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Metabolic demands of skeletal muscle are substantial and are characterized normally as
highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type
and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid
and glucose substrates) are altered in obesity, with some changes proceeding and some
following the development of the disease. Nonetheless, there are marked interindividual
differences in skeletal muscle composition and metabolism in obesity, some of which have
been associated with obesity risk and weight loss capacity. In this review, we discuss related
molecular mechanisms and how current and novel treatment strategies may enhance weight
loss capacity, particularly in diet-resistant obesity.

Introduction
According to the World Health Organization, more than 1 billion adults are overweight and an addi-
tional 650 million adults are living with obesity. The global prevalence of obesity has tripled since the
1970s, with dramatic increases in the rates of childhood obesity [1–3]. Obesity is a major global public
health concern as it is a risk factor for many cardiometabolic diseases including coronary heart disease,
hypertension, Type 2 diabetes mellitus (T2D), and non-alcoholic fatty liver disease (NAFLD) [1,4–6].
Obesity is also associated with increased risk for many types of cancer, musculoskeletal disorders (e.g.,
osteoarthritis), and all-cause mortality [1,4,5,7–11]. The high healthcare costs associated with treating
comorbidities associated with obesity demonstrate the critical need for weight loss strategies to manage
this disease [12–14]. Achieving a modest weight loss of ≥5% has been shown to significantly modify risk
factors for cardiometabolic disease [15]. Specifically, adjusted regression models in a retrospective anal-
ysis of electronic health records from patients with a history of obesity who had either maintained their
current weight (i.e. not lost weight), lost >5% of body weight and subsequently regained weight, or lost
and maintained >5% of their body weight, revealed that achieving a weight loss of 5–10% reduces T2D
risk and lowers HbA1c, and that weight loss of 10–15% improves blood pressure and reduces plasma LDL
and increases HDL [16]. Weight loss of >20% is generally observed with bariatric surgery and is further
associated with decreased risk of cancer and increased life expectancy by up to 3 years [17].

Obesity is a complex, multifactorial disease involving the excess deposition of body fat, predominantly
stored not only in adipose tissues but also ectopically in tissues such as liver and skeletal muscle. The
expansion of adipose tissue drives increases in body mass and body mass index (BMI). Obesity is most
commonly identified as a BMI exceeding 30 kg/m2, while overweight is identified as a BMI greater than 25
kg/m2 but less than 30 kg/m2. The development of obesity is ultimately driven by an imbalance between
dietary energy intake and energy expenditure. Thus, weight loss interventions require a negative energy
balance, through reduced dietary energy intake, and/or increased energy expenditure (e.g., through exer-
cise).
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Figure 1. Potential factors contributing to adaptive thermogenesis during weight loss and resistance to diet-induced weight

loss

Restricting energy intake can elicit metabolic adaptations in energy expenditure that oppose successful weight loss. The mecha-

nisms that underlie adaptations in energy-expenditure are associated with genetic factors, decreased activity of the sympathetic

nervous system (SNS), impaired neuroendocrine signaling, changes in thyroid hormones, and variations in body composition (loss

of fat free mass [FFM]). Moreover, resistance to diet-induced weight loss is associated with lower expression of OXPHOS and

ribosomal genes, diminished glutathione redox, less type I muscle fibers, and decreased oxidative capacity. Figure created with

BioRender.com.

Individuals with obesity often attempt multiple treatment approaches before seeking help from medical profes-
sionals; they frequently report using self-guided caloric restriction or popularized diet strategies, exercise, commer-
cial weight-loss programs, and over-the-counter dietary supplements [18–20]. Once in the care of medical and allied
health professionals, the focus is on behavioral strategies and pharmacotherapies. Behavioral programs frequently
employ very low-calorie total meal replacements in combination with behavioral counseling. The statistics on sus-
tained weight loss success with these approaches have been discouraging [21], and the hope is that more personal-
ized approaches and novel pharmacotherapies will significantly improve weight loss outcomes. While greater degrees
of weight loss and sustained weight loss are associated with bariatric surgeries, these approaches are invasive, not
universally available, and typically are only for those with severe obesity, or obesity-associated comorbidities [22].
Long-term mortality significantly improves with surgical intervention [23]; however, there is still a significant risk of
complications associated with bariatric surgery, including a 0.7% risk of mortality [24].

The objective of this review is to discuss the role of mitochondrial health and energy expenditure in the context of
variability in weight loss success, and more specifically, factors associated with skeletal muscle metabolism that are
associated with enhanced or perturbed weight loss success. While exercise is a major factor, and will be addressed
here, other factors that augment energy expenditure of skeletal muscle will also be discussed.
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Variability in weight loss success
Many studies have shown that there is substantial interindividual variability in weight loss response to traditional in-
terventions [25,26], even after controlling for factors such as diet adherence, age, biological sex, exercise, and medica-
tions [25,27]. Max Wishnofsky first proposed the highly propagated idea that weight loss could be linearly quantified
in caloric equivalents of a 3500-calorie deficit for one pound of body weight [28], suggesting that decreasing energy
intake should lead to similar weight loss outcomes in patients following the same dietary intervention. The idea that
low response to diet-induced weight loss is simply attributable to adherence was forwarded in a study by Lichtman et
al., which described that individuals with a history of diet-resistant weight loss had large discrepancies in self-reported
and actual energy intake and energy expenditure [29]. Remarkably complex mechanisms govern food intake control,
and impairments in the perception of food intake can contribute to the development of obesity and make successful
treatment more challenging [30,31]. However, a growing body of literature has since refuted the concept that poor
response is simply due to poor adherence by demonstrating that weight loss after controlling for program adherence
remains highly variable, in-part associated with complex metabolic adaptations in energy expenditure. In addition
to the existence of adaptations in energy expenditure during weight loss, the recognition that obesity is a chronic
disease has helped denounce the common bias suggesting that obese individuals resistant to weight loss simply lack
discipline and/or have an inadequate perception of their food and/or activity habits [32]. While predictive models of
weight loss are improving [33,34], there remains a great need for an improved understanding of the causes of variable
weight loss success in order to identify more effective personalized treatment strategies.

Extensive research has examined genetic factors related to the propensity for obesity and weight loss. In the early
1990s, studies on monozygotic twins elucidated the heritability of body weight. Male twins overfed by 1000 kcal/day
for 84 out of 100 days had similar intrapair variance in body weight and fat mass increases, but the variance between
pairs of twins was significantly greater [35]. Similarly, monozygotic male twins who completed an exercise interven-
tion in negative energy balance had similar anthropometric responses in body weight and regional fat distribution
within a genotype but responses varied significantly between twin pairs [36]. The contribution of genetics to obesity
susceptibility is also supported by adoptee studies, in which the BMI of adoptive children is more closely related to
their biological parents than their adoptive parents [37]. In the 30 years following these classical studies, large-scale
genome-wide association studies (GWAS) have identified ∼100 loci associated with obesity [38]. The heritability of
obesity is high and is estimated to be between 40 and 70% [38–40], with over 500 genetic loci associated with adi-
posity traits [41]. Recent genome-wide polygenic risk score computational models have been able to robustly predict
BMI and obesity [42], providing new opportunities for obesity prevention and mechanistic insights into the patho-
physiology of obesity. However, genetic variants associated with increased obesity susceptibility only explain >20% of
BMI variation. There are a number of valid explanations for ‘missing heritability’. Despite the information provided by
genome-wide association studies, many genetic variants with weak but real effects on a trait, such as BMI, do not reach
GWAS significance (P<10−8). Array technologies also do not capture rare variants that are not in linkage disequilib-
rium with genotyped variants (the non-random association of alleles at different loci) [43]. Newer approaches that
make use of whole genome sequencing (WGS) data and a methodology termed GREML (genomic-relatedness-based
restricted maximum likelihood) have markedly increased the proportion of predicted heritability explained to date
for traits such coronary heart disease, height, and BMI [44,45]. Additional and important layers exist including the
epigenome and its interactions with the environment [44]. Finally, even in the context of high genetic risk, clearly
lifestyle factors can markedly influence the phenotypic outcome, highlighting the influence of other biological, envi-
ronmental, and lifestyle factors in the development of obesity [42].

