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ABSTRACT
Background. The prognosis of patients for lung adenocarcinoma (LUAD) is known to
vary widely; the 5-year overall survival rate is just 63% even for the pathological IA stage.
Thus, in order to identify high-risk patients and facilitate clinical decision making, it is
vital that we identify new prognostic markers that can be used alongside TNM staging
to facilitate risk stratification.
Methods. We used mRNA expression from The Cancer Genome Atlas (TCGA) cohort
to identify a prognostic gene signature and combined this with clinical data to develop a
predictive model for the prognosis of patients for lung adenocarcinoma. Kaplan-Meier
curves, Lasso regression, and Cox regression, were used to identify specific prognostic
genes. The model was assessed via the area under the receiver operating characteristic
curve (AUC-ROC) and validated in an independent dataset (GSE50081) from the Gene
Expression Omnibus (GEO).
Results. Our analyses identified a four-gene prognostic signature (CENPH, MYLIP,
PITX3, and TRAF3IP3) that was associated with the overall survival of patients with
T1-4N0-2M0 in the TCGA dataset. Multivariate regression suggested that the total risk
score for the four genes represented an independent prognostic factor for the TCGA
and GEO cohorts; the hazard ratio (HR) (high risk group vs low risk group) were 2.34
(p< 0.001) and 2.10 (p= 0.017). Immune infiltration estimations, as determined by
an online tool (TIMER2.0) showed that CD4+ T cells were in relative abundance in
the high risk group compared to the low risk group in both of the two cohorts (both
p< 0.001). We established a composite prognostic model for predicting OS, combined
with risk-grouping and clinical factors. The AUCs for 1-, 3-, 5- year OS in the training
set were 0.750, 0.737, and 0.719; and were 0.645, 0.766, and 0.725 in the validation set.
The calibration curves showed a good match between the predicted probabilities and
the actual probabilities.
Conclusions. We identified a four-gene predictive signature which represents an
independent prognostic factor and can be used to identify high-risk patients from
different TNM stages of LUAD. A new prognostic model that combines a prognostic
gene signature with clinical features exhibited better discriminatory ability for OS than
traditional TNM staging.
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INTRODUCTION
Lung cancer has the highest incidence and mortality rates of all forms of cancers in China.
Furthermore, it was estimated that in 2015, there were 787,000 new cases and 630,500 deaths
of lung cancer in China (Gao et al., 2020). Data from the United States of America showed
that in 2019, 228,150 patients were newly diagnosed with lung cancer while 142,670 patients
died from this condition; furthermore, only 25% of patients with non-small cell lung cancer
(NSCLC) survived longer than 5 years (Ettinger et al., 2019). There are two major subtypes
of NSCLC: lung adenocarcinoma (LUAD) and lung squamous carcinoma; the former
has now surpassed the latter as the most common pathological subtype among men in
certain Asian populations (Chinese, Japanese) and in North America (USA, Canada). In
women, however, adenocarcinoma is the dominant histological type almost everywhere,
except for Poland and England (Travis et al., 2004). The prognosis of LUAD is related to
a variety of factors, such as the TNM (tumor, regional lymph node, metastasis) stage (as
used in the present study), tumor differentiation, and pathological subtype; these factors
are widely used to guide clinical decision making. However, these factors are not sufficient
to accurately evaluate the prognosis of patients with this disease. The 5-year overall survival
(OS) of patients with IA stage LUADwas reported to be just 63% (Oskarsdottir et al., 2016),
Consequently, there is a critical need to identify new biomarkers with which to evaluate
prognostic outcome.

Gene sequencing has developed rapidly over the last few years and has allowed us to
identify an increasing number of molecular prognostic factors for several cancers, including
colon cancer, lung cancer, and breast cancer (Pei et al., 2020; Yang et al., 2020; Zhang et al.,
2020a). Indeed, recent studies have demonstrated that genomic data are superior to the
traditional staging system for estimating the risk of a worse prognosis and predicting the
benefit of adjuvant chemotherapy (He & Zuo, 2019).

