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Abstract

Background—Reduced heart rate variability (HRV) suggests autonomic imbalance in the 

control of heart rate and is associated with unfavorable cardiometabolic outcomes. We examined 

whether antenatal corticosteroid (ANCS) exposure had long-term programming effects on heart 

rate variability (HRV) in adolescents born with very low birth weight (VLBW).

Methods—Follow-up study of a cohort of VLBW 14 year-olds born between 1992 and 1996 

with 50% exposed to ANCS. HRV in both the time and frequency domains using Nevrokard 

Software was determined from a 5 minute electrocardiogram tracing.

Results—HRV data from 89 (35 male, 53 non-black) exposed (ANCS+) and 77 (28 male, 29 

non-black) unexposed (ANCS−) adolescents were analyzed. HRV did not differ between ANCS+ 

and ANCS− black participants. However, in non-black participants, a significant interaction 

between ANCS and sex was observed, with ANCS− females having significantly greater HRV 

than ANCS+ females and males, and ANCS− males for both time and frequency domain variables.

Conclusions—Among non-black adolescents born with VLBW, ANCS exposure is associated 

with reduced HRV with apparent sex-specificity. Reduced HRV has been associated with 

development of adverse cardiometabolic outcomes, thus supporting the need to monitor these 

outcomes in VLBW adolescents as they mature.
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INTRODUCTION

Heart rate variability (HRV) provides a noninvasive measure of cardiac autonomic 

modulation, reflecting heart rate control via the parasympathetic and sympathetic nervous 

systems (1). Low HRV is considered a marker of reduced parasympathetic control and has 

been associated with hypertension, diabetes, and cardiovascular mortality in adults (2), and 

with cardiovascular risk factors such as obesity and higher blood pressure in adolescents (3–

6).

Growing evidence suggests that persons born prematurely and/or with low birth weight have 

increased risk for developing cardiometabolic diseases (7). The increased risk may be 

explained in part by Barker’s fetal origins hypothesis which suggests that fetal exposures 

may alter developing structures and functions to promote survival in the short-term, but 

these programming effects may be detrimental in the long-term (8). A potential mediator of 

this heightened risk might be antenatal corticosteroid exposure (ANCS) which has been 

shown to cause decreased HRV, and subsequently, increased blood pressure in animal 

models (9). In humans, ANCS has been associated with alterations in fetal HRV (10), higher 

blood pressure in adolescence (11), and aortic stiffness and altered glucose regulation in 

young adulthood (12,13).

The purpose of this study was therefore to examine HRV in a cohort of 14 year-old males 

and females born with very low birth weight (VLBW) from 1992 – 1996 which encompass 

the 1995 NIH Consensus Panel report promoting ANCS use for fetal lung maturation. The 

cohort’s rate of exposure was 50%, which is low when compared to current exposure rates 

up to 87% (14). The birth years and location also make our cohort unique with respect to 

racial diversity and availability of surfactant therapy as infants compared to other studies of 

VLBW adolescents (11) and young adults (15). As racial differences have been reported for 

both HRV (16) and ANCS exposure (17), we analyzed associations separately for black and 

non-black study participants. Furthermore, as animal models of ANCS suggest sex-specific 

effects (18,19), we examined the potential interaction between ANCS and sex on HRV 

outcomes.

RESULTS

As shown in Figure 1, 193 of 479 eligible VLBW adolescents were initially recruited 

meeting our recruitment goal for the parent study, Prenatal Events – Postnatal Consequences 

(PEPC) study. After enrollment, seven participants were found to be ineligible, and one was 

unable to participate because of severe cerebral palsy. After further exclusions for invalid or 

missing data and frequent ectopic beats, the final analytic sample included 89 ANCS+ (35 

male, 53 non-black) and 77 ANCS− (28 male, 29 non-black) adolescents. Demographic and 

neonatal characteristics were similar among eligible VLBW survivors who did or did not 

participate (data not shown). The neonatal and current characteristics of the remaining 166 

participants are presented in Table 1. Black adolescents were less likely to have been 

exposed to ANCS than non-blacks (38 v. 65%), but birth weight parameters and gestational 

age did not differ between the groups. Prevalence of chronic lung disease (18 v. 25%), 

necrotizing enterocolitis (11 v. 11%), and major cranial ultrasound abnormalities (2 vs. 5%) 
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also did not differ between exposed and unexposed groups, respectively. Eighty-seven of the 

