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ABSTRACT
In past decades, a lot of studies have been carried out on complex networks and heat conduction in regular
lattices. However, very little attention has been paid to the heat conduction in complex networks. In this
work, we study (both thermal and electric) energy transport in physical networks rewired from 2D regular
lattices. It is found that the network can be transferred from a good conductor to a poor conductor,
depending on the rewired network structure and coupling scheme. Two interesting phenomena were
discovered: (i) the thermal-siphon effect—namely the heat flux can go from a low-temperature node to a
higher-temperature node and (ii) there exits an optimal network structure that displays small thermal
conductance and large electrical conductance.These discoveries reveal that network-structured materials
have great potential in applications in thermal-energy management and thermal-electric-energy conversion.
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INTRODUCTION
How to effectively navigate information, mass and
energy in complex networks is of primary impor-
tance in our life, ranging from quick message trans-
mission in communication networks and neuron
networks to mass transportation in both local and
global traffic networks and to energy transportation
in power grids, to name just a few [1–3]. This prob-
lem has been addressed recently by Kleinberg [4]
for flow in small-world networks. Optimal naviga-
tion with local knowledge and enhanced flow can
be observed in such networks, for the reason that
long-range interactions strongly affect the physical
properties of real systems. The idea was adopted to
electric flow in complex networks by Oliverira et al.
[5], where enhanced flow properties can also be
observed in small-world topologies.

In this work, we will study how heat energy will
be effectively transported by long-range interaction
in networks. As is well known, heat and electric en-
ergy are two fundamental energy forms used widely
in our daily life. However, compared with the study
of electric conduction, heat conduction is much less
studied, in particular in network structures.

Indeed, the study of heat conduction in the last
few decades has been mainly limited to 1D and 2D

regular lattices (see reviews [6–8] and the references
therein). However, realistic systems of heat conduc-
tion are generally not regular lattices, but complex
networks such as the thermal devices of nanotube
and nanowire networks, whose topologies are fun-
damentally different from the cases of 1D and 2D
lattices [9–12].

Regarding a complex network, the regular lat-
tices are simple and very special network structures
in the sense that it has a constant degree for all
nodes, whereas a complex network has distributed
degrees of nodes. Moreover, there are many other
different aspects between regular lattices and com-
plex networks such as the clustering coefficient, av-
erage shortest distance and assortativity coefficient
etc. [1–3], which will in turn influence the heat con-
duction in complex networks. In this work, we first
allow the network to be embedded in a 2D physical
space and then study its heat conduction by chang-
ing the network structure and coupling scheme. We
find that both the network structure and coupling
scheme will seriously influence the heat-conduction
property; for example, they can make the network
change from a heat conductor to a heat insulator.
Furthermore, we reveal some specific network struc-
tures that show small thermal conductance and large
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Figure 1. Network model of heat conduction rewired from a 2D lattice. (a) Schematic
illustration of thermal transport in a rewired network from a 2D regular lattice with
m = 8, where link11–19 and link34–42 are rewired to be link11–34 and link34–69,
respectively. The m nodes at the most left (right) side are always contacted with the
m source nodes in the heat bath with temperature Th(Tl). Here, the solid circles denote
the nodes, the colors of the nodes represent the values of the temperatures, the arrows
represent the direction of the heat flows and the widths of the links denote the value
of the heat flows in a stationary state. We can see clearly that the heat flow is mainly
transported in the horizontal direction from left to right. However, it is surprising that
the heat flow on the shortcut gets smaller than the value on the horizontal links, such as
a path of heat flow 11→34→69, which is an abnormal phenomenon compared with
electricity [5], meanwhile indicating that the heat conduction on the network can be
seriously influenced by the network structure. (b) Influence of the parameter α on the
average shortest distance L where the lines from the bottom up represent the cases of
α = 0, 1.0, 2.0, 3.0 and 4.0, respectively.

electrical conductance, which provides useful infor-
mation for the design of good thermoelectric mate-
rials in the sense of network structures. Specifically,
we discover the phenomenon of the siphon effect in
local parts of a network, where heat flux goes from
a node with lower temperature to another one with
higher temperature. We reveal that it is easier to ob-
serve the thermal-siphon phenomenon in a network
with negative assortativity than that with positive
assortativity.