However, most researchers screen prognosis-related genes from differentially expressed
gene sets or only perform one round of screening (He & Zuo, 2019; Song et al., 2021; Zuo
et al., 2019). We believe that such screening methods may miss certain genes that are not
differentially expressed but are important for prognosis. In the present study, we performed
prognostic gene screening directly from specific gene profiles and used a random grouping
method that was intended to identify a more reliable set of prognosis-related genes. Four
genes (CENPH, MYLIP, PITX3, and TRAF3IP3) were eventually identified; these were
associated with tumor-infiltrating immune cells, the proliferation of tumor cells, and cell
adhesion. Risk-scores were calculated using the four gene mRNA expression data and
represented an independent prognostic factor for LUAD. This allowed us to develop a
prognostic model which was then validated in an independent cohort of patients. Figure 1
shows the flow diagram of this study.

MATERIALS & METHODS
Data sources
We downloaded gene expression data (FPKM format), clinical information, and survival
data, of patients with LUAD from The Cancer Genome Atlas (TCGA) from the University
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Figure 1 The flow diagram of this study. A total of 317 patients were included in the training set and 127
patients were included in the validation set.

Full-size DOI: 10.7717/peerj.11911/fig-1

of California Santa Cruz Xenabrowser (UCSC Xena, https://xenabrowser.net/datapages/P)
(Goldman et al., 2020) to act as a training cohort. We also acquired gene expression data
and corresponding clinical information for the validation cohort under accession number
GSE50081 from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).
This validation dataset included 127 cases of lung adenocarcinoma.

Patients were included in our analyses if (1) clinical information (gender, age, T-stage,
N-stage, M-stage), survival data (follow-up time and survival status), and gene expression
information (mRNA expression levels) were complete and (2) the TNM stage was T1-
4N0-2M0. We excluded cases if the histological type was not LUAD. After screening, a
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total of 317 patients were included in the training set and 127 patients were included in the
validation set.

Prognostic gene signature screening
The set of training samples were randomly divided into three groups. The levels of gene
expression in each group were then divided into high and low expression groups using
the median value as the cutoff point. Next, we used a univariate Cox proportional hazard
regression model to determine the association between gene expression and OS in each
group; genes with a p-value < 0.05 (following the log rank test) were defined as being
prognosis-related. We then identified the intersection between the three groups to identify
candidate genes. Lasso regression and a multivariate Cox regression model were both used
to carry out further screening; gene expression was used as continuous variable parameter.
This additional analysis identified a prognostic gene signature consisting of four genes:
CENPH, MYLIP, PITX3, and TRAF3IP3.

In the training set, the gene expression levels (z-score) of these four genes were used
as covariates in a multivariate Cox regression model were applied. We then calculated
risk scores based on gene expression levels and risk coefficients. Then, the entire cohort
was divided into a high-risk group and a low-risk group using the median value as the
threshold. Next, we compared survival data, clinical characteristics, and the immune
microenvironment between the two different risk-groups and then validated the model
in an external dataset. The immune microenvironment was estimated by TIMER2.0
(http://timer.comp-genomics.org/) (Li et al., 2020b), a public database, and six immune
infiltration lymphocyte estimations were obtained.

Development and validation of the prognostic model
A multivariate Cox regression model was used to develop the prognostic mode. External
validation was performed in an independent dataset. The degree of differentiation
exhibited by the models was compared by comparing the area under the receiver operating
characteristic curve (AUC-ROC). Calibration was evaluated using calibration curves.

Statistical analysis
All statistical analyses were performed with R software version 4.0.3. OS data were
calculated using Kaplan–Meier curves, and the statistical difference between different
groups was determined by the log-rank test. The influence of different parameters on OS
was evaluated by univariate and multivariate Cox proportional hazard regression models.
Hazard ratios (HRs) and the 95% confidence intervals (CIs) were generated using Cox
proportional hazards models. In addition, receiver operating characteristic (ROC) analysis
was carried out to compare the predictive accuracy of models. Pearson’s Chi-squared
test was performed to compared the population demographics. A P-value < 0.05 was
determined to be statistically significant.
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Table 1 The patient demographics. T stage, N stage, Stage (TNM stage) are according the 7th or 6th
UICC TNM stage.