89 ANCS+ mothers received betamethasone, one received dexamethasone (black male 

offspring), and one received both betamethasone and dexamethasone (non-black female 

offspring). More detailed information about the number of doses and the time of dose 

relative to birth was available in 53 (23 M, 15 Black) of 89 ANCS-exposed women. The 

majority of women (75%) received two doses (one full course), and the majority of births 

(72%) occurred at least 24 hours after, but within 7 days, of administration of treatment. No 

differences in neonatal or current characteristics were found between offspring of ANCS-

treated mothers with and without detailed data on exposure. At 14 years of age, weight did 

not differ between groups, but ANCS+ adolescents tended to be taller and, consequently, had 

lower BMI Z-values on average compared to their ANCS− peers. The parental-reported 

prevalence of Medicaid eligibility was used as a marker of socio-economic status and did 

not differ between ANCS+ and ANCS− groups (37% and 43%, respectively).

HRV measures

Data of five subjects (two ANSC+) were excluded from analysis due to frequent premature 

ectopic beats (four ventricular and one atrial in origin). Non-normal distributions were 

evident for all of the HRV variables based on the Shapiro-Wilk test of normality (p<.05). 

Log-transformations improved the distributions of all HRV variables except pNN50 (which 

was not improved by log or any other standard transformation). Table 2 provides the mean 

HRV results by exposure for the total group, and stratified by race. For ease of presentation, 

untransformed means and 95% confidence intervals (CI) are presented on the original scales 

of measurement, whereas the p values are based on log-transformed data, except for pNN50 

which was not transformed. The analysis indicated that ANCS+ adolescents had lower HRV 

values for the three time domain measures as well as the frequency domain measures of HF 

and total power; however, stratification by race revealed that the exposure differences were 

only apparent in the non-black participants.

Multiple Regression Analysis

Multiple regression analysis was performed separately for black and non-black groups 

including ANCS, sex, and ANCS X sex as an interaction term, and adjusting for birth weight 

Z-values. As shown in Figures 2 (a) and (b), significant (p<0.05) ANCS X sex interactions 

were evident in the non-black group for variables in the both time (SDNN) (Figure 2a) and 

frequency (HF) (Figure 2b) domains. Post hoc comparison of LS means indicated that 

unexposed females had significantly greater HRV compared to exposed females and males, 

as well as unexposed males, with no differences among the latter three groups. A similar 

pattern was observed for the other time and frequency domain variables. For black 

adolescents, no significant differences were observed between ANCS+ and ANCS− groups 

for any of the HRV variables.

We also considered medications taken in the past 24 hours that might affect HRV (such as 

beta-agonists for asthma and stimulants for attention deficit disorder). There was no 

difference between ANCS groups in numbers taking these meds in the past 24 hours (7 

ANCS+ v. 5 ANCS−), and inclusion of this information in the models did not change the 

results appreciably.
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DISCUSSION

The results of our study suggest that ANCS exposure is associated with reduced HRV 

among adolescents born with VLBW. This association was limited to non-black individuals 

and was stronger among females than males. The finding that ANCS exposure was 

associated with decreased HRV is consistent with our colleagues’ results in the sheep model 

(9,20), although HRV was only studied in male sheep. An unexpected finding was the higher 

LF in unexposed females which may suggest greater sympathetic modulation of heart rate. 

However, LF is believed to reflect both sympathetic and parasympathetic control, and has 

been suggested to be determined by parasympathetic activity (21). Recent evidence also 

suggests that LF is not a measure of cardiac sympathetic tone, but more likely reflects 

modulation of cardiac autonomic outflows by baroreflexes, with higher LF correlating with 

greater cardiovagal gain (22).

Other studies have examined the effects of ANCS exposure on fetal HRV (10,23–25). As 

reviewed by Mulder et al.(26), administration of ANCS was generally associated with an 

initial increase in fetal HRV in the first 24 hours, followed by a subsequent decrease of 20–

30% of pretreatment levels by 48–72 hours, and then returning to baseline levels within four 

(10,23) to seven days (24,25) after cessation of treatment. In a relatively short-term follow-

up study of neonates, no differences in HRV were evident seven weeks after exposure to 

ANCS (27).

To our knowledge, our study is the first to report possible long-term effects of ANCS 

exposure on HRV in adolescents born prematurely with VLBW. The long-term effects of 

ANCS on HRV may reflect programming during critical periods of fetal development. 

Evidence suggests that the development of cardiac autonomic innervation extends into early 

postnatal life and displays considerable plasticity (28). Bian and colleagues (29,30) have 

shown in rats that fetal ANCS exposure (with dexamethasone) alters development of cardiac 

noradrenergic and sympathetic processes including enhanced cardiac adenylate cyclase 

reactivity to β-adrenergic and non-adrenergic stimuli. Consequently, exposure to ANCS 

during the critical period of autonomic maturation may have led to alterations of autonomic 

control of heart rate in our adolescents.