Our group has been investigating the factors that contribute to variability in weight loss in cohorts sampled from
over 5000 patients who have completed the same intensively supervised 900 kcal/day meal replacement (OptiFast
900, Nestle) and behavioral program. We have shown that patients in the top quintile for weight loss (diet-sensitive,
DS) have many physiological characteristics that distinguish them from patients in the lower quintile for weight loss
(diet-resistant, DR). Many of these characteristics relate to skeletal muscle composition and metabolism including
greater expression of genes involved in glucose and fatty acid metabolism, higher mitochondrial proton leak, and a
greater antioxidant capacity in skeletal muscle from DS patients compared with DR patients [25,27,46,47]. Patients
with diet-resistant obesity also exhibit lower weight loss capacity for up to 26-weeks following Roux-en-Y gastric
bypass surgery [48], further supporting a biological basis for weight loss capacity.

The role of energy expenditure in weight loss success
Differences in energy expenditure and resting metabolic rate (RMR) can also contribute to the risk for obesity devel-
opment [49]. Energy expenditure is classically defined as the sum of the basal metabolic rate, thermic effect of feeding,
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Figure 2. Mitochondria-specific differences observed in skeletal muscle from diet-resistant versus diet-sensitive patients

with obesity

Skeletal muscle from diet-resistant individuals has less mitochondrial proton leak and lower expression of genes involved in the

electron transport chain and fatty acid metabolism compared to diet-sensitive individuals. Moreover, when challenged with a high-

-fat meal, skeletal muscle fatty acid oxidation and maximal oxidative phosphorylation was lower in DR individuals (see text for

details). Figure created with BioRender.com.

and non-resting energy expenditure. Fat-free mass (FFM) is the most metabolically active component of body com-
position, and thus, the best predictor of resting metabolic rate [50,51]. Non-resting energy expenditure is the most
variable component to total energy expenditure, and the metabolic variable most affected by weight change [52].
Non-resting energy expenditure can further be categorized into energy expenditure from thermoregulatory energy
expenditure, exercise/voluntary physical activity and non-exercise activity thermogenesis (NEAT) that is related to
non-volitional movements, such as fidgeting [53]. Thermoregulatory energy expenditure mechanisms include shiver-
ing and non-shivering thermogenesis. Energy expenditure fluctuates across the lifespan and, also, demonstrates high
interindividual variation. Highlighted in a recent study with over 6000 participants in 29 different countries, analysis
of doubly labelled water data revealed that total daily energy expenditure can vary +−20% even after accounting for
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age, fat-free mass, and sex [54]. The large interindividual variation in energy expenditure has a strong genetic com-
ponent, with highly similar RMRs observed between monozygotic versus dizygotic twins [55], and siblings within
the same family [49]. Starting in late childhood, low RMR is associated with a greater weight gain in adolescence
[56]; these observations persist in adulthood, with a continued association between low 24-h energy expenditure and
weight gain over 2 years [49]. When obesity develops, there can be increases in both total energy expenditure and
RMR [57–60], which are largely due to increases in FFM that accompany the increase in body weight [58].

Reducing energy intake can elicit an evolutionarily conserved adaptive decline in RMR to preserve energy during
times of dietary energy deficits and starvation [61,62]. This adaptive thermogenesis was elucidated as part of the
Minnesota semistarvation study in which 24 weeks of semistarvation was found to reduce resting energy expenditure
by 15.5%, independent of changes in body mass and FFM [63]. While interventions that have used caloric restriction
as a tool to induce weight loss in individuals with obesity generally use moderate reductions in caloric intake, more
recent studies have also demonstrated that weight loss can induce a decline in energy expenditure that persists for
several months to years in the weight-reduced state [64–67]. However, some studies report no changes in energy
expenditure in subjects formerly with obesity [68,69].

Weight-loss-induced adaptive declines in thermogenesis can oppose successful weight loss maintenance, with
larger decreases in energy expenditure conferring increased susceptibility to weight regain [65,70,71]. Even in healthy
lean males, those who exhibited greater decreases in energy expenditure while fasting gained more weight during a
6-week low-protein overfeeding intervention, indicating that larger reductions in fasting energy expenditure increase
obesity susceptibility [70,71]. Similarly, individuals with a limited capacity to increase energy expenditure following
overfeeding, originally referred to as ‘luxuskonsumption’, have increased susceptibility to weight gain compared with
those who have greater increases in energy expenditure with overfeeding [49,71,72]. Consistent with the inverse as-
sociation between energy expenditure and weight gain susceptibility, individuals with diet-resistant obesity have a
greater decrease in energy expenditure while on a low-calorie diet compared to individuals who lose weight quickly
[73–75]. Diet-induced weight loss can prompt the undesirable loss of FFM [76], exacerbating weight-loss-induced
adaptive thermogenesis. Interindividual differences in energy metabolism likely underlie the considerable variability
in adaptive thermogenesis that may enhance or perturb weight loss capacity.

The molecular mechanisms for adaptive thermogenesis and resistance to diet-induced weight loss are vast and
involve metabolic and neuroendocrine factors. Upon achieving a greater than 10% weight loss, there are substan-
tial changes to sympathetic nervous system (SNS) activity, notable decreases in thyroid hormones and leptin, and
increases in skeletal muscle work efficiency (energy cost per muscle contraction) [61,62]. Total mass, contractile ac-
tivity and metabolism of skeletal muscle greatly influence weight loss capacity. Skeletal muscle accounts for 40–45% of
total body mass, and when the body is at rest, skeletal muscle is responsible for approximately 20% of resting energy
expenditure (this proportion increases with exercise) [77,78]. Beyond its overall energy demands, skeletal muscle
is the primary site of postprandial glucose uptake [79] and plays a major role in maintaining whole-body glucose
homeostasis [80]. Skeletal muscle also serves as a reservoir for amino acids permitting synthesis of new proteins dur-
ing fasting periods or supporting energy transduction via proteolysis when other macronutrient sources are depleted
[81].

Skeletal muscle and mitochondrial bioenergetics
Skeletal muscle metabolism can rapidly adapt to meet energy demands and relies heavily on mitochondrial oxida-
tive metabolism to transduce macronutrient energy into adenosine triphosphate (ATP) [82]. Oxidation of energy
substrates provides reducing equivalents (i.e., electrons) that then drive the activity of the mitochondrial electron
transport chain (ETC). The electrons can enter at complexes I–III (CI–CIII) of the ETC, and the flow of electrons
coincides with the pumping of protons by CI, CIII and CIV from the matrix to the intermembrane space, thereby
contributing to the generation of protonmotive force (PMF) across the inner membrane. PMF is comprised of two
components: a charge gradient (mitochondrial membrane potential, �ψm) and a chemical gradient (�pH). Positively
charged ions generate the �ψm charge gradient, which has a much larger contribution to PMF than the chemical sep-
aration that determines the �pH [83,84]. The return of protons to the matrix, down the electrochemical gradient via
the F1F0-ATP synthase produces ATP and decreases PMF [85].

In most cells of the body, OXPHOS yields 90% of the ATP needed to support cellular work; however, the efficiency
of mitochondrial ATP production can be highly variable due to the uncoupling of energy substrate oxidation from
ATP synthesis through a process termed proton leak. When ATP demand is low, protons can migrate across the
inner membrane into the matrix, independently from the ATP synthase, leading to increased activity of the ETC,
consuming oxygen in the process. Proton leak is thought to be a protective redox regulation mechanism, preventing
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excess formation of reactive oxygen species (ROS) by allowing electron flow through the ETC, rather than a build-up
and escape of electrons to form superoxide anion.

The mechanisms of proton leak are complex and include both basal and inducible forms of proton conductance.
In skeletal muscle proton leak, uncoupling is thought to be responsible for up to 50% of resting muscle energy ex-
penditure, and this proportion is thought to decrease as ATP demands increase [86]. At the protein level, the only
UCP expressed in skeletal muscle is UCP3, but it is expressed at approximately two orders of magnitude lower than
the levels of UCP1 in brown adipose tissue mitochondria. UCP1 is well-recognized for its role in mediating proton
leak uncoupling in brown and beige adipose tissues in many mammals [87–89], and its activity in adult humans is
associated with reduced risk for many chronic metabolic diseases [90,91]. Adenine nucleotide translocase (ANT),
an abundant mitochondrial inner membrane protein in skeletal muscle that supplies ADP from the cytosol to the
mitochondrial matrix in exchange for ATP (i.e. ADP/ATP exchange). ANT also mediates proton leak (basal and
fatty acid-activated) independently of ADP/ATP exchange and may facilitate the permeability transition pore open-
ing through mitochondrial depolarization [86,92–95]. Fatty acids act as co-factors for H+ transport by ANT and
may bind to the reputed ADP/ATP binding site as H+ transport by ANT is negatively regulated by ANT-mediated
ADP/ATP exchange [93,96,97]. Taken together, these data are consistent with the conclusion that ANT has two dis-
tinct and partially competing functions: fatty-acid activated proton leak and ADP/ATP exchange. Post-translational
modifications of ANT through acetylation, and glutathionylation have been reported and require further investiga-
tion in light of the recently identified reciprocal activities of ADP/ATP transport versus H+ leak [98,99].