RESULTS
The physical network model of heat conduction
is constructed as follows (see schematic picture in
Fig. 1a). We first construct a 2D regular lattice with
N = m × m nodes, where the degree of node-i is

ki = 4, 3 and 2 for the inner, boundary and corner
nodes, respectively. Then, for each link of the net-
work, we randomly fix its one end and rewire the
other end to a new node. Take the specific link i↔j
as an example. Supposewe fix the end i and allow the
other end j to be rewired to a new node-j′. The posi-
tion of j′ can be chosen from other nodes except i by
a probability P j ’ ∼ r−a

jj , where r jj’ is the Euclidean
distance between the nodes-j and j′ [13]. Intuitively,
we see that a larger α prefers the nodes-j to be cho-
sen from the neighbors of nodes-i while a smaller
α prefers the nodes-j′ to be chosen homogeneously
from thenetwork,whichmeans that the lengthof the
nanotube/nanowire between the two nodes will de-
creasewith the increase inα.Therefore, the structure
of the rewired network will be determined by the pa-
rameter α. In this way, the 2D lattice will be rewired
into a complex network with different degrees at dif-
ferent nodes.

Figure 1b shows the dependence of the average
shortest distance L on the network sizeN where the
lines represent the cases of α = 0, 1.0, 2.0, 3.0 and
4.0, respectively. In fact, L is a key quantity to de-
scribe a complexnetwork [1–3].Wesee thatL is pro-
portional to logN for the cases of α < 2, indicating
that it is a small-world network [1,2]. Our numerical
results reveal that this property of a small world will
be kept for 0≤α ≤ 2.Whenα > 2, we haveL∼Nγ ,
indicating that the property of a small world is lost.
Especially, it will become a random network when
α = 0.

Effect of rewiring
In this work, we fix Th = 0.1 and Tl = 0.01. Accord-
ing to Eqs (8) and (9) in theMethods, we can calcu-
late the temperaturesTi for all thenodes and theheat
fluxes Jij for all the links in the network. Figure 1a
schematically illustrates the distribution of temper-
atures at nodes and heat fluxes on links in a station-
ary state. The solid circles denote the nodes, arrows
represent thedirectionofheat flows, thewidthsof ar-
rows denote the value of heat flows and the colors of
nodes denote the value of temperatures. In Supple-
mentary Fig. S2, we show the variety of temperature
distributions of the networks with different α.

Thermal and electric properties of the
network
The introduction of rewiring is actually a kind of
set-up of long-range atomic interactions beyond the
nearest neighbors. This kind of effect has been stud-
ied in regular structures. Some interesting phenom-
ena have been found, such as that the potential
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Figure 2. Dependence of thermal conductance σ t (left axis,
red) and electrical conductance σ e (right axis, black) on
rewired percentage η, in a randomly rewired network from
a 2D regular lattice with N= 24 × 24.

extended to fourth-nearest-neighbors can be better
fitted to the phonon dispersion in graphene [14],
long-range interatomic forces can reduce thermal
conductivity in the materials with resonant bonding
[15] and diatomic lattice [16] and thermal conduc-
tivity κ has an interesting non-monotonic depen-
dence with the strength of the long-range interac-
tion in a 1D Fermi-Pasta-Ulam lattice [17]. All of
these studies reveal that long-range interactions can
influence the diffusion of phonons and thus can sig-
nificantly affect thermal-transport properties. Here,
we will investigate how the long-range interactions
affect thermal transport in complex networks.