Sex differences in HRV have been reported in children and adolescents. Results from larger 

studies (31,32) indicate that boys exhibit greater HRV than girls when examining time 

domain variables and the frequency domain variable HF. In contrast, we found higher HRV 

in females than males, specifically among those who were not exposed to ANCS. There is 

evidence supporting sex differences for other outcomes such as blood pressure, markers of 

the renin-angiotensin system, and sympathoadrenal function, with females generally 

exhibiting more favorable outcomes (33,34). Our colleagues have also reported sex 

differences in ANCS programming effects on renal function in the sheep model, with some 

of the differences being age-dependent, possibly mediated via changes in sex steroid 

hormones with maturation (18,19).

Racial differences have also been reported for HRV (16) and fetal programming (35), but no 

study has examined race as a potential effect modifier of ANCS on HRV. Higher HRV, 
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among black adolescents, as observed in our study as well as a study of healthy adolescents 

(16), should reduce risk for cardiometabolic disease. Assuming our finding of higher HRV 

among black VLBW adolescents is generalizable, the higher risk of cardiometabolic disease 

generally observed among black individuals is more likely attributable to other factors such 

as peripheral vasoconstriction or renal dysfunction.

There are several limitations to our study. The study design is observational and therefore 

not a randomized controlled trial of ANCS exposure. However, with the proven beneficial 

effects of ANCS on respiratory morbidity and survival in premature infants (36), treatment 

with ANCS for preterm labor has become standard practice with up to 87% of VLBW 

infants currently exposed (14), and conducting a randomized controlled trial would be 

unethical. The 50% exposure rate of our sample (primarily due to birth years surrounding 

the 1995 NIH Consensus Panel promoting ANCS use) provides us with a unique study 

sample to examine the long term effects of ANCS exposure which cannot be replicated in 

view of current exposure rates. Furthermore, the birth years and location of our cohort make 

the results more generalizable to a racially diverse current VLBW population born in the 

post-surfactant era.

We also lacked complete data on the number of doses and timing for all of our ANCS-

exposed participants. In view of the high exposure rates that exist today, future studies 

should examine the effects of single vs. multiple ANCS courses on HRV as well as the 

timing of exposure relative to birth. It would also be interesting to see if the ANCS exposure 

differences are evident in children who were carried to term. Finally, there are many other 

early life exposures (in utero and perinatal) as well as other factors (e.g. menstrual cycle 

phase, aerobic fitness) which may influence HRV but were not considered in our study.

In summary, our study results suggest that ANCS exposure is associated with reduced HRV 

in adolescents with apparent race- and sex-specificity. Reduced HRV has been associated 

with development of adverse cardiometabolic outcomes, supporting the need to closely 

follow this at-risk population as they mature. The sex- and race-specific differences 

associated with ANCS exposure underscore the importance of considering these factors as 

possible modifiers of the presumed programming effect of ANCS on physiologic and health 

outcomes.

METHODS

The study was approved by the Institutional Review Boards of Wake Forest Baptist and 

Forsyth Medical Centers. Written informed consent was obtained from a parent/legal 

guardian and assent was obtained from the adolescent.

Participants were recruited from a cohort of 479 infants born with VLBW (< 1500 g) 

between 1992 and 1996 at a regional perinatal center (Forsyth Medical Center) who also met 

the following criteria: 14 years of age, singleton birth without a major congenital anomaly, 

and clinical evaluation at one-year adjusted age. Participants were asked to report for three 

study visits as part of the Prenatal Exposure Postnatal Consequences (PEPC) study and were 
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paid a total of $225 for all three study visits. Parents were also paid $25 for each visit to 

cover travel expenses.