Variables TCGA GSE50081 X2 P-value

All 317 127
Age (years)

Median 66 (33–87) 70 (40–86)
Gender

Male 154 (48.6%) 65 (51.2%) 0.15 0.696
Female 163 (51.4%) 62 (48.8%)

T stage
T1 98 (30.9%) 43 (48.6%) 12.48 0.002
T2 180 (56.8%) 82 (33.9%)
T3+4 39 (12.3%) 2 (1.6%)

N stage 21.13 <0.001
N0 203 (64.0%) 94 (74.0%)
N1 67 (21.1%) 33 (26.0%)
N2 47 (14.8%) 0

Stage 28.69 <0.001
I 172 (54.3%) 92 (72.4%)
II 86 (27.1%) 35 (27.6%)
III 59 (18.6%) 0

RESULTS
Demographics of the study population
According to the inclusion and exclusion criteria, 317 cases were included in the TCGA
cohort, while 127 cases were included in GSE50081. The median age of the two cohorts
were 65-years and 70-years, respectively. The Stage of 5 patients in the TCGA cohort were
not recorded; we defined these according to the 7th edition of the Union for International
Cancer Control (UICC) TNM stage. The frequencies of T stage (p= 0.002), N stage
(p< 0.001), and Stage (p< 0.001) in the two cohorts were different. Patient demographics
are shown in Table 1.

Identification of a four-gene prognostic signature
The OS-related genes were identified from the training set using the Cox log-rank test and
cut-off threshold of P < 0.05. The three randomized groups (A, B, C) contained 2061,
2742, and 699 OS-related genes, respectively. By identifying the intersection between the
three gene sets, we identified 17 genes as candidate prognostic genes. Additional analysis,
using Lasso and Cox stepwise regression, identified four prognostic genes: including two
high risk genes (HR > 1; CENPH and PITX3) and two protective genes (HR < 1; MYLIP
and TRAF3IP3). Figure 2 shows the gene screening process. Further details of the Cox
regression model used to identify the four-genes are shown in Table 2. The Kaplan–Meier
curves for the four genes in TCGA are shown in Fig. 3A.

Next, we validated the effect of the four prognostic genes on OS using the Kaplan–
Meier Plotter (https://kmplot.com/analysis/) and obtained the same conclusion, as

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11911 5/24

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
https://kmplot.com/analysis/
http://dx.doi.org/10.7717/peerj.11911


Figure 2 The gene screening process. The Venn diagram shows the intersection of the number of genes
associated with prognosis in three randomized groups (A, B, C). The other two were the visualization of
Lasso regression.

Full-size DOI: 10.7717/peerj.11911/fig-2

Table 2 The results of multivariate cox regression analysis for the four gene expressions. The details of
multivariate Cox regression model, the expression of four genes were used as continuous variables.

GENE Coefficient HR 95%CI P-value Prognosis

TRAF3IP3 −0.28593 0.7513 0.5943∼0.9498 0.016833 Protective
PITX3 0.21193 1.2361 1.0961∼1.3939 0.000547 Risky
MYLIP −0.47968 0.6190 0.4892∼0.7831 6.42e−05 Protective
CENPH 0.26692 1.3059 1.1248∼1.5162 0.000458 Risky

shown in Fig. 3B. Online analysis of the Gene Expression Profiling Interactive Analysis
(GEPIA2, http://gepia2.cancer-pku.cn/) public database (Tang et al., 2019) showed that
the expression of CENPH was up-regulated in tumors when compared to normal tissue
and that expression levels increased with increasing tumor stage. In contrast, the other
three genes were down-regulated but without statistical significance (|Log2FC| Cutoff= 1,
p-value Cutoff = 0.01), as shown in Fig. 3C.

The risk score for the four-gene signature predicted the OS of
patients with LUAD
Considering that the expression levels of the four identified genes exhibited a correlation
with prognosis, we next explored the combined prognostic effect of these genes by using
the ggrisk package in the R environment. Each patient was given an individual risk score
by using a prognostic Cox regression model according to the expression level and its
corresponding coefficients in the training set. Patients were then divided into a high risk
group and a low risk group using the median risk score (0.02066664) as a cutoff. The same
risk score method was performed for the validation set but using the median risk score
(−0.00797257) as the cutoff point. Figure 4 shows the distribution of the risk scores, gene
expression levels, and the survival status of patients in the training set. Two protective
genes (MYLIP, TRAF3IP3) were highly expressed in the low-risk group, while risky genes
(CENPH, PITX3) were highly expressed in the high-risk group.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11911 6/24

https://peerj.com
https://doi.org/10.7717/peerj.11911/fig-2
http://gepia2.cancer-pku.cn/
http://dx.doi.org/10.7717/peerj.11911


Figure 3 The expression and survival analysis of four gene. (A) The Kaplan–Meier curves for four genes
in TCGA cohort of present study. (B) The Kaplan–Meier curves for four genes using online analysis site
Kaplan–Meier Plotter. (C) The comparison of the expression of four genes between lung adenocarcinoma
and normal tissue, using online analysis site GEPIA2; the red box is tumor, the gray box is normal tissue.
In survival analysis (A, B), median of the expression of each gene was the cut-off.