The thermal conductance of network is calcu-
lated as:

σt = J t/ (Th − Tl ) , (1)

where Jt is the total heat flux of the network, i.e. the
sum over all the source nodes withTh to their neigh-
bors (see the Methods for detailed calculation). As
a comparison, we also study how the rewiring links
such as in Fig. 1a influence electric conduction. To
this end, we let the temperatures Th and Tl of the
source nodes in Fig. 1a be replaced by the higher
voltages Vh and lower voltage Vl, respectively, and
let each link has a local electric conductance given
by g ij = r−λ

ij . Then, we can calculate the voltage Vi
at each node-i and the electric flow at each link-lij by
Kirchhoff’s law [5], and thus obtain the total electri-
cal flow Je and electrical conductance of the network
as

σe = J e/ (Vh − Vl ) . (2)

To see the effect of long-range interactions, we
start from a 2D regular lattice and randomly choose
a certain number of links to be globally rewired.
Figure 2 shows the dependence of σ t and σ e on

the parameter η, where η is the percentage of the
number of rewired links (to the total number of
links) in a 2D regular lattice with N = 24 × 24. We
see that, with the increase in η, σ t decreases mono-
tonically but σ e increases monotonically, which
strongly testifies that heat conduction and electric
conduction are fundamentally different from each
other in complex networks. Indeed, this opposite
trend with an increase in η is because of the fact that
the interfacial thermal resistance plays a more im-
portant role in reducing heat conduction, whereas,
for the electric case, the influence of electric contact
resistance is minimal. This result indicates that the
highly rewired network might be a good candidate
for thermoelectric materials that require high
electric conductivity and low thermal conductivity.

Moreover, we notice clearly from Fig. 1a that,
with themainly heat transferred in the horizontal di-
rection from left to right, it is also surprising that the
heat flowon the shortcut is smaller than that on hori-
zontal links, such as a pathof heat flow11→34→69.
This is an abnormal phenomenon compared with
electricity [5], indicating that the heat conduction in
anetwork canbe seriously influencedby thenetwork
structure. As is well known, the random rewiring
process can create shortcuts. Watts and Strogatz
havepointedout that only rewiring 10%of total links
in a regular network can significantly decrease the av-
erage shortest distance of a network [13].

Effect of the long-range coupling strength
To investigate the effect of the long-range coupling
strength, we rewire all the links, namely η = 1, in a
2D regular network to study the effect of α and λ on
heat and electric conduction.

Figure 3a shows the dependence of σ t on the pa-
rameterαwhere the ‘squares’, ‘circles’ and ‘triangles’
represent the cases ofλ=0, 0.5 and1.0, respectively.
It is easy to see that, with the increase in α, σ t can
be divided into two parts, i.e. decreasing monotoni-
callywith the increase inα forα < 5.0 but increasing
monotonically with α for α > 5.0.

Notice that the rewiring process does not pro-
hibit the original node-j from being chosen as the
rewirednode-j′.Thus, a largerα impliesmore chance
to choose the new node-j′ as the original node-j. Let
ρ be the probability for the original node-j to be cho-
sen as the rewired node-j′. Figure 3b shows the de-
pendence ofρ onα. It is interesting to see thatρ will
be close to unity when α > 20, indicating that most
of the rewiring processes do not happen finally.

On the other hand, we see from Fig. 3a that the
three cases of λ = 0, 0.5 and 1.0 are quite different
from each other for α < 5.0. For the two cases of
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Figure 3. Dependence of thermal conductance and electrical conductance on the pa-
rameters α and λ for N = 24 × 24. (a) σ t versus α where the ‘squares’, ‘circles’ and
‘triangles’ represent the cases of λ = 0, 0.5 and 1.0, respectively. (b) The ratio of un-
changed links versus α. (c) σ e versus α, where the ‘squares’, ‘circles’ and ‘triangles’
represent the cases of λ = 0, 0.5 and 1.0, respectively. (d) The average shortest dis-
tance and reciprocal of mean square deviation of node’s degrees versus α.

λ = 0 and 0.5, σ t decreases monotonically with the
increase inα, indicating that the network is heat con-
duction for smallerα butwill becomeheat insulation
whenα is around 5.0.While, for the case ofλ= 1,σ t
is small for all the α < 5.0, implying that the case of
larger λ is heat insulation for all the α < 5.0. Thus,
the heat conduction can vary from heat conduction
to heat insulation, depending on the network struc-
ture and coupling scheme.