If proton leak is responsible in humans (as in rats) for upwards of 50% of energy expenditure in resting muscle,
and as muscle energy expenditure is responsible for roughly 20% of RMR, then proton leak in muscle alone could be
responsible for approximately 10% of RMR in humans [100–102]. A role for low proton leak in muscle in the context
of diet-resistant obesity is supported by results from our group, and is discussed below.

Declines in skeletal muscle mitochondrial content have repeatedly been associated with obesity as evidenced by
20–60% reductions in mitochondrial surface area (using electron microscopy), and significantly lower expression of
various mitochondrial genes and proteins [103–105]. It is well established that impaired skeletal muscle mitochondrial
function is characteristic of obesity, and is reflected by impaired fatty acid metabolism, lower activity of mitochondrial
enzymes, and increased H2O2 emission [106–113].

Skeletal muscle mitochondrial bioenergetics and weight loss
Skeletal muscle fiber composition and the efficiency of skeletal muscle mitochondrial energy transduction have been
linked to weight loss characteristics in individuals with obesity (Figure 1) [102]. Adults with obesity have lower pro-
portions of mitochondria-dense type I fibers compared with proportions in muscle of lean controls [114–117], and
the proportion of type I fibers contributes to obesity susceptibility [118,119]. Moreover, a recent systemic review re-
vealed a negative relationship between the proportion of type I fibers and BMI, and a positive relationship between
the proportion of type IIX fibers and BMI, with no clear relationship between type IIa fiber proportion and obesity
[120]. The proportion of type I fibers also contributes to weight loss capacity, with a high degree of weight loss fol-
lowing bariatric surgery strongly associated with type I fiber content in rectus abdominis muscle [114]. Similarly,
vastus lateralis muscle from DS patients with obesity has a greater proportion of type I fibers and fiber hypertrophy
compared with both DR patients and lean controls [27]. Altogether, findings support the conclusion that variability
in skeletal muscle fiber composition and size are associated with obesity risk and weight loss.

While it is clear that skeletal muscle mitochondrial content is decreased with obesity [103,104], a direct link be-
tween skeletal muscle mitochondrial content and propensity for weight loss has yet to be observed. However, sub-
stantial evidence supports the conclusion that mitochondrial oxidative capacity may drive weight loss success. Gene
set enrichment analysis of repeated skeletal muscle biopsies obtained from patients undergoing a hypocaloric diet re-
vealed that DS patients who lost an average of 49% more weight than DR patients had significantly higher enrichment
of gene transcripts encoding mitochondrial ETC proteins [27]. Higher enrichment of mitochondrial ETC transcripts
was even observed in circulation prior to weight loss, suggesting that oxidative capacity could predict weight loss suc-
cess [121]. The differences in ETC transcripts between DR and DS individuals translate into functional differences
in skeletal muscle, where maximal mitochondrial respiration and complex I+II OXPHOS are lower in muscle biop-
sies of DR versus DS participants (Figure 2) [46]. However, lower enrichment of mitochondrial ETC transcripts in
DR muscle did not translate into decreased expression of key ETC subunits in primary myotubes isolated from DR
individuals [47].

Skeletal muscle energy transduction efficiency is also important. Differences in mitochondrial proton leak un-
coupling have been associated with weight loss capacity. Proton leak was found to be 50% higher in mitochondria
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isolated from rectus femoris muscle of DS individuals who achieved high rates of diet-induced weight loss compared
to DR individuals with obesity [25]. Enhanced proton leak in DS muscle appears to be cell autonomous as proton leak
is also higher in primary myotubes isolated from DS individuals [47]. The difference in skeletal muscle mitochon-
drial proton leak between DS and DR has been attributed to altered expression of UCP3, as UCP3 mRNA expression
is greater in isolated mitochondria from DS rectus femoris muscle [25]. When the human form of UCP3 is over-
expressed in mouse skeletal muscle by ∼2.5-fold above normal, mice are protected from diet-induced obesity and
display metabolic characteristics of enhanced fatty acid oxidation [122–125]. Genetic polymorphisms may play a key
role in determining UCP3 function, as a recent meta-analysis concluded that -55C/T polymorphism in UCP3 protects
from obesity and T2D [126,127]. Moreover, evidence from murine models indicates that ADP sensitivity is impaired
in skeletal muscle from mice with diet-induced obesity [128], suggesting that ANT-mediated ADP/ATP exchange is
decreased in obesity. However, ANT-mediated proton leak may remain intact in obesity due to the accumulation of
intramuscular fatty acids which may promote H+ transport [107,129,130]. These data support the conclusion that
differences in mitochondrial uncoupling in muscle impact propensity for obesity and weight loss.

There is evidence to support the possibility that blunted capacity for fat oxidation contributes to obesity and the
capacity for weight loss. In response to a defined high-fat meal (∼35% of daily kcal requirements based on indirect
calorimetry; >60% calories from fat), diet-resistant women exhibit lower fatty acid clearance, suggesting that lower
fatty acid oxidation may contribute to the diet-resistant phenotype [46]. Low resting respiratory exchange ratio (RER,
VCO2/VO2 i.e., carbohydrate versus fat oxidation) has previously been identified in women with a high rate of weight
loss [131]; whereas high resting RER has been linked to weight gain [132]. However, meta-analyses of studies asso-
ciating 24-h RQ and body weight have not confirmed this hypothesis [133]. Ex vivo studies at the level of skeletal
muscle have shown that fatty acid oxidation is lower in DR muscle [46], which may be attributed to decreased fatty
acid availability and reduced fatty acid mobilization from adipose tissue [134,135].

With the increasing availability of omics platforms, researchers have a greater capacity to investigate differences
in protein and metabolite patterns that could explain weight loss variability. In a large cohort of adults with obesity,
predictive models of baseline parameters identified plasma metabolites that could explain up to 57% of variation
in weight loss success prior to diet-induced weight loss. Circulating concentrations of branched-chain amino acids
(BCAAs), tyrosine, specific lipid species, and citrate have consistently been linked to weight loss success in principal
component analyses of plasma and serum metabolites [73,131,136]. There is a clear pattern for a metabolic basis
of variations in body weight; however, much research is still required to translate this to novel and personalized
approaches for the treatment of obesity.

Interventions to boost skeletal muscle mitochondrial
bioenergetics for diet-resistant obesity
While comprehensive weight loss programs that focus on decreasing caloric intake can result in a 5–8% weight reduc-
tion in many individuals [21], it is clear that diet-centric approaches do not work for all patients, and that maintenance
of the reduced body weight is the exception rather than the norm. Bariatric surgery is the most effective treatment
strategy and typically results in 20–45% weight loss 12 months following Roux-en-Y gastric bypass (RYGB). More-
over, the weight loss is maintained in 70% of patients for over 7 years [137]. However, as discussed, the invasive and
irreversible nature of this treatment, as well as the lifelong changes to food intake and diet supplements, mean that
this approach is not available or desirable for many with obesity. Table 1 summarizes possible interventions to boost
skeletal muscle bioenergetics in diet-resistant obesity.