Full-size DOI: 10.7717/peerj.11911/fig-3

Equations (1) and (2) show the formulae for calculating the risk score for the training
and validation sets, respectively. These formulae used the same coefficients; these originated
from the Cox model for gene risk as fitted to the training set (Table 2).

Risk score (Training set)=TRAF3IP3∗ (−0.28593)+PITX3∗ (0.21193)

+MYLIP ∗ (−0.47968)+CENPH ∗ (0.26692) (1)

Risk score (validation set)=TRAF3IP3∗ (−0.28593)+PITX3∗ (0.21193)

+MYLIP ∗ (−0.47968)+CENPH ∗ (0.26692) (2)

Next, we performed univariate Cox regression analysis. Kaplan–Meier curves (Fig. 5)
showed that patients in the high-risk group had a significantly shorter OS than those in the
low-risk group (Training set: HR = 2.73, 95% CI [1.87–3.98], P < 0.001; Test set: HR =
2.72, 95% CI [1.52∼−4.86], P < 0.001). Subgroup analysis were further performed. In the
training set (Fig. 6), the high-risk group had a shorter survival time than the low-risk group
in almost every subgroup (Stage I, p= 0.003; Stage II, p= 0.007; Stage III, p= 0.047),
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Figure 4 The distribution of the risk scores, gene expression levels, and the survival status of patients
in the training set. (A) All samples sorted according to the risk score from low to high, and divided into
high-risk group and low-risk group with the median value of 0.02 as the cutoff value. (B) The survival sta-
tus and time of the high and low risk groups. (C) The expression levels of four genes in the high - and low-
risk groups.

Full-size DOI: 10.7717/peerj.11911/fig-4

although the p-value did not reach statistical significance in patients younger than 65 years
(p= 0.058). Except for the Stage II subgroup (p= 0.075), all other subgroups showed
significant survival differences in the test set (Fig. 7).

Risk-score was an independent prognostic factor for OS
Univariate Cox regression analysis for TCGA cohort suggested T stage (p< 0.001), N stage
(p< 0.001), Stage (p< 0.001) and Risk group (p< 0.001) were significantly associated
with OS (Table 3). The same results were obtained in the GES50081 cohort (Table 4).
Next, we used the risk-group and other clinical factors (including age, gender, T-stage,
N-stage and Stage) as covariates and created a multivariate Cox regression model for
the training set and the validation set (Fig. 8). We found that only the risk-group was
an independent prognostic factor in the training set, while risk-group and T3+4 were
independent prognostic factors in the validation set. Stage and N stage in the validation
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Figure 5 The survival analysis for different risk group in training set and validation set. (A) Kaplan–
Meier survival analysis of risk score in TCGA cohort. (B) Kaplan–Meier survival analysis of risk score in
the GSE50081 cohort. Patients in the high-risk group had a significantly shorter OS than those in the low-
risk group in both cohorts.

Full-size DOI: 10.7717/peerj.11911/fig-5

set almost coincided exactly. Patients with Stage I were all N0, and 35 patients were Stage
II; only 2 samples were N0. Consequently, multivariate analysis for Stage did not obtained
result for Stage. After adjusting for other clinical factors, data showed that risk-group was
an independent factor for the OS of patients with LUAD (training set: HR = 2.34, 95% CI
[1.57–3.5], P < 0.001; validation set: HR = 2.1, 95% CI [1.15–3.9], P = 0.017).

The relationship between risk-group and clinicopathological factors
Table 5 shows the proportions of patients in each risk-group by age, gender, T-stage, N-stage
and Stage. It can be found that the high-risk proportion was significantly larger associated
with a higher T-stage, N-stage, and Stage. This positive correlation also demonstrated that
the risk score increased with tumor progression.