To understand the bell-shaped feature of Fig. 3a,
we have calculated the average shortest distance
(L) and the mean square deviation (MSD) of the
node’s degrees [1]. Figure 3d shows the dependence
of L and 1/MSD on α, respectively. We see that,
with the increase in α, both L and 1/MSD increase
monotonously, while the increasing trend is differ-
ent, indicating that the bell-shaped σ t in Fig. 3a
comes from the competition betweenL and 1/MSD.
When α < 5.0, L will increase rapidly but 1/MSD
will increase relatively slowly, implying that L plays
the leading role. The increase in L will enlarge the
distance between high-temperature thermostats and
low-temperature thermostats, and thus inducemore
interface resistance and reduceσ t, while, forα >5.0,
1/MSD will increase rapidly but L will increase rela-
tively slowly, implying that 1/MSD plays the leading
role.

Later, we will show that the increase in 1/MSD
will make the phonon pass more easily from one
node to the next and thus increases σ t. It can be
seen from Fig. 3a that the network is beneficial to

α
α
α

σ e

α
α
α

(a)

(b)

σ t

Figure 4. Dependence of the thermal conductance and elec-
trical conductance on the mean square deviation (MSD) of
the node’s degrees for N = 24 × 24 and λ = 0. (a) and
(b) represent the dependence of σ t and σ e onMSD, respec-
tively, where the ‘squares’, ‘circles’ and ‘triangles’ represent
the cases of α = 0, 2 and 5, respectively.

heat conduction when α is 0 and 20, but insulation
when α is around 5. These are the three most spe-
cial cases. Thus, we show the dependence of ther-
mal conductivity κ on size in Supplementary Fig. S1.
Figure 3c shows the electrical conductance of net-
work σ t where the ‘squares’, ‘circles’ and ‘triangles’
represent the cases ofλ=0, 0.5 and1.0, respectively.
Comparing Fig. 3c with Fig. 3a, we see that the for-
mer is decreased while the latter is bell-shaped, indi-
cating that they have similar behaviors for α < 5.0
but fundamental differences for α > 5.0.

Furthermore, we present the dependence of σ t
and σ e onMSD in Fig. 4a and b, respectively. Here,
we still adopt the method of rewiring to increase
MSD, i.e. rewiring by the probability P j ’ ∼ r−α

jj’ as
before. After each rewiring, we detect the value of
MSD. The rewiring link will be retained if the value
increases; otherwise, the rewiring link will be can-
celed and go back to its original site. We repeat this
process until theMSD increases to the target value.
From Fig. 4, it is easy to see that σ t monotonously
decreases but σ e monotonously increases. We can
also observe that σ t decreases sharply and σ e in-
creases slowly with the increase in α. This find-
ing provides good inspiration for the manufacture
of thermoelectric materials from the perspective of
networks.

We have so far discussed the influence of
network structures on the thermal and electric
properties. These results provide useful information
for the design of good thermoelectric materials in
the sense of network structures. In the following,
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Figure 5. Thermal-siphon phenomenon. (a) A typical thermal-siphon phenomenon
wherein heat flows seemly from a low-temperature node (j) to a high-temperature node
(k). (b) A pattern of normal heat conduction. (c) and (d) represent the corresponding
power spectra of the time series from the nodes-i, j, k and i′, j′, k′ in (a) and (b), respec-
tively, where the blue solid, red dash and yellow dot lines represent the cases of the
nodes-i and i′, j and j′, and k and k′, respectively. (e) Dependence of the thermal-siphon
percentage on the network assortativity, which is the number of links with abnormal
heat conduction divided by the total number of links in a network.

we will discuss a novel heat-conduction phe-
nomenon in complex networks: the thermal-siphon
phenomenon—namely the heat ‘seems’ flow from
a lower-temperature node to a higher-temperature
node.

Thermal-siphon phenomenon
Wecheck howheat fluxes go through networks from
the source nodes with Th to those with Tl. For sim-
plicity, we just chose two nodes to contact with
high-temperature thermostat and low-temperature
thermostat, respectively. We have checked differ-
ent heat-transmission paths and found that most of
the heat fluxes are transmitted from the nodes with
higher temperatures to those with lower tempera-
tures, i.e. the normal heat conduction. However, we
surprisingly find that there is a small but finite prob-
ability for the heat fluxes to be transmitted from the
nodes with lower temperatures to those with higher
temperatures, i.e. the abnormal heat conduction that
we call the thermal-siphon phenomenon.