Exercise
The use of exercise in the absence of dietary approaches as a means to induce weight loss has a controversial history
in obesity treatment. Despite abundant research demonstrating the beneficial effects of exercise in mitigating the risk
of cardiometabolic disease and all-cause mortality [138–141], exercise is often overlooked as a primary treatment for
obesity. Exercise is well recognized for its beneficial effects on skeletal muscle glucose homeostasis and has repeat-
edly been shown to enhance insulin sensitivity in individuals with obesity [142–144]. However, caloric restriction is
ultimately more effective at inducing weight loss than exercise is alone [145–152]. Given the above-described deficits
in mitochondrial energetics in DR obesity, exercise interventions may be particularly beneficial in DR obesity; on
the other hand, if the deficits are ‘hard-wired’ (e.g., genetically), then exercise interventions may not be of particular
benefit to those with DR obesity.
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Table 1 Interventions to boost skeletal muscle mitochondrial bioenergetics

Intervention

Mode of action and
adaptions to skeletal
muscle metabolism

Clinically relevant
weight loss Status and remarks

Safety and adverse
effects References

Lifestyle

Aerobic exercise training ↑ Energy expenditure
↑ Type I fibers
↓ Fat mass

↑ Mitochondrial content
and function

Aerobic exercise alone, low
weight loss; Exercise +
diet, high weight loss

Recommended in most
weight loss programs

Non-serious adverse
events related to muscle

pain and fatigue

[146,147,151,369,370]

Resistance exercise
training

↑ Protein translation
↑ FFM

↑ Hypertrophy

Resistance Exercise alone,
no weight loss; Resistance

exercise + diet high

Recommended in most
weight loss programs

Non-serious adverse
events related to muscle

pain and fatigue

[212,217,370,371]

Cold exposure ↑ Energy expenditure
↑ Heat production

↑ SNS activity
↑ Skeletal muscle

contractions
↑ SERCA Ca2+ cycling

↑ UCP content and proton
leak

Insufficient evidence Hypothermia [372]

Mitochondrial uncouplers

(2,4)-Dinitrophenol (DNP)
(3–5 mg/kg/day; 75–300
mg/day)

↑ Energy expenditure
↑ Heat production

↑ Proton leak

High Not approved for weight
loss treatment

Major safety concerns;
hyperthermia, mortality

[266]

Salsalate (3–4 g/day) Animal studies:
↑ AMPK activation

↑ Energy expenditure
↑ Heat production

↑ Proton leak

No Not approved for weight
loss. Human trials show

increased or no change in
body weight

Side effects include
tinnitus, headache, rash,

gastrointestinal
disturbances

[273,275,373]

Niclosamide, niclosamide
ethanolamine and
nicloasmide piperazine

Animal studies:
↑ Proton leak

↑ Fatty acid oxidation

Insufficient evidence in
humans

Not approved for weight
loss treatment; Approved

as anthelmintic

Generally well tolerated;
nausea, gastrointestinal
disturbances, dizziness,

pruritus

[277,278,374]

Appetite suppressants

Amphetamine
Methamphetamine

↓ Energy intake
↑ Energy expenditure

↑ SNS activity
↑ Thyroid hormones
↑ Catecholamine and

monoamines
↑ (α and β)-Adrenergic

receptor stimulation
Skeletal muscle (animal

studies):
↑ Motor stimulation

↑ UCP3
↑ SERCA activity

High Withdrawn High risk for addiction and
abuse; adverse psychiatric

effects, neurotoxicity

[287,288,375,376]

Sympathomimetic
agents/Amphetamine
Congeners
e.g. Amfepramone,
Diethylpropion, Mazindol
Phentermine (15–30 mg),
Phentermine/topiramate,
Phenmetrazine (3 × 25
mg/day),
Phendimetrazine (6 × 35
mg)

↓ Energy intake
↑ SNS activity

↑ Release of monoamines
↑ (α and β)-Adrenergic

receptor stimulation
↑ Motor stimulation

High Approved for short-term
use

Side effects include
paresthesia, cardiovascular

abnormalities, nausea

[263,377,378]

Sibutramine (10–20 mg) ↓ Energy intake
↑ SNS activity

↑ Energy expenditure
↑ (α and β)-Adrenergic

receptor stimulation

High Withdrawn Major safety concerns;
Hypertension, increased
risk of heart attack and

stroke, mortality

[377,379,380]

Continued over
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Table 1 Interventions to boost skeletal muscle mitochondrial bioenergetics (Continued)

Intervention

Mode of action and
adaptions to skeletal
muscle metabolism

Clinically relevant
weight loss Status and remarks

Safety and adverse
effects References

Serotonergic agents
Fenfluramine,
Dexfenfluramine

↓ Energy intake
↑ Serotonin release

↓ Serotonin reuptake
↑ SNS activity

↑ (α and β)-Adrenergic
receptor stimulation

Muscle:
↑ Glucose uptake, lactate
production (Fenfluramine)

High Withdrawn Major safety concerns;
Increased risk of

cardiovascular events,
valvulopathy, pulmonary

hypertension

[377,381]

Other

Thyroid Hormones
T3 (18–117 μg/70 kg/day)

↑ Energy expenditure
Muscle:

↑ ATP turnover
↑ Proton leak

↑ UCP3

Insufficient evidence in
euthyroid patients

Not approved for weight
loss treatment; Approved

for hypothyroidism

Safety concerns for
euthyroid patients. Adverse

effects include
thyrotoxicosis,
cardiovascular

abnormalities, decreased
bone density, muscle

catabolism

[382,383]

Metformin (500–3000
mg/day)

↓ Energy intake
↑ AMPK activation

↑ Fatty acid oxidation

Medium Not approved for weight
loss treatment; Approved

for hyperglycemia

[335,384]

β-Adrenoceptor agonists
e.g Isoproterenol,
Isoprenaline (non-selective
β-adrenoceptor agonists)
Mirabegron
(β3-adrenoceptor agonist)
Formoterol
(β2-adrenoceptor agonist)

↑ β-Adrenergic receptor
stimulation

↑ Energy expenditure
↑ Lipolysis

↑ Fatty acid oxidation
↑ Lean mass

Insufficient evidence from
long-term trials

Not approved for weight
loss treatment

[302,385]

GLP-1 agonists
Liraglutide (3 mg/day)
Semaglutide (2.4 mg
subcutaneous
injection/week)

↓ Energy intake
↑ Energy expenditure
↑ Fatty acid oxidation

↓ Muscle loss

High Approved for weight loss
treatment

Nausea, diarrhea,
constipation

[386,387]

Supplements

Caffeine (60–600 mg/day) ↑ Energy expenditure
↑ SNS activity

↑ Catecholamines
↑ Fatty acid oxidation

Low Approved for sale as a
dietary supplement

Generally well tolerated in
moderate doses. Mild side

effects include sleep
disturbances, increased
blood pressure, diuresis,

nausea, and
gastrointestinal discomfort.
Toxic at doses of 15 mg/kg

[360–362,388]

(L)-Carnitine (1.8–4 g/day) ↑ Fatty acid oxidation Low Approved for sale as a
dietary supplement

Generally well tolerated.
Mild side effects include

nausea and
gastrointestinal
disturbances

[367,368]

Ephedrine/Ephedra
(20–150 mg/day)

↑ Energy expenditure
↑ SNS activity

↑ Fatty acid oxidation

Low Not approved for sale as a
dietary supplement

Major safety concerns.
Adverse effects include
psychiatric symptoms,

gastrointestinal
disturbances,
cardiovascular

abnormalities and events,
mortality

[352,353]

Conjugated Linoleic acid
2.4–6 g/day

↑ Lipolysis Low Approved for sale as a
dietary supplement

Generally well tolerated.
Mild side effects include

gastrointestinal discomfort

[354]

Green tea
Green tea catechins
(141–1207 mg/day)

↑ Energy expenditure
↑ Fatty acid oxidation

Low Approved for sale as a
dietary supplement

Generally well tolerated.
Mild side effects include
nausea, gastrointestinal
discomfort, increased

blood pressure

[353,356]

Interventions that target energy expenditure and skeletal muscle metabolism and their associated weight loss efficacy in humans. Clinically relevant
weight loss scale: low = 0–2 kg weight loss, medium = 2–5 kg weight loss, high ≥ 5 kg weight loss.
SERCA, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase; SNS, sympathetic nervous system; UCP3, uncoupling protein 3.
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Exercise evokes ATP demand to support the energy needs during muscle contractile activity. The three most ATP
demanding cellular processes include the sarcolemmal Na+/K+ ATPase, Ca2+ reuptake into the sarcoplasmic retic-
ulum by the Ca2+ ATPase, and actin-myosin cross-bridge cycling by myosin ATPase. The substrate source for ATP
supply during exercise is largely determined by exercise intensity and duration. Intense, short-term exercise is fuelled
by anaerobic (non-mitochondrial) pathways that facilitate the breakdown of phosphocreatine and glycogen to pro-
duce ATP. As the intensity decreases and the duration of exercise increases, oxidative phosphorylation becomes the
primary source of ATP for contracting muscle. The metabolic demand for ATP during exercise is accompanied by the
activation of intracellular stress signaling pathways in skeletal muscle, including production of ROS [153], release of
proinflammatory myokines [154], calcium (Ca2+) [155], and the unfolded protein response [156,157]. These molec-
ular stressors elicit physiological adaptations that subsequently enhance mitochondrial oxidative capacity [158–161].
Resistance and aerobic exercise training promote different, complementary but potentially interfering adaptations in
skeletal muscle that improve skeletal muscle metabolism [162].