The immune microenvironment differed between risk groups
To determine if there were any differences with regards to tumor-infiltrating lymphocytes
(TILs) relative abundance between high and low risk groups, we applied the online tool
TIMER2.0 using gene expression data (Fig. 9). In the training set, the content of B-cells
(p< 0.001), CD4+ T-cells (p< 0.001) was significantly lower in the high-risk group. In
the validation set, the number of CD4+ T cells (p< 0.001) was significantly lower in the
high-risk group.

We performed correlation analysis for the expression levels of the four genes, risk scores,
and the relative abundance of TILs, in the two cohorts (Fig. 9). In the training set, the
relative abundance of B-cells exhibited a significantly negative correlation with risk score
(correlation coefficient = −0.38, p< 0.05). There was a negative correlation between
CD4+T cells and risk score in both the training set and the validation set (correlation
coefficient: −0.23, −0.49, p< 0.05). The expression levels of TAF3IP3 and all tumor-
infiltrating lymphocytes were positively correlated in both datasets (correlation coefficient:
0.21–0.7, p< 0.05).
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Figure 6 Subgroup Kaplan–Meier survival analysis in TCGA cohort. Stage represents TNM stage. The
high-risk group had a shorter survival time than the low-risk group in almost every subgroup, although
the p-value did not reach statistical significance in patients younger than 65 years.

Full-size DOI: 10.7717/peerj.11911/fig-6

Development and validation of a composite prognostic model
Data derived from the training were used to develop the final prognostic model. As
described previously, T-stage, N-stage, Stage and risk-group were shown to be prognostic
factors via stepwise regression. We chose T-stage, N-stage and risk-group as parameters to
establish the final model and referred to this final model as the composite prognostic model
(named M5) which featured a combination of genetic and clinical factors. In addition,
we performed model diagnostics for M5. Figure 10 shows that each covariate satisfies the
proportional hazards risk hypothesis. None of the outliers affected the model estimates.

The performance of the composite model (AUC-ROC = 0.731) was significantly better
than other parameters, including risk-group (M1, AUC-ROC = 0.643, p< 0.001), T-stage
(M2, AUC-ROC = 0.642, p< 0.001), N-stage (M3, AUC-ROC = 0.648, p< 0.001), and
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Figure 7 Subgroup Kaplan–Meier survival analysis in the GSE50081 cohort. Stage represents TNM
stage. The high-risk group had a shorter survival time than the low-risk group in almost every subgroup,
although the p-value did not reach statistical significance in patients with Stage II.

Full-size DOI: 10.7717/peerj.11911/fig-7
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Table 3 Univariate Cox regression analysis for TCGA cohort. T stage, N stage, Stage and Risk group
were significantly associated with OS.

Variables Number (percent) HR(95CI) P-Value

Age 0.370
<65y 136 (42.9%) reference
≥65y 181 (57.1%) 1.18 (0.82–1.70) 0.372

Gender 0.455
Female 163 (51.4%) reference
Male 154 (48.6%) 1.14 (0.80–1.62) 0.455

Tstage <0.001
T1 98 (30.9%) reference
T2 180 (56.8%) 2.0 (1.23–3.23) 0.005
T3+4 39 (12.3%) 4.02 (2.23–7.23) <0.001

Nstage <0.001
N0 203 (64.0%) reference
N1 67 (21.1%) 2.028 (1.33–3.09) <0.001
N2 47 (14.8%) 3.342 (2.16–5.18) <0.001

Stage <0.001
I 172 (54.3%) reference
II 86 (27.1%) 1.77 (1.16–2.70) <0.001
III 59 (18.6%) 3.44 (2.25–5.28) <0.001

Risk_group <0.001
Low-risk 159 (50.2%) reference
High-risk 158 (49.8%) 2.727 (1.87–3.98) <0.001

Stage (M4, AUC-ROC= 0.646, p< 0.001). In the validation cohort, the AUC-ROC for M5
was 0.689, higher than other covariates; however, the difference between M2 and M5 was
not significant (p= 0.11). The AUC values for M5 at 1, 3 and 5 years were 0.750, 0.737 and
0.719, in the training set, and 0.645, 0.766, and 0.725, in the validation set, respectively.
Further details are given in Fig. 11.