Its typical pattern can be described by three suc-
cessive nodes in a path of heat flow i→j→k, with
temperatures Ti > Tj and Tj < Tk. Figure 5a shows
such an example in the network for the case ofα = 0
and λ = 0, where the temperatures for the three
nodes i→j→k are 0.065, 0.049 and 0.060, respec-
tively. We have confirmed this abnormal heat con-
duction in different network structures, indicating

that it is a general phenomenon for heat conduction
in complex networks. Correspondingly, we show a
pattern of normal heat conduction in Fig. 5b where
the temperatures for the three nodes i′→j′→k′ are
0.057, 0.051 and 0.047, respectively. We have con-
firmed that different initial temperatures do not af-
fect the temperature of the nodes in the network at
steady state. In Supplementary Fig. S3, we demon-
strate that the thermal-siphon phenomenon is inde-
pendent of the initial temperature of the system.

DISCUSSION
Effective temperatures
Does the thermal-siphon phenomenon really violate
the second law of thermodynamics that heat always
flows from a higher-temperature node to a lower-
temperature node? To answer this question, we turn
to the Fourier analysis of vibration at each node. In
our model of heat conduction in complex network,
heat is transferred in the form of vibration at a cer-
tain frequency. When heat, which consists of many
phonons with different frequencies, is emitted from
one node in the complex network, it will spread out
in all directions and transmit to its neighbor nodes.
Howmuch heat can be transmitted through the next
node depends largely on the eigen frequencies (or
called spectrum) of the node. In Fig. 5c, we show
the power spectra labeled as a blue solid, red dash
and yellow dot lines for the nodes-i, j and k, respec-
tively. We see that the widths of their spectra are dif-
ferent. The spectrum of the node-j (red) has a nar-
rower frequency range than the spectra of the nodes-
i (blue) and k (yellow). That means that, when heat
flows from node-i, only part of it can go through j to
k. Thus, only those phonons with frequencies in the
spectrum of node-j can go through it and transmit to
node-k.

To understand the siphon effect more quantita-
tively, we can introduce effective temperatures for the
two nodes-j and k within the band of the spectrum
of Tj, i.e. T′

j and T′
k with T′

j = Tj. We notice from
Fig. 5c that the amplitude of the spectrum of node-
j (red) is larger than that of the spectrum of node-k
(yellow) in the same frequency range, thus we have
T′

j > T′
k. It should be noted that the effective tem-

perature of node-k satisfies T′
k < Tk because node-

k has more connections than node-j and thus has a
broader spectrum.

In this sense, the energy transmission along j→k
is still from a higher T′

j to a lower T′
k, implying that

the second law of thermodynamics is still valid. To
confirm this explanation, we show the case of nor-
mal heat conduction in Fig. 5d.We see that the spec-
tra of the time series of Tj and Tk are approximately
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overlapped, indicating that their effective tempera-
tures are in fact Tj and Tk themselves.

Favorable network structure for the
siphon phenomenon
What is the necessary condition for the siphon phe-
nomenon? By rechecking the patterns of Fig. 5a and
b, we find that the degrees for the nodes-i, j and k
are 5, 2 and 4 in (a) and for the nodes-i′, j′ and k′

are 3, 3 and 4 in (b), respectively, indicating that the
necessary condition is a large degree difference. To
theoretically confirm it, we consider a specific case
of λ = 0 and small g4 in Eq. (7) of the Methods.
Substituting them into Eq. (7), we have:

ẍi = −∂H
∂xi

= −∂
∑

i Vi (xi )
∂xi

=
ki∑
j=1

(
x j − xi

)
.

(3)
Equation (3) has a plane wave solution xi =

Ae I (qi zi−ωi ti ). Substituting it back into Eq. (3), we
obtain

ωi =
√√√√ ki∑

j=1

[
1 − cos

(
q j z j − qi zi + φ

)]
,

(4)
where φ = ωi ti − ω j t j is a constant. Thus, we get
the range of frequency

0 < ωi <
√
2ki . (5)

By ωi = 2π fi, we have 0 < f i <
√
2ki /2π .

