can benefit
from the over-parameterization property of DL by adopting alternatives such as applying
other codelength methods or considering other parameterization methods for the likeli-
hood function. Future challenges in this field include determining which modification
results in the most improvement for the dimensionality selection strategy.

5. Conclusions

When considering word2vec SG as a probability distribution estimation problem, the
optimal dimensionality can provide an estimation of contextual distribution as close as
possible to the true distribution-generated data. We tested information criteria (AIC and
BIC) and SNML with some heuristics to select such a dimensionality. The experimental
results on synthetic data showed that the SNML could choose a dimensionality such that
the corresponding probability model is able to learn the contextual distribution closest to
the true distribution-generated data. The experiments on text datasets showed that SNML
has the ability to choose a desirable dimensionality with regard to two aspects, although low
dimensionality is sufficient to ensure good performance in terms of significant closeness of
optimal dimensionality in NLP tasks without a hold-out test dataset. Furthermore, SNML
typically outperforms AIC, BIC, CV, and PIP in the selection of good dimensionality for
NLP tasks in our experiments. Our method therefore holds promise for choosing the most
appropriate dimensionality in word2vec when training with data not limited to English or
non-verbal.

To the best of our knowledge, this is the first study that applies information criteria
to dimensionality selection for word embedding. In fact, the limitations associated with
computation or asymptotic estimation of NML or SNML codelength make it difficult to
apply such criteria in these areas. By introducing some heuristics in the SNML codelength
calculation, we have discovered a new and useful approach, namely MDL-based knowl-
edge embedding. Our proposed approach can be applied to other embedding methods
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once a likelihood function corresponding to any embedding method is defined. A more
detailed evaluation will be left for future study.
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Appendix A. Experiments Result in Actual Values

Pre-scaled results of experiments are provided in the following Tables A1–A4. The
results show mean values of different trials.

Table A1. Result of oSG on synthetic data.

Dim WA AIC BIC CV SNML Oracle

5 0 0.983 1 0.645 0.911 0
10 0.7 1 0.959 0.824 0.949 0.852
11 0.9 0.996 0.949 1 0.985 0.893
12 0.9 0.99 0.939 0.986 0.987 0.95
13 1 0.984 0.929 0.97 0.988 0.955
14 0.8 0.977 0.92 0.83 0.966 0.969
15 0.9 0.968 0.909 0.853 0.972 0.986
16 0.9 0.958 0.899 0.938 0.989 1
17 0.9 0.95 0.889 0.966 1 0.949
18 0.8 0.938 0.878 0.86 0.975 0.96
19 0.8 0.93 0.868 0.83 0.972 0.968
20 0.8 0.917 0.857 0.918 0.974 0.973
21 0.8 0.907 0.846 0.991 0.983 0.983
22 0.9 0.896 0.836 0.859 0.972 0.965
23 0.9 0.885 0.825 0.913 0.964 0.971
24 0.9 0.873 0.814 0.823 0.95 0.968
25 0.8 0.863 0.804 0.921 0.954 0.962
26 0.8 0.851 0.793 0.803 0.919 0.954
27 0.8 0.84 0.782 0.82 0.939 0.957
28 0.8 0.829 0.772 0.918 0.939 0.98
29 0.9 0.817 0.761 0.826 0.923 0.956
30 0.8 0.806 0.75 0.827 0.883 0.965
35 0.9 0.748 0.697 0.808 0.867 0.943
40 0.9 0.691 0.643 0.619 0.811 0.947
45 0.8 0.635 0.59 0.548 0.77 0.92
50 0.7 0.577 0.536 0.687 0.849 0.903
100 0.6 0 0 0 0 0.768

http://mattmahoney.net/dc/textdata
http://mattmahoney.net/dc/textdata
https://dumps.wikimedia.org/
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Table A2. Result of SGNS on text8 dataset.

Dim Mean SNML WS WA MEN MTurk Mean CV

40 2.2546 67.84 0.26 68.5 54.34 3.2143
50 2.2493 67.51 0.29 70.05 55.46 3.2101
55 2.2481 67.08 0.29 70.15 55.1 3.2097
60 2.247 67.54 0.31 70.6 56.25 3.2093
65 2.2469 67.59 0.31 70.11 55.21 3.2097
70 2.2468 69.18 0.31 71.14 53.96 3.2106
75 2.2474 68.68 0.32 70.79 53.58 3.212
80 2.2477 67.84 0.31 70.29 55.25 3.2133
85 2.2485 67.9 0.31 70.92 55.09 3.2149
90 2.2494 66.98 0.33 70.78 54.41 3.2169
95 2.2505 68.23 0.32 70.67 54.77 3.219
100 2.2515 67.82 0.31 70.97 54.48 3.221
105 2.253 66.54 0.32 70.4 56.15 3.2235
110 2.2544 67.69 0.32 70.92 55.41 3.226
115 2.256 67.72 0.31 70.83 54.81 3.2289
120 2.2572 66.47 0.31 69.94 54.08 3.2311
130 2.2604 67.08 0.32 70.97 53.65 3.2368
140 2.2642 67.28 0.3 70.58 53.43 3.2431
150 2.2677 67.43 0.31 70.29 53.55 3.2492
160 2.2714 67.03 0.3 69.7 52.11 3.2553
170 2.2753 67.19 0.3 70.24 55.17 3.2621
200 2.2876 66.62 0.3 69.65 55.63 3.2833

Table A3. Result of oSG on text8 dataset.

Dim SNML WS WA MEN MTurk CV

30 78,038.99 65.75 0.32 67.96 53.82 86,695.17
50 77,707.09 67.39 0.35 70.17 54.95 86,323.13
55 77,688.63 66.78 0.36 70.39 52.86 86,315.21
60 77,683.08 66.27 0.37 70.43 55.48 86,310.65
65 77,642.21 67.91 0.37 70 55.16 86,253.29
70 77,657.7 67.66 0.38 70.06 54 86,287.76
75 77,707.66 68.16 0.38 70.08 54.9 86,330.63
80 77,695.85 67.2 0.38 69.78 55.41 86,323.71
100 77,801.35 67.67 0.37 69.69 52.85 86,427.45
150 78,175.82 65.65 0.36 67.42 52.89 86,808.16

Table A4. Result of oSG on Wikipedia dataset.

SNML WS WA MEN MTurk CV

50 90,809.62 62.88 0.45 70.47 59.08 271,750.38
100 90,483.56 62.67 0.49 71.17 60.55 270,826.27
110 90,499.69 63.56 0.49 71.22 60.37 270,789.28
120 90,457.3 62.75 0.49 70.76 59.92 270,826.06
130 90,427.01 64.58 0.5 71.13 60.32 270,782.92
140 90,536.69 63.69 0.49 70.54 60.65 270,946.03
150 90,535.94 63.14 0.5 70.91 60.41 270,960.41
160 90,456.31 62.39 0.5 71.36 59.3 270,885.36
170 90,495.59 62.46 0.5 70.85 61.07 270,996.38
180 90,554.84 62.33 0.5 70.79 59.63 271,010.14
200 90,578.18 63.83 0.5 70.39 60.65 271,076.85
300 90,914.16 62.94 0.49 69.36 57.95 272,259.16
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