Finally, we plotted a nomogram and calibration curves for the composite prognostic
model (Fig. 12). The calibration curves showed a good match between the predicted
probabilities and the actual probabilities (Fig. 13).

DISCUSSION
Several studies have reported the predictive value of gene expression for the prognosis
of patients suffering from cancer, including breast, colorectal, lung, gastric, and ovarian
cancer (Li et al., 2020a; Pei et al., 2020; Xie et al., 2020; Zhang et al., 2020b). Most of these
studies involved the selection of differentially expressed genes followed by the screening
of prognosis-related genes. However, this practice may have omitted some genes that
are not differentially expressed but are important for prognosis. In the present study,
we performed prognostic gene screening directly from gene expression profiles. Using a
random grouping method, only 17 genes were initially identified as stable prognostic genes;
finally, we identified four genes (CENPH, MYLIP, PITX3, and TRAF3IP3) that could be
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Table 4 Univariate Cox regression analysis for the GSE50081 cohort. T stage, N stage , Stage and Risk
group were significantly associated with OS.

Variables Number (percent) HR (95 CI) P-Value

Age 0.413
<70y 61 (48.0%) reference
≥70y 66 (52.0%) 1.26 (0.72–2.20) 0.415

Gender 0.226
Female 62 (48.8%) reference
Male 65 (51.2%) 1.41 (0.81–2.46) 0.228

Tstage <0.001
T1 43 (33.9%) reference
T2 82 (64.6%) 2.44 (1.22–4.90) 0.010
T3+4 2 (1.6%) 11.7 (2.50–55.0) 0.002

N stage 0.008
N0 94(74.0%) reference
N1 33 (26.0%) 2.14 (1.20–3.83) 0.010

Stage 0.001
I 92 (72.4%) reference
II 35 (27.6%) 2.44 (1.38–4.32) 0.002

Risk_group <0.001
Low-risk 64 (50.4%) reference
High-risk 63 (49.6%) 2.72 (1.52–4.86) <0.001

used as a reliable signature. Only the expression levels of the CENPH gene were found to be
significantly different when compared between lung adenocarcinoma and normal tissue.
Multivariate Cox regression analysis suggested that the four-gene signature represents a
reliable and independent tool for predicting prognosis. Subgroup analysis showed that
this signature could represent an index for screening out high-risk samples from different
Stages and provide new ideas for treatment decisions.

Next, we compared the prognostic ability of risk-group and other parameters. The
TNM system (M4 in the present study) is the most widely used cancer staging system
and is commonly used to evaluate prognosis and facilitate clinical treatment decisions.
In the present study, the high-risk group was more often associated with a high T-stage,
N-stage, and Stage, thus indicating that there is a relationship between risk score and
TNM stage. We analyzed the discriminatory ability of risk-group (M1), T-stage (M2),
N-stage (M3), Stage (M4), and a combined model (M5). In the training set, M5 had a
better discriminatory ability than others and exhibited the best performance across all
time points. In the validation set, M5 was significantly better than other indicators except
for M2, which did not reach a significant difference compared to M5, but was close to
a significant difference (p= 0.11). However, analysis showed that the combined model
including the gene signature was more reliable than the traditional TNM system (M4) at
any time point.

TILs are correlated with the prognosis of several cancer. A recent meta-analysis
demonstrated that high-density TILs, CD3+TILs, CD4+TILs, CD8+TILs and CD20+ TILs
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Figure 8 Forest plot for multivariate Cox regression. (A) In TCGA cohort, only risk-group was an inde-
pendent prognostic factor; (B) In the GSE50081 cohort, risk-group and T3+4 were independent prognos-
tic factors; Note: Stage and N-stage in the GSE50081 cohort almost coincided exactly, patients with Stage I
were all N0, and 35 patients were Stage II, only 2 samples were N0, consequently, multivariate analysis did
not obtained result for Stage.

Full-size DOI: 10.7717/peerj.11911/fig-8

in cancer nests were good prognostic markers for NSCLC patients (Chen et al., 2020). Our
current analysis showed that the high-risk group featured a significantly lower abundance
of CD4+ T cells, both in the training and validation groups. The abundance of B-cells and
CD8+ T cells also tended to be lower in the high-risk group; however, only the difference
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Table 5 The relation between risk-group and clinical parameter. The high-risk proportion was significantly larger associated with a higher T-
stage, N-stage, and Stage.