Therefore, the frequency range of node-i does
depend on its degree ki. By Eq. (5), we have
0 < fi < 0.50, 0 < fj < 0.32, 0 < fk < 0.45 and
0 < f i ’ < 0.39, 0 < f j ’ < 0.39, 0 < fk’ < 0.45
(see the arrow ranges in Fig. 5c and d, which are con-
sistentwith the spectra inFig. 5c andd, respectively).

In a network, the degree difference of adjacent
nodes is usually measured by assortativity [18].

r =
〈
ki k j

〉 − 〈(
ki + k j

)
/2

〉2〈(
k2i + k2j

)
/2

〉
− 〈(

ki + k j
)
/2

〉2 , (6)

where 〈 〉 denotes the average over all links, and ki
and kj are the degrees of two connected nodes, re-
spectively. Here, we choose an algorithm to change
the assortativity [19], which has the advantage that
the degree of each node will remain unchanged.The
smaller the assortativity is, the greater the degree dif-
ference between adjacent nodes. We present the de-
pendence of the thermal-siphon percentage on net-
work assortativity r in Fig. 5e, which is the number of
links with abnormal heat conduction divided by the

total number of links in a network.The result is aver-
agedon20 realizations.Weobserve that the thermal-
siphonpercentagedecreaseswith the increase innet-
work assortativity, which is consistent with our ex-
planation of abnormal heat conduction by Eq. (5).
Moreover, we find that nodes’ temperature distribu-
tion in a network is related to the source nodes’ de-
gree and network assortativity (see Supplementary
Fig. S4).

Further discussion of the influence of the
parameter α on temperature distributions
and thermal conductance
Equation (5) can be also used to explain the vari-
ety of temperature distributions in Fig. 1a. For the
case of α = 0, the links will be randomly and ho-
mogeneously rewired; it is thus easy to form long-
range links and this results a slight-gradient temper-
ature distribution. With α increasing gradually from
0 to 5, the rewired links will prefer to connect nearby
nodes, which results in the increase inL of a network
(see black squares in Fig. 3d). Meanwhile, 1/MSD
is small, i.e. the difference in the nodes’ degrees is
relatively large (see red circles in Fig. 3d), which
will lead to the non-coincidence of the phonon spec-
trum and thus increase the thermal resistance ac-
cording to Eq. (5). Therefore, the temperature dis-
tribution gradually shows a gradient distribution and
thermal conductance σ t decreases monotonically in
Fig. 3a. When α continuously increases from 5 to
20, 1/MSDwill gradually increase (see red circles in
Fig. 3d) and thus the degree ki will gradually become
the same for all the nodes. According to Eq. (5), the
nodes with the same degree ki will have the same
phonon spectra band,whichwill enable theheat flow
to be transmitted more easily and thus increase the
value of σ t for the part of α > 5.0 in Fig. 3a. There-
fore, the phonon transportation becomes similar to
ballistic transport, the gradient of temperature distri-
bution gradually changes to be slight and the thermal
conduction gradually increases.

CONCLUSION
In summary, we have presented a model for heat
conduction in physical networks and found that it
may change from a heat conductor to a heat insu-
lator. We reveal two phenomena. (i) An abnormal
heat conduction in local parts of the network has
been found, where the heat flux goes from a node
with a lower temperature to another one with a
higher temperature. This kind of abnormal heat
conduction, which is called the ‘thermal-siphon
phenomenon’, is a characteristic feature of complex
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networks with multiple heat paths at each node and
can be understood by the concept of effective tem-
perature. (ii) The model provides a good candidate
for potential application in thermoelectricmaterials.
The ideal thermoelectric materials are phonon
glass and electric crystal, namely good electric
conduction and poor thermal conduction. From the
current study, we find that, for the complex network
structures, as shown in Figs 2 and 4, a larger η and
larger MSD are more favorable for thermoelectric
application.