Aerobic exercise
Aerobic exercise training is traditionally associated with improved skeletal muscle oxidative capacity and bioenergetic
metabolism. A single aerobic exercise bout initiates mitochondrial biogenesis through transient increases in mRNA
and protein expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC1α), along with
PGC1α translocation to the nucleus [163,164]. PGC1α orchestrates mitochondrial biogenesis by interacting with and
activating additional transcription factors that promote expression of nuclear- and mitochondrial-encoded genes in-
volved in β-oxidation, OXPHOS, and antioxidant enzymes [161,165–168]. With prolonged endurance training, the
induction of mitochondrial biogenesis and synthesis of new mitochondrial proteins result in increases in skeletal
muscle mitochondrial content [163,169–171] that are stoichiometrically associated with exercise-induced improve-
ments in mitochondrial respiratory capacity [172]. There is some evidence from muscle-specific loss of PGC1α ro-
dent models suggesting that PGC1α can be dispensable for exercise-induced increases in mitochondrial content and
function [173], suggesting that redundant pathways confer exercise-induced improvements in mitochondrial health.
However, human studies generally agree that PGC1α plays a central role in facilitating the exercise-induced im-
provements in oxidative capacity. In addition to initiating transcription for mitochondrial proteins, aerobic exercise
training has profound affects on mitochondrial ribosomal protein translation [172], mitochondrial supercomplex
formation [174], and intrinsic mitochondrial function. Together, enhanced mitochondrial density and function con-
tribute to increases in skeletal muscle oxidative capacity that correlate with improvements in cardiorespiratory fitness
[163,169–171].

AMP-activated protein kinase (AMPK) and p38 MAP kinase are also activated in skeletal muscle with aerobic
exercise and are intimately linked to PCG1α to support increases in mitochondrial content and oxidative capacity
[175–180]. In response to aerobic exercise, AMPK and p38 MAPK phosphorylate and directly activate PGC1α, and
also indirectly activate other transcription factors to support mitochondrial biogenesis, including myocyte enhancer
factor 2 (MEF2), ATF-2, and p53 [179,180]. In addition to contributing to exercise-induced mitochondrial biogen-
esis, AMPK also improves skeletal muscle glucose and fatty acid metabolism by enhancing substrate uptake and
oxidation. Moreover, in rodent models and untrained humans, aerobic exercise has been shown to increase UCP3
mRNA expression in skeletal muscle [181,182], which seems counterintuitive, but may be associated with an en-
hanced capacity for fatty acid oxidation and the associated need to minimize fatty acid oxidation associated ROS
[122,183,184].

Beyond induction of mitochondrial biogenesis, aerobic exercise is associated with enhanced mitochondrial net-
working which also confers improvements to oxidative capacity. Mitochondria form as an interconnected network
and can adapt and reorganize to meet the bioenergetic demands of a cell. Mitochondria appear smaller in skeletal
muscle from individuals with obesity, and the mitochondrial reticulum length is shorter [185,186]. A single aerobic
exercise bout increases the number of electron-dense contact sites between adjacent mitochondrial membranes [187]
and augments mRNA expression of mitofusins 1 and 2 (MFN1 and MFN2) [188]. Aerobic exercise training promotes
elongation of the mitochondrial reticulum by enhancing the ratio of fusion to fission proteins [189]. Moreover, en-
durance training enhances mitophagy, a protective mechanism that clears damaged mitochondria to maintain the
health of the mitochondrial network and prevent cellular apoptosis [190,191]. The energetic imbalance imposed by
exercise activates AMPK while suppressing mTOR leading to the induction of mitophagy through the PTEN-induced
putative kinase protein 1 (PINK1)/Parkin pathway [192–195]. Overall, the exercise-induced adaptations in mitochon-
drial networking improve mitochondrial turnover, quality, and function.
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Resistance exercise
Resistance training robustly increases anabolic signaling and promotes skeletal muscle hypertrophy as evidenced by
increases in cross-sectional area of myofibers [196–198]. While long-term aerobic exercise training can also promote
hypertrophy particularly in untrained individuals [199], a recent meta-analysis validated the superiority of resistance
training at promoting skeletal muscle hypertrophy [200]. Resistance exercise-induced skeletal muscle hypertrophy is
primarily driven by enhanced myofibrillar protein synthesis [201] and increases in translational capacity via riboso-
mal biogenesis [202].

There is some evidence suggesting that resistance exercise can enhance mitochondrial function, but not content
[203]. However, while increases in skeletal muscle mitochondrial respiration have been observed following 12 weeks
of resistance training in the absence of changes in markers of mitochondrial content [203], other studies have failed
to report this relationship [204].

Aerobic and/or resistance exercise and weight loss
Weight-loss interventions that combine exercise training with caloric restriction demonstrate that exercise can en-
hance weight loss capacity compared to caloric restriction alone [147,150–152,205]. Even after RYGB bariatric
surgery, higher levels of exercise/physical activity are associated with greater reductions in body weight and fat mass
[206]. When comparing the effects on mitochondrial oxidative capacity in patients with obesity, diet-induced weight
loss fails to elicit improvements in mitochondrial capacity, whereas diet combined with exercise enhances muscle
mitochondrial content and ETC activity [207–209].

While most weight loss studies have focused on aerobic exercise training [210], the combination of aerobic and
resistance exercise training may prove to be particularly useful during caloric restriction in DR patients with obesity.
Aerobic exercise plus caloric restriction promotes greater decreases in adipose tissue than dieting alone [211] and is
likely more effective at promoting decreases in body weight and fat mass than resistance exercise [212,213]. At the
molecular level, aerobic exercise training may improve the previously observed deficits in skeletal muscle oxidative
capacity in DR individuals by promoting mitochondrial biogenesis. Aerobic exercise can also increase the proportion
and cross sectional area of type I fibers [214,215], which may be particularly useful in individuals with diet-resistant
obesity who have been shown to have lower proportions and cross sectional area of type I fibers in vastus lateralis
muscle [27]. In contrast, resistance exercise would maintain lean body mass and preserve myocellular quality dur-
ing weight loss [211,216]. Within skeletal muscle, resistance training may enhance protein synthesis and ribosomal
biogenesis in DR individuals, who have been shown to have lower ribosomal protein transcripts in whole blood and
in skeletal muscle [27]. In line with the idea that a combined aerobic and resistance exercise program may preferen-
tially benefit DR individuals with obesity, when examining the effects of diet plus aerobic and/or resistance exercise
on weight loss outcomes, interventions using diet plus combined aerobic/resistance training generally are the most
effective at inducing weight loss, improving physical function, and preserving lean body mass [216,217].

Cold exposure
The discovery of functional brown adipose tissue (BAT) in adult humans has renewed interest in exploiting
cold-induced thermogenesis to treat obesity. The use of positron-emission tomographic and computed tomographic
(PET-CT) imaging using radiolabeled tracers demonstrated that BAT is generally expressed in fairly low amounts of
0–200 g in adults, and that amounts of BAT decrease with both age and BMI [218,219]. BAT is activated through the
release of catecholamines by the sympathetic nervous system. In mature brown adipocytes, catecholamines stimulate
β-adrenergic receptors that are coupled to Gs proteins, which then activate adenylyl cyclase to increase intracellular
cAMP levels. Increases in intracellular cAMP activate protein kinase A (PKA) and hormone sensitive lipase to en-
hance lipolysis of triglycerides and the expression of UCP1 and ancillary thermogenic proteins [220,221]. As well,
the released FFAs acutely activate UCP1, prompting the rapid oxidation of fatty acids, causing thermogenesis and in-
creasing whole-body energy expenditure [221]. β3-adrenergic receptors mediate thermogenesis in rodents, whereas
Blondin et al. [2020] recently demonstrated that β2-adrenergic receptors mediate BAT thermogenesis in humans
[222].