Variables TCGA
Low risk

TCGA
High risk

P-value GSE50081
Low risk

GSE50081
High risk

P-value

All 159 158 64 63
Age 0.948 0.932

<65y 69 (50.7%) 67 (49.3%) <70y 30 (49.2%) 31 (50.8%)
≥65y 90 (49.7%) 91 (50.3%) ≥70y 34 (51.5%) 32 (48.5%)

Gender 0.049 1.000
male 68 (44.2%) 86 (55.8%) male 33 (50.8%) 32 (49.2%)
female 91 (55.8%) 72 (44.2%) female 31 (50.0%) 31 (50.0%)

T-stage <0.001 0.004
T1 66 (67.3%) 32 (32.7%) T1 30 (69.8%) 13 (30.2%)
T2 81 (45.0%) 99 (55.0%) T2 34 (41.5%) 48 (58.5%)
T3+4 12 (30.8%) 27 (69.2%) T3+4 0 2 (100%)

N-stage 0.002 0.013
N0 116 (57.1%) 87 (42.9%) N0 54 (57.4%) 40 (42.6%)
N1 28 (41.8%) 39 (58.2%) N1 10 (30.3%) 23 (69.7%)
N2 15 (31.9%) 32 (68.1%)

Stage 0.001 0.005
I 102 (59.3%) 70 (40.7%) I 54 (58.7%) 38 (41.3%)
II 37 (43.0%) 49 (57.0%) II 10 (28.6%) 25 (71.4%)
III 20 (33.9%) 39 (66.1%)

in B-cells reached statistical significance in the training set. This suggests the existence of
a correlation between risk-scores and the tumor immune microenvironment, particularly
with CD4+ T cells.

We identified that TRAF3IP3 was positively correlated with all six types of immune
infiltrating lymphocytes, thus suggesting that this gene is closely related to tumor immune
infiltration. However, very few studies in the existing literature have investigated the role
of TRAF3IP3. One previous study reported that TRAF3 interacting protein 3 (TRAF3IP3)
is expressed in the immune system and known to be involved in cell maturation, tissue
development, and immune response (Nasarre et al., 2018). TRAF3IP3 is known to regulate
the development of thymocytes via the ERK signaling pathway (Zou et al., 2015). The
establishment of TRAF3IP3-knockout mice revealed a significant reduction in the number
of common lymphoid progenitor cells in the bone marrow; furthermore, the there was
a total absence of B cells in the marginal zone of the spleen (Peng et al., 2015). We also
showed that tumor-infiltrating B cells were also positively correlated with TRAF3IP3
expression; B cells have also been reported to be actively proliferating in tumors, This
suggests that the regulatory system for this gene in B cells may also be present in the tumor
microenvironment. Furthermore, our research showed that the extent of tumor-infiltrating
CD4+ T cells was positively correlated with the expression of TRAF3IP3 (correlation
coefficients of 0.55 and 0.54 for the training and validation sets, respectively). We speculate
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Figure 9 The tumor-infiltrating lymphocytes evaluation and the correlation analysis with genes ex-
pression and risk-score. (A, B) The tumor-infiltrating lymphocytes relative abundance for two cohorts
using TIMER 2.0. (C, D) The correlation between the tumor-infiltrating lymphocytes relative abundance,
gene expression, and risk-score, only the p-value < 0.05 were showed. A and C were the TCGA cohort, B
and D were the GSE50081 cohort.

Full-size DOI: 10.7717/peerj.11911/fig-9

that the effect of TRAF3IP3 may be related to its positive regulation of tumor-infiltrating
immune cells.

The expression of CENPH is known to be elevated and associated with the progression
of many cancers, such as oral, tongue, nasopharyngeal, hypopharyngeal, lung, breast,
esophageal, gastric, colorectal, hepatocellular, and renal cancer (Wu et al., 2015). Chinese
researchers were the first to report the relationship between CENPH and NSCLC and
showed that both mRNA levels and protein levels were over-expressed in cases of lung
cancer. Further analysis showed that high expression levels of CENPH protein were
positively correlated with Ki-67 and associated with a poor prognosis, particularly in
patients diagnosed with stage I–II lung cancer (Liao et al., 2009). Our analysis also showed
that CENPH was overexpressed in cases of lung adenocarcinoma and correlated with a
poor prognosis. Furthermore, the expression levels of CENPH gradually increased in stages
I–IV, suggesting that the expression of this gene is closely related to tumor progression.
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Figure 10 The diagnosis for combinedmodel (M5). (A) Proportional hazards hypothesis test. The
curves are smooth, p-values of each covariate and global test are all > 0.05, all the covariates satisfies
proportional hazards risk hypothesis. (B) The strong impact point test shows a uniform distribution of
dfbeta values; none of the outliers affects the model estimates. The ‘survmier’ package was used for this
figure.