METHODS
Rewiring of a network and the FPU-β
model of heat conduction
To study how the network structure influences
heat conduction, we let each node of the complex
network be an atom and the interaction between
nodes can be only taken through the links. Spring-
like/helical morphology is a commonmotif in nano-
materials, which has attracted significant attention
for a long time [20–24], so we let each link between
two neighboring nodes be a non-linear spring to imi-
tate the real nanotube/nanowire networks. In detail,
we let the atom be the FPU-β model with Hamilto-
nian H = ∑

i
[ 1
2 p

2
i + Vi (xi )

]
[25,26]. The poten-

tial satisfies Vi (xi ) = 1
2

∑ki
j=1Vi j (xi , x j ) with

Vij
(
xi , x j

) = c ij
[
1
2
(
x j − xi

)2 + g 4
4

(
x j − xi

)4]
,

(7)

where xi represents the displacement from the equi-
librium position of the i-th atom, cij denotes the cou-
pling strength of link i↔j and the sum is for all
the nearest neighbors j of node-i. In this work, we
let g4 = 0.1. Further, we assume that the coupling
strength decays with the increase in the distance rij
by the form c ij = r−λ

ij , where the parameter λ repre-
sents the decaying exponent. From Eqs (7) and (9),
we can obtain that the local flux Jij on link-lij will di-
vergewith –λ, i.e. local thermal conductance on link-
lij will diverge with (1 – λ), which is consistent with
the theoretical and experimental results [27–30].

To simulate heat conduction in the network, we
let the boundary nodes at the most left and right
sides of the network be contacted with two heat
baths of higher temperature Th and lower temper-
ature Tl, respectively. Take Fig. 1a as an example.
The m nodes at the most left (right) side are always
contacted with the m red (black) nodes in the bath
with temperature Th(Tl) and thus are considered to
be the source nodes. We choose the thermal bath as
the Langevin thermostat [6]. As Th > Tl, there will

be heat fluxes continuously from the source nodes
of the most left side to the source nodes of the most
right side through other nodes and links in the net-
work. After the transient process, the network will
reach a stationary state. A local temperature at each
atom i of the network can be defined as [6–8]:

Ti = 〈
p2i

〉
, (8)

and a local flux Jij on each link-lij can be calculated by
[6,31–33]:

J i j =
〈
ẋi

∂Vi j
(
xi , x j

)
∂x j

〉
, (9)

where
〈 · · · 〉 is the time average.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.

FUNDING
Thisworkwaspartially supportedby theNationalNatural Science
FoundationofChina toZ.L. (11675056 and11835003), theYun-
nan Excellent Youth Fund Project to C.Z. and the TenThousand
Talents Plan Young & Elite Talents Project to C.Z.

AUTHOR CONTRIBUTIONS
K.X., Z.L. and B.L. conceived of the idea. K.X., Z.L., C.Z. and
B.L. designed the research.K.X. implemented themodel.K.X. and
C.Z. performed the analysis. Z.L. and B.L. wrote the paper.

Conflict of interest statement.None declared.

REFERENCES
1. Albert R and Barabasi A. Statistical mechanics of complex net-
works. Rev Mod Phys 2002; 74: 47–97.

2. Boccaletti S, Latora V and Moreno Y et al. Complex networks:
structure and dynamics. Phys Rep 2006; 424: 175–308.

3. Dorogovtsev SN, Goltsev AV and Mendes JFF. Critical phenom-
ena in complex networks. Rev Mod Phys 2008; 80: 1275–335.

4. Kleinberg JM. Navigation in a small world. Nature 2000; 406:
845.

5. Oliveira CLN, Morais PA and Moreira AA et al. Enhanced flow
in small-world networks. Phys Rev Lett 2014; 112: 148701.

6. Lepri S, Livi R and Politi A. Thermal conduction in classical low-
dimensional lattices. Phys Rep 2003; 377: 1–80.

7. Li N, Ren J and Wang L et al. Colloquium: Phononics: manipu-
lating heat flow with electronic analogs and beyond. Rev Mod
Phys 2012; 84: 1045–66.