Importantly, while much of the thermogenic response is attributable to β-adrenergic receptor activation, brown
adipocytes also contain α-adrenergic receptors that regulate thermogenic responses [223]. α1-adrenergic recep-
tors coupled to G proteins (Gq) potentiate the thermogenic response by activating phospholipase C to cleave phos-
phatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) [224–226].
DAG stimulates PKC to induce the expression of thermogenic proteins, while IP3 enhances cytosolic Ca2+ concentra-
tions by activating calcium channels in the endoplasmic reticulum [225,227]. In contrast, activation of α2-adrenergic
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receptors inhibits thermogenesis through the coupled actions of Gi proteins that inhibit β-adrenergic receptor stim-
ulation of adenylyl cyclase [221,228].

In addition to UCP1-mediated thermogenesis in brown adipocytes, substrate cycling also contributes to en-
hanced energy expenditure in BAT and is thought to function independent from UCP1. For example, creatine ki-
nase B liberates excess ADP derived from ATP in a 1 ATP:1 creatine stoichiometric relationship, creating a futile
creatine-dependent ADP/ATP substrate cycle that stimulates thermogenic respiration in brown adipocytes [229,230].
Similarly, lipid cycling from the resynthesis of TAGs and calcium cycling are also thought to contribute to thermoge-
nesis in BAT independently from UCP1 [231,232].

Low levels of UCP1 were originally hypothesized to be important in obesity susceptibility [233], and the benefits
of BAT were recently highlighted by Becher et al. who demonstrated that individuals with BAT have a lower preva-
lence of cardiometabolic diseases and improved blood glucose and lipid profiles [90]. However, individuals with
obesity demonstrate blunted responses to cold exposure, including reduced sympathetic responsiveness, and lower
BAT glucose uptake during cold exposure [234]. Moreover, adipocytes from individuals with obesity display lipolytic
catecholamine resistance [235]. Overfeeding and cold exposure evoke similar interindividual variation patterns in
energy expenditure and metabolism, through diet-induced, and cold-induced thermogenesis, respectively [236,237].

Studies have attempted to target β-adrenergic receptors with sympathomimetics to directly stimulate BAT with-
out the need for cold exposure but have yielded mixed results. Both the systemic infusion of isoprenaline and the
intramuscular injection with ephedrine fail to elicit glucose uptake by BAT in humans [238,239]. Ephedrine admin-
istered orally has been shown to enhance BAT glucose uptake in lean adults, but not individuals with obesity [240].
Direct activation of β3-adrenergic receptors through oral admiration of mirabegron (50 and 200 mg), a medication
approved for treating overactive bladders, increases energy expenditure in humans [222,241]. Despite increases in
energy expenditure, mirabegron failed to stimulate BAT oxidative metabolism in humans and induced undesirable
cardiovascular responses owing to contaminant non-selective β-adrenergic receptor activation, including increased
heart rate and blood pressure [222]. To avoid the unwanted effects on the cardiovascular system, most studies have
employed cold exposure to investigate BAT thermogenesis in humans. However, as a method to study the contri-
butions of BAT, cold exposure is somewhat limited by the inevitable shivering activity that evokes contractions of
skeletal muscles, even when measures are taken to minimize shivering activity [242,243]. Cold-induced increases in
metabolic rate are closely associated with shivering intensity [243]. During mild cold exposure, shivering preferen-
tially recruits type I muscle fibers in proximal muscle groups for contraction [243] and evokes the mild uncoupling
of skeletal muscle mitochondria [244]. These contractions are accompanied by large increases in glucose uptake with
mild cold exposure, with skeletal muscle accounting for 50% more glucose turnover than BAT during acute cold
exposure [243]. Thus, while the cold-induced rate of glucose uptake in BAT is high relative to its small volume, skele-
tal muscle is the predominant site of glucose disposal during cold exposure [243]. Results from animal studies have
supported the idea that skeletal muscle plays a central role in cold-induced thermogenesis even in the absence of shiv-
ering (i.e., non-shivering thermogenesis). Skeletal muscle mitochondrial uncoupling has been linked to increases in
metabolic rate in several species such as dogs [245], pigeons [246], fur seals [247], rodents [248], and penguin chicks
[249]. Furthermore, animal studies have demonstrated that alterations in mitochondrial coupling are accompanied
by the stimulation of skeletal muscle angiogenesis [250], and high rates of calcium (Ca2+) cycling, an ATP-dependent
process in the sarcoplasmic reticulum [251,252].

Beyond proton leak and mitochondrial oxidative capacity, there is emerging evidence to support a role for the
sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCAs) in cold-induced thermogenesis. SERCAs are a fam-
ily of membrane-bound P-type ATPases that utilize energy derived from ATP hydrolysis to translocate Ca2+ against
the chemical gradient from cytosol into the sarcoplasmic reticulum [253,254]. Calcium is released from the sar-
coplasmic reticulum into the cytoplasm via the ryanodine receptors to initiate a muscle contraction. Following con-
traction, SERCA ion pumps rapidly facilitate reuptake of calcium into the sarcoplasmic reticulum [255]. However,
SERCA-mediated ATP hydrolysis can be uncoupled from Ca2+ transport, resulting in a futile cycle controlled by two
membrane phosphoproteins: phospholamban and sarcolipin [256]. Data from rodent studies have confirmed a role
for sarcolipin-mediated thermogenesis, as mice null for sarcolipin are unable to maintain their body temperature dur-
ing an acute cold challenge [257]. Furthermore, overexpression of sarcolipin confers resistance against diet-induced
obesity and induces mitochondrial biogenesis [258,259], suggesting that SERCA uncoupling could be exploited to
enhance skeletal muscle energy expenditure in obesity.

Importantly, many of the molecular adaptations to cold exposure in skeletal muscle appear to diverge in response to
either acute or prolonged cold exposure. UCP3 mRNA and protein expression are rapidly up-regulated in rat skeletal
muscle within one day of cold exposure; however, prolonged cold exposure is associated with UCP3 downregulation
[260]. In humans, UCP3 mRNA expression decreases after 60 h of mild cold exposure, without affecting UCP3 protein
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content [261]; however, authors found that interindividual differences in UCP3 protein were closely associated with
individual differences in 24-h energy expenditure [261]. When comparing the effects of acute cold exposure versus
four weeks of cold acclimation on mitochondrial bioenergetics, proton leak dependent respiration was 4.4-fold higher
than baseline following acute cold exposure, but this effect was eliminated with prolonged cold acclimation despite
similar levels of whole-body substrate utilization, consistent with the idea of inter-tissue adapations (e.g., muscle and
BAT) [262]. Cold exposure, or mimetics of cold exposure may prove to be useful in boosting both skeletal muscle
and BAT thermogenesis.

Pharmacotherapy
Research over the past two decades has markedly improved our understanding of the neuroendocrine basis of obe-
sity, and this has led to the development of various anti-obesity medications. Before the development of newer age
anti-obesity medications, there were repeated cycles of launching and withdrawing medications due to unforeseen
adverse effects. Anti-obesity medications can generally be classified into five groups: (1) mitochondrial uncouplers,
(2) appetite suppressants, (3) medications that promote nutrient malabsorption, (4) hormone replacement therapies,
and (5) diabetes medications that also promote weight loss. Not all of these classes exert known effects on skeletal
muscle metabolism and therefore only some will be addressed here [see detailed anti-obesity medication reviewed by
Muller et al. [263]].

Mitochondrial uncouplers
As this review focuses to a large extent on variable efficiency of mitochondrial energetics, it is relevant to discuss past
and current pharmacologic approaches to induce mitochondrial uncoupling. In the late 1880s, a weak lipophilic acid
commonly used to manufacture explosives and dyes, [2,4]-dinitrophenol (DNP), was shown to markedly enhance
energy expenditure in dogs. Tainter and Cutting then demonstrated that 300–400 mg/day of DNP could induce rapid
weight loss by enhancing resting metabolism in humans [264,265]. DNP is a weak uncoupler that induces diffusion of
protons across the inner membrane (i.e., bypassing ATP synthase) and thus increasing oxidative metabolism. Recently,
Bertholet et al. challenged the idea that protonophores induce proton leak through protein-independent mechanisms
by demonstrating that protonophores, including DNP, activate ANT and UCP1 to facilitate protonophoric activity
[96]. DNP (300 mg) was then shown to induce weight loss averaging 6.3 kg in 113 patients with obesity with minimal
side effects [266]. The success of DNP popularized its use as an over-the-counter weight loss agent until multiple
adverse side effects, including cardiac arrests, leading to its withdrawal from the market in 1938 [267].