Full-size DOI: 10.7717/peerj.11911/fig-10
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Figure 11 ROC analysis and comparision of models. (A) ROC analysis of models. M1: risk-group; M2:
T-stage; M3: N-stage; M4: Stage (TNM stage); M5: the composite prognostic model. The performance of
the composite model (M5) was significantly better than others. (B) Time-dependent AUC curves. (C) 1-,
3-, 5-years ROC curves of the composite prognostic model.

Full-size DOI: 10.7717/peerj.11911/fig-11

The MYLIP gene, also known as IDOL or MIR, encodes a protein that belongs to the
cluster of cytoskeletal proteins and is known to play a role in regulating the motility,
migration and adhesion of cells; the inhibition of MYLIP expression has also been shown
to promote migration and metastasis of breast and cervical cancer cells (Ni et al., 2020;
Zhao et al., 2017). MYLIP represents a potential marker and target for the diagnosis and
treatment of breast cancer (Zhao et al., 2020). In our analysis, the expression levels of
MYLIP were significantly higher in the lymph node negative group than in the lymph node
positive group (p= 0.0052 and 0.0087 for the training and validation sets, respectively)
and therefore represented a prognostic protective gene. This finding suggested that high
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Figure 12 Nomgram plot for the composite prognostic model (M5). According to the total points of
Tstage, Nstage and risk_group of each case, the probability of 3-year survival and the probability of 5-year
survival can be predicted.

Full-size DOI: 10.7717/peerj.11911/fig-12

levels ofMYLIP expression may reduce the migratory ability of lung adenocarcinoma cells;
this finding was consistent with previous studies. PITX3 is a member of the PITX gene
family, which includes PITX1, PITX2, and PITX3, all of which are related to lung cancer
(Tran & Kioussi, 2021; Zhang et al., 2021). There are few studies on the occurrence and
development of PITX3 and lung cancer. However, previous studies have shown that the
mRNA expression level of PITX3 in lung cancer tissue is not significantly different from
normal lung tissue, but it is closely related to tumor stage, and the prognosis of patients
with high expression is poor (Zhang et al., 2021). In this study, it is also shown that PITX3
is a poor prognostic gene, but the specific mechanism is still unclear. In summary, the gene
sets we identified were associated with immune infiltration along with the proliferation
and migration of lung adenocarcinoma.

Although we identified four genes associated with the prognosis of patients with
LUAD using bioinformatics technology and large sample sizes, our research still has some
limitations that need to be considered. First, the platforms applied in the TCGA and GEO
cohorts, and the reported gene expression levels for these cohorts, were different. This led
to large differences in risk scores between the two sets, thus forcing us to use different cutoff
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Figure 13 Calibration curves for the composite prognostic model at 3-year and 5-year. The predicted
probabilities and the actual probabilities match well.

Full-size DOI: 10.7717/peerj.11911/fig-13

values when risk grouping. This may limit the external application of our model. Second,
three of the four genes we identified were down-regulated in tumors when compared
to normal tissues but with no statistical difference; consequently, it may be difficult to
perform immunohistochemical validations in future. Third, conclusions derived from our
bioinformatic analyses were not validated by our cohort trials. Thus, our model needs to
be extrapolated further in larger studies.

CONCLUSIONS
In conclusion, we developed a risk-score model featuring a four gene signature that
was related to immune function, cell proliferation, and cell migration. This risk-score
represented an independent prognostic factor in both the training and validation sets.
In terms of assessing prognosis, we should also pay attention to genes that are related to
survival, even if their expression levels do not differ from normal tissues. On this basis,
clinical factors were combined to construct a new combined prognostic prediction model
with good discrimination and calibration; this combined model performed well in the
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validation set. This combined model may be important for predicting the prognosis of
patients with lung adenocarcinoma.
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