8. Dhar A. Heat transport in low-dimensional systems. Adv Phys
2008; 57: 457–537.

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwz128#supplementary-data


RESEARCH ARTICLE Xiong et al. 277

9. Cahill DG, Ford WK and Goodson KE et al. Nanoscale thermal transport. J App
Phys 2003; 93: 793–818.

10. Gu X-K, Wei Y-J and Yin X-B et al. Colloquium: Phononic thermal properties of
two-dimensional materials. Rev Mod Phys 2018; 90: 041002.

11. Kumar S, Murthy JY and Alam MA. Percolating conduction in finite nanotube
networks. Phys Rev Lett 2005; 95: 066802.

12. Pop E, Mann D and Cao J et al. Negative differential conductance and hot
phonons in suspended nanotube molecular wires. Phys Rev Lett 2005; 95:
155505.

13. Watts DJ and Strogatz SH. Collective dynamics of ‘small-world’ networks. Na-
ture 1998; 393: 440–2.

14. Tewary VK and Yang B. Parametric interatomic potential for graphene. Phys Rev
B 2009; 79: 075442.

15. Lee S, Esfarjani K and Luo T et al. Resonant bonding leads to low lattice thermal
conductivity. Nat Commun 2014; 5: 3525.

16. Han H, Feng L and Xiong S et al. Long-range interatomic forces can minimize
heat transfer: from slowdown of longitudinal optical phonons to thermal con-
ductivity minimum. Phys Rev B 2016; 94: 054306.

17. Bagchi D. Thermal transport in the Fermi-pasta-Ulam model with long-range
interactions. Phys Rev E 2017; 95: 032102.

18. Newman ME. Assortative mixing in networks. Phys Rev Lett 2002; 89: 208701.
19. Kim BJ. Performance of networks of artificial neurons: the role of clustering.

Phys Rev E 2004; 69: 045101.
20. Davis W, Slawson R and Rigby G. An unusual form of carbon. Nature 1953;

171: 756.
21. Amelinckx S, Zhang X and Bernaerts D et al. A formation mechanism for cat-

alytically grown helix-shaped graphite nanotubes. Science 1994; 265: 635–9.

22. Volodin A, Buntinx D and Ahlskog M et al. Haesendonck: coiled car-
bon nanotubes as self-sensing mechanical resonators. Nano Lett 2004; 4:
1775–9.

23. Shaikjee A and Coville N. The synthesis, properties and uses of carbon mate-
rials with helical morphology. J Adv Res 2012; 3: 195–223.

24. Deng C, Pan L and Zhang D et al. A super stretchable and sensitive strain sen-
sor based on a carbon nanocoil network fabricated by a simple peeling-off ap-
proach. Nanoscale 2017; 9: 16404–11.

25. Lepri S, Livi R and Politi A. Heat conduction in chains of nonlinear oscillators.
Phys Rev Lett 1997; 78: 1896–9.

26. Liu Z, Wu X and Yang H et al. Heat flux distribution and rectification of complex
networks. New J Phys 2010; 12: 023016.

27. Maruyama S. A molecular dynamics simulation of heat conduction in finite
length SWNTs. Physica B 2002; 323: 193–5.

28. Yang N, Zhang G and Li B. Violation of Fourier’s law and anomalous heat diffu-
sion in silicon nanowires. Nano Today 2010; 5: 85–90.

29. Chang CW, Okawa D and Garcia H et al. Breakdown of Fourier law in nanotube
thermal conductors. Phys Rev Lett 2008; 101: 075903.

30. Liu S, Xu X and Xie R et al. Anomalous heat conduction and anomalous
diffusion in low dimensional nanoscale systems. Eur Phys J B 2012; 85:
337.

31. Hu B, Li B and Zhao H. Heat conduction in one-dimensional chains. Phys Rev E
1998; 57: 2992–5.

32. Hu B, Li B and Zhao H. Heat conduction in one-dimensional nonintegrable sys-
tems. Phys Rev E 2000; 61: 3828–31.

33. Li B, Wang L and Casati G. Thermal diode: rectification of heat flux. Phys Rev
Lett 2004; 93: 184301.