Since then, there has been interest in the development of novel mitochondrial uncouplers with im-
proved tolerability and a wider dynamic range. Several promising compounds have been investigated, but
poor absorption and adverse side effects have presented challenges [268]. Recent studies, for example, have
focused on BAM15 ((2-fluorophenyl){6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine), a
mitochondrial-targeted uncoupler that prevents and reverses diet-induced obesity in rodents [269,270]. High-fat
diet-fed mice that were treated with 0.1% or 0.15% BAM15 (w/w) exhibited higher whole-body oxygen consumption,
had lower RERs, and gained less fat mass compared with untreated mice [269,270], and effects were partly attributable
to elevated hepatic lipid oxidation [270]. Moreover, BAM15 enhanced skeletal muscle mitophagy and mitochondrial
content, in old mice fed a HF diet that also exhibited attenuated age-related declines in muscle mass and strength
[271]. Recently, SHC517 was identified as a more potent derivative of BAM15 that was able to prevent diet-induced
obesity and improve glucose tolerance in mice [272]. While these compounds have demonstrated promise in rodent
models for the prevention of diet-induced obesity, caution is warranted for concerns related to potential toxicities
(i.e., narrow safety windows) and abuse.

A handful of approved medications can also act as protonophores and induce mild mitochondrial uncoupling.
The glucose-lowering prodrug salsalate can directly activate the β1 subunit of AMPK, but also enhances mitochon-
drial uncoupling at clinical concentrations [273]. Rodent studies have demonstrated that salsalate can enhance skele-
tal muscle thermogenesis and attenuate diet-induced weight gain [274]; however, clinical trials examining the glu-
cose lowering effects of salasate have reported no change in body weight [275,276]. The anthelmintic medication
niclosamide and its salt derivatives, niclosamide ethanolamine and nicloasmide piperazine, have shown promising
effects at preventing diet-induced obesity by promoting mitochondrial uncoupling and enhancing lipid oxidation
in rodents [277,278]. While niclosamide and its derivatives are tolerable for short-term use [279,280], future stud-
ies examining the long-term safety are needed. Altogether, mitochondrial-targeted uncouplers that have less safety
concerns may be beneficial at enhancing skeletal muscle metabolism by increasing proton leak in individuals with
obesity.
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Appetite suppressants
Many weight loss medications act to increase satiety and lower caloric intake through the modulation of monoamine
neurotransmitters [281]. Centrally acting agents increase satiety by modulating serotonin, noradrenaline, or
dopamine in the hypothalamus to block catecholamine reuptake. There are two main classes of centrally acting ap-
petite suppressants that are approved for short-term use: sympathomimetics and serotonergic agents.

Soon after DNP was withdrawn, amphetamine (benzedrine sulphate) was widely used to induce weight loss mainly
by suppressing hunger [282–284]. Amphetamine was successful at inducing weight loss, but the highly addictive
drug led to adverse psychiatric effects, physical dependence and abuse. Sympathomimetic agents were developed
as phenylethylamine derivatives, which are structurally similar to amphetamine, but without the α-methylated side
chain. These phenylethylamine derivatives are synthesized from tyrosine and act on hypothalamic and limbic re-
gions of the brain to stimulate the release of norepinephrine and dopamine and increase satiety. In addition to in-
creased satiety, certain sympathomimetic agents may also increase energy expenditure by stimulating β-adrenergic
receptors and delaying gastric emptying, such as phentermine and mazindol [285]. The peripheral effects of sym-
pathomimetic medications on skeletal muscle are relatively unexplored; however, there is evidence to suggest that
amphetamines may enhance skeletal muscle thermogenesis. For example, rodents administered methamphetamine
or 3,4-methylenedioxymethamphetamine (MDMA) exhibit increases in skeletal muscle temperature [286], and in-
creases body temperature correlate with UCP3 protein expression [287]. Moreover, UCP3 knockout mice display
have a blunted hyperthermic response to MDMA, and pharmacological blockade of SERCA-mediated Ca2+ release
attenuates methamphetamine-induced hyperthermia [288]. Since diet-resistant obesity exists after controlling for
compliance to a 900 kcal/day meal replacement diet [25], it is likely that appetite suppressants would not benefit DR
obesity to a greater degree than DS obesity. However, the stimulation of β-adrenergic receptors by certain sympa-
thomimetic agents could enhance skeletal muscle metabolism. In both rodent models and humans, individuals with
increased susceptibility to weight gain often display decreased adrenergic-dependent thermogenic capacity [289].

Skeletal muscle also contains β1-, β2-, and β3-adrenergic receptors, with β2-adrenergic receptors as the pre-
dominate muscle isoform [290]. Density of β-adrenergic receptors is higher in type I fibers, and correlates with
succinate dehydrogenase activity, a marker of oxidative capacity [291]. Similar to the mechanism in BAT, stimula-
tion of β-adrenergic receptors in skeletal muscle activates PKA via cAMP, which in turn phosphorylates the RyR1,
leading to SERCA-mediated Ca2+ release and generation of contractile force [292,293]. Pharmacological blockade
of β-adrenergic receptors in humans is associated with decreases in isokinetic endurance and lower thermogenesis
in vastus lateralis biopsies [294]. β-adrenergic receptor agonism in humans is associated with increases in glucose
uptake, lipolysis, and skeletal muscle hypertrophy, resulting from both increases in protein synthesis and suppression
of catabolic pathways [295–297]. Evidence from in vitro studies suggests that β2-adrenergic receptor activation en-
hances mitochondrial function in myotubes [298]. However, chronic administration of β2-agonists is associated with
increases in the proportions type II fibers in rodents, and decreases in oxidative enzyme activity [299,300], although
there is some evidence that deleterious shifts in fiber type can be mitigated with low-intensity exercise [301]. In con-
trast, mirabegron, the β3-adrenergic receptor agonist, has recently been shown to promote fiber-type switching to
type I fibers and reduces skeletal muscle content [302]. Altogether, activation of β-adrenergic receptors by sympa-
thomimetic agents could theoretically enhance thermogenesis in individuals with diet-resistant obesity, particularly
when combined with exercise to mitigate shifts in fiber type.

Thyroid hormones
Thyroid hormones have repeatedly been associated with body weight, BMI, and mitochondrial uncoupling thermo-
genesis [303–307]. Thyroid-stimulating hormone (TSH) is produced by the pituitary and acts as the primary signal
for thyroxine (T4) and triiodothyronine (T3) production and release by follicular cells in the thyroid gland. T4 is an
iodine-containing tyrosine-based precursor hormone that is converted into T3 [308]. T3 binds to nuclear thyroid hor-
mone receptors (TR) to up-regulate the transcription of T3-responsive genes. T3 and T4 increase basal energy expen-
diture by modulating major metabolic pathways, augmenting ATP turnover, and uncoupling mitochondrial oxidative
phosphorylation. Hypothyroidism has long been associated with weight gain; whereas patients with hyperthyroidism
frequently present with weight loss, and thus, desiccated thyroid, thyroxine, and triiodothyronine have historically
been used to treat obesity [309,310]. Similarly, weight loss is associated with small decreases in T3 [311–317]. Sup-
plementation with triiodothyronine during a hypocaloric liquid diet has been shown to enhance diet-induced weight
loss [318]. Similarly, patients with high baseline levels of free T3 achieve significantly greater weight loss following
bariatric surgery [319]. The actions of thyroid hormones appear to be partially mediated by leptin [320].
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In skeletal muscle, T3 also augments the expression and activity of Na+/K+ ATPase in the plasma membrane and
the Ca2+ ATPase of the sarcoplasmic reticulum via SERCA1 [321,322]. In skeletal muscle, T3 also increases TCA
cycle flux and promotes mitochondrial uncoupling [323]. Supplementation with 75 μg of T3 upregulates mRNA ex-
pression of UCP3 and adenine nucleotide translocases 1 and 2 in vastus lateralis muscle of healthy volunteers [324].
Moreover, thyroid hormones enhance lipolysis and mobilization of triglycerides from adipose tissue, and lipid uti-
lization [325]. In rodents, hypothyroidism and hyperthyroidism cause decreased and increased levels, respectively, of
‘energy wasting’ mitochondrial proton leak in hepatocytes [326]. Induction of mitochondrial proton leak uncoupling
in skeletal muscle by T3 occurs in vivo [323] and in ex vivo preparations [327–330]. Because DR obesity is associated
with lower OXPHOS, decreased fatty acid utilization, and lower mitochondrial uncoupling, a greater understanding
of the effects of thyroid hormones on muscle physiology in obesity, particularly DR obesity, is needed.