HRV Measurement

Heart rate variability was measured at the 2nd study visit between noon and 2 pm in a quiet 

examination room of the clinical research unit in accordance with standardized guidelines 

(1). Participants were asked to refrain from eating in the previous four hours or exercising 

the morning of the visit. The participant was prepped with three electrodes (Lead II 

configuration) that were connected to a Biopac MP36 (Biopac Systems Inc., Goleta, CA) for 

continuous recording of the electrocardiogram (ECG), and then asked to lie quietly on a bed 

for 10 minutes. The first five minutes were used to familiarize the participant to the 

environment, and data from the subsequent five minutes were analyzed using Nevrokard-

HRV Software (Slovenia) to identify R waves from the ECG and subsequent determination 

of HRV in both time and frequency domains (1). The primary time domain variables of 

interest were the standard deviation of all R to R intervals, commonly reported as N to N 

intervals (SDNN), the square root of the mean of sum of squares of differences in successive 

N to N intervals (rMSSD), and the percent of successive N to N intervals that differed by at 

least 50 msec (pNN50). For all of these variables, a higher value suggests greater HRV. The 

primary frequency domain variables of interest were low frequency power (LF), and high 

frequency power (HF), the ratio of LF to HF (LF/HF), and the total power determined from 

power spectral analysis using fast Fourier transformations (Hamming window) with band 

widths .04 to .15 Hz and .15 to .40 Hz for LF and HF, respectively. The HF is believed to 

reflect parasympathetic modulation of heart rate. Although controversial (37), the LF and the 

LF/HF are commonly used to reflect sympathetic regulation and sympathovagal balance, 

respectively. Consequently, higher HF and total power, and lower LF and LF/HF, are 

desirable suggesting greater parasympathetic control of heart rate. Participants with ECG 

tracings exhibiting frequent (>5 per minute) premature ventricular or atrial contractions 

(PVCs and PACs respectively) were excluded. Those with infrequent PVCs or PACs (~5 or 

less during the 5 minute period) were included in the analysis but the ECG tracings were 

edited by deleting the segment of time from the peak of the R wave for the QRS complex 

occurring one beat before the ectopic beat to the peak of the R wave for the QRS complex 

occurring two beats following the ectopic beat (38).

Neonatal characteristics

Neonatal characteristics including birth weight, gestational age, prevalence of neonatal 

illness, and ANCS exposure (including date and dose of ANCS when available) were 

obtained from a research database as well as maternal and participant medical records by a 

research nurse. Gestational age was determined in order of availability from either first 

trimester ultrasound, maternal report of last menstrual period, or, lastly, clinical assessment 

of the newborn infant. Birth weight z-values and percentiles was determined from 

gestational age-and gender-specific reference data as a marker of fetal growth (39). A 

diagnosis of chronic lung disease (CLD) was based on supplemental oxygen requirement at 

36 weeks post-menstrual age (40). A diagnosis of necrotizing enterocolitis (NEC) was based 

on Bell’s criteria with stage ≥ 2 (41). A major cranial ultrasound abnormality was defined as 

previously described (42).
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Current characteristics

Height and weight were measured in triplicate (light clothing without shoes) using a wall-

mounted stadiometer and digital platform scale respectively. Body mass index (BMI) was 

calculated from the ratio of weight in Kg to height in m2, and age- and gender-specific 

percentiles were determined (43). Race was determined by questionnaire completed by the 

participant’s parent/guardian. Parental report of Medicaid eligibility was used as a marker of 

socio-economic status. Medications (including over-the-counter) taken on a regular basis 

and in the past 24 hours were reported by both child and parent.

Data analysis

Data were analyzed using SAS version 9.4. Measures of central tendency and dispersion 

were examined, and log transformations were applied to HRV variables with Shapiro-Wilk 

test of normality results having a p < .05 to improve distributional characteristics prior to 

analyses. Data are presented as means and their corresponding 95% confidence intervals 

(CI) or n (%). In view of racial differences in HRV and exposure to ANCS, we decided a 
priori to stratify results by race (black and non-black). Between-group (ANCS+ v. ANCS−) 

differences were then examined using independent samples t-tests for continuous variables 

and Fisher’s exact tests for categorical variables. We examined the potential interaction of 

ANCS with sex by entering the product term (ANCS X sex) into multiple regression models. 

Birth weight z-value (a marker of fetal growth) was added to regression models to adjust for 

potential confounding effects. Post hoc pairwise comparisons of least squares (LS) means 

(generated by the SAS GLM procedure) were used to identify differences among the four 

ANCS X sex group combinations.
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Figure 1. 
Follow-up details of study participants.
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Figure 2. 
(a) and (b). Boxplots demonstrating a significant interaction between ANCS X sex from 

multiple regression analysis in non-black participants for: (a) the log-transformed time 

domain variable of SDNN (p=.043), and (b) the log-transformed frequency domain variable 

of HF (p=.017). ANCS+ and ANCS− are represented by hatched and open boxes, 

respectively. The regression models included ANCS, sex, ANCS X sex, and birth weight z-

value. Post-hoc comparisons of least square means indicated that ANCS− females had 

significantly greater SDNN and HF compared to ANCS+ females and males as well as 

ANCS− males.
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