Diabetes medications: metformin, DPP4 inhibitors, and GLP-1
Metformin is well recognized as the first line of pharmacotherapy for patients with Type 2 diabetes and pre-diabetes.
Despite its introduction in 1950, the exact mechanism of metformin is not fully understood, but many of its ac-
tions are associated with the activation of AMPK and inhibition of complex I [331]. Metformin does not directly
activate AMPK [332] but rather is thought to modulate the ADP:ATP ratio leading to AMPK activation [331]. The
AMPK-dependent actions of metformin have been linked to increases in skeletal muscle mitochondrial fatty acid
oxidation and decreased expression of lipogenic genes [333,334]. Recent large-scale meta-analyses have revealed that
metformin can reduce body weight and adiposity, which has been attributed to decreased energy intake [335,336].

Newer aged diabetes medications, Liraglutide and Semaglutide, are agonists of gut-derived peptide hormones (in-
cretins) that have recently been approved in many countries for the treatment of obesity. Glucagon-like peptide-1
(GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted by intestinal L and K cells
into the hepatic portal system to facilitate glucose-stimulated insulin secretion [337,338]. Both GLP-1 and GIP are
rapidly inactivated by the enzymatic removal of the N-terminal dipeptide by dipeptidyl peptidase 4 (DPP4) [339].
The discovery that GIP activity was impaired in patients with T2D [340] lead to the pharmacological development
of incretin analogues, DPP4 inhibitors, and receptor agonists for the treatment of T2D. DPP4 inhibitors are gener-
ally considered to be weight neutral, as they are associated with variable results on body weight [341,342]. However,
GLP-1 receptor agonists can elicit weight loss. GLP-1 receptors are involved in appetite regulation and are highly
expressed in the brain [343]. As such, GLP-1 receptor agonism induces weight loss by enhancing satiety signals. In-
deed, early investigative studies demonstrated that intravenous infusion with GLP-1 suppressed appetite, decreased
energy intake and delayed gastric emptying in individuals with obesity and in healthy adults [344–347]. Clinical stud-
ies then demonstrated that GLP-1 receptor agonists, such as Liraglutide, can aid in weight loss when combined with
a hypocaloric diet [348]. Specifically, when combined with behavioral therapy, GLP-1 agonists are associated with a
5–7% weight loss after 12 months, with greater success at higher doses. GLP-1 agonists exert anabolic effects within
muscle and can ameliorate muscle atrophy to preserve lean body mass in mice [349], and have recently been shown
to overcome anabolic resistance to feeding in older humans [350]. The appetite suppressing effects of GLP-1 agonists
would likely confer equal benefits to DS and DR patients, while the anabolic effects of GLP-1 on skeletal may prove
to be helpful in those with DR obesity.

Supplements
Dietary supplements hold appeal because they can be easier to implement than large lifestyle changes such as diet and
exercise. Supplements are also often readily available without a prescription and many are associated with prodigious
claims regarding weight loss. Approximately 15% of adults have reported using non-prescription dietary supplements
to promote weight loss [351]. In contrast with the regulation of prescription medications, weight loss supplements
often contain multiple ingredients and many clinical trials involving dietary supplements are often of poor method-
ological quality. Of the widely available supplements, there is some evidence to support weight-loss claims for caf-
feine, (L-)carnitine, conjugated linoleic acid, green tea, and ephedrine. However, meta-analyses have concluded that
ephedrine [352,353] and conjugated linoleic acid [354] can elicit weight loss of less than 1 kg, for which the clinical
relevance is low.

The effects of green tea on weight loss are attributed to caffeine and catechins in green tea. When examining the
effects of green tea catechins on weight loss many studies are confounded by the presence of caffeine in green tea.
While green tea extract has been shown to increase thermogenesis and fat oxidation in humans [355], meta-analyses
have determined that green tea does not elicit significant weight loss [353,356]. However, caffeine has been associated
with modest weight loss in both short-term clinical interventions and large-scale epidemiological studies. Caffeine
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is a methylxanthine that increases activity of the sympathetic nervous system by acting as a competitive inhibitor of
phosphodiesterase and adenosine, leading to increases in intracellular cyclic adenosine monophosphate (cAMP) and
suppressed catecholamine release. The resulting caffeine-induced increase in SNS activity has been shown to promote
lipolysis, enhance fatty acid oxidation, and cause short-term increases in energy expenditure in a dose-dependent
manner [357]. Caffeine is also an agonist of ryanodine receptors and can stimulate calcium ion flux in the sarcoplasmic
reticulum [358], which may enhance skeletal muscle thermogenesis through increased SERCA activity [359]. Most
clinical studies that have examined the efficacy of caffeine on weight loss have been of short duration and many
have used caffeine in combination with other ingredients. However, a recent meta-analysis of RCTs determined that
caffeine consumption is associated with an average weight loss of <2 kg after 4 weeks [360]. Moreover, data from
cross sectional and observational studies have suggested that increased caffeine intake is associated with less weight
gain in the long-term [361], and may also be beneficial for the maintenance of weight loss [362].

(L-)Carnitine (L-b-hydroxy-c-N-trimethylaminobutyric acid) is an endogenous compound that plays an essential
role in lipid metabolism by acting as a cofactor to facilitate long-chain fatty acid transport across the mitochondrial
membrane via formation of acylcarnitines [363]. L-Carnitine also participates in glucose metabolism by maintain-
ing the acetyl-CoA/CoA ratio. Intramitochondrial free CoA availability increases as fatty acids are transported into
mitochondria via carnitine, and the rise in free CoA stimulates the pyruvate dehydrogenase complex [364]. More
than 95% of total carnitine is stored in skeletal muscle, and chronic oral L-carnitine with simultaneous carbohydrate
ingestion can increase intramuscular carnitine concentrations and alter fuel utilization during exercise [365,366].
Meta-analyses of randomized controlled trials have concluded that L-carnitine is associated with modest weight loss
between 1.2 and 1.3 kg and an average of 2.08 kg of fat mass [367,368]. We have previously demonstrated that pa-
tients with DR obesity have a lower capacity for fatty acid oxidation, reflected by less fatty acid-supported respiration
in permeabilized skeletal muscle and greater circulating long- and medium-chained acylcarnitines following a high
fat meal [46]. Thus, (L-)carnitine supplementation may enhance the capacity for fat oxidation.

Conclusion
The use of caloric restriction and very low-calorie diet programs often yield considerable variability in weight loss
success. Understanding the metabolic processes that contribute to overall energy expenditure and adaptive thermoge-
nesis will aid in the development of novel treatment strategies for individuals who fail to respond adequately to diets
despite documented adherence. With new technologies and integrative -omics platforms, future research avenues
may lead to more personalized lifestyle and nutrition treatment strategies for more effective weight loss outcomes.
Interventions that enhance energy expenditure, mitochondrial biogenesis, and mitochondrial uncoupling may bene-
fit individuals with diet-resistant obesity. Exercise is often given low priority in weight loss programs but is beneficial
in offsetting adaptive decreases in metabolic rate. Cold exposure and sympathomimetic drugs (appetite suppressants)
and supplements (caffeine and ephedrine) may stimulate β-adrenergic receptors to enhance energy expenditure dur-
ing weight loss, but effects are generally modest. Mitochondrial uncouplers can be effective at enhancing energy
expenditure through futile processes but most have deleterious side effects that currently limit their use. The devel-
opment of new anti-obesity drugs and weight loss agents could exploit processes such as uncoupling in skeletal muscle
to enhance energy expenditure.
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