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Chronic Pain and Chronic Stress: Two
Sides of the Same Coin?
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Abstract

Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body’s homeostasis and

necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a

common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final

brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three

conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of

either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the

commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of

the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context

of knowledge gained from the stress literature. The limbic brain—including hippocampus, amygdala, and ventromedial pre-

frontal cortex—plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with

internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural

remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress

disorder, and is also linked to the risk of onset of these conditions.
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Why Stress and Pain?

Stress-related psychiatric disorders, including depression
and posttraumatic stress disorder (PTSD), are highly
prevalent disabling illnesses with limited treatment
options and poorly understood pathophysiology.1

Chronic pain is a widespread pathology afflicting
20%–30% of adults. Moreover, while treatment options
are available, chronic pain continues to seriously affect
the life quality of patients, and almost half of pain
suffering individuals do not achieve adequate pain man-
agement.2 Better understanding of the overlapping and
distinguishing features of chronic stress and pain could
provide greater insight into the neurobiology of these
processes, as well as contribute to rational drug devel-
opment for these often comorbid conditions.3 In the
current brief review, we describe the commonalities
and differences of stress and pain, while primarily
focusing on the maladaptive processes of chronic pain
and chronic stress.

Pain and stress are two distinguished yet overlapping
processes presenting multiple conceptual and physio-
logical overlaps. Stress can be defined broadly as a pro-
cess by which a challenging emotional or physiological
event or series of events result in adaptive or maladaptive
changes required to regain homeostasis and/or stability.4

Pain is the collection of emotional and sensory
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perceptions, as well as motor behaviors, resulting from
the activation of the nociceptive pathways in response to
harmful stimuli. The ability of the organism to adapt to
stress or pain by regulating the internal milieu and main-
taining stability is termed allostasis. Pain and stress are
both adaptive in protecting the organism, for example,
from physical injury or starvation. However, if either of
the two processes becomes chronic, it can lead to long-
term ‘‘maladaptive’’ changes in physiology and conse-
quently behavior, resulting in suffering and compromised
well-being.5 Taken together, these conceptualizations are
clearly overlapping and offer an opportunity for theoret-
ical and experimental exchanges between the two fields of
study.

Researchers have adopted two, mutually non-
exclusive, models linking pain and stress. The first
model considers pain as one type of stress that adds
strain on the organism. For example, chronic back pain
(CBP) is conceptualized as a stress overload6 resulting in
an increased risk for depression, alcohol abuse, or weight
gain.5,7,8 In this model, chronic pain leads to ‘‘wear-and-
tear’’—also termed allostatic overload—in the body and
brain ‘‘from chronic dysregulation (i.e., over-activity or
inactivity) of physiological systems that are normally
involved in adaptation to environmental challenge.’’9

These wear-and-tear alterations result in compromised
well-being, and/or social and occupational dysfunction.
Persistent experience of pain (i.e., over-activity) can
burden the brain and lead to deficits in decision-
making.10–12 Conversely, fear of movement that would
exacerbate pain could lead to a more sedentary lifestyle
(i.e., inactivity) and weight gain. The second model depicts
the cases in which wear-and-tear precipitates chronic pain.
In this model, patients are faced with unpredictable stress
that triggers pain—a migraine attack, for example—and
leads to a vicious circle of ‘‘feed-forward’’ maladaptive
physiological responses such as inflammation and brain
damage and hence increased vulnerability to persistence of
pain.13 The two models do not necessarily contradict each
other, but ratherborrow from the stress literature to provide
eithera causal conceptualizationof theonset andpersistence
of chronic pain or of its long-term consequences. They also
emphasize that stress and pain can be two nodes in a vicious
circle ofmaladaptive responses to environmental challenges
leading to compromised well-being.

In this review, we examine the important overlap
between chronic pain and stress, while emphasizing dif-
ferences between the two phenomena, which could have
separate and even opposite neurobiological effects. We
describe the commonalities and differences between
chronic stress and chronic pain, with a special emphasis
on the neurobiological underpinnings, where the brain
limbic system14 stands as a central mediator of these
two phenomena. We discuss in particular whether

chronic pain can be considered under the larger process
of stress or whether the two phenomena have different
biological processes.

Socioeconomic Factors in Stress and
Chronic Pain

There is evidence that disparity in many dimensions of
socio-economic status (SES) such as income, education,
and occupation, account for a significant variance of
medical morbidities and mortalities.15,16 Studies have
found a so-called ‘‘gradient’’ between occupational hier-
archy and health disparities in adults. People in the
bottom of the gradient have worse morbidities and mor-
talities.15 These SES disparities can in turn translate at
the individual level to environmental stressors leading to
a vulnerability to depression, substance use disorders,
and obesity among others.4,17 Furthermore, children
growing up in poor communities are at an increased
risk of exposure to crime, economic hardship, and pollu-
tion18; this in turn can lead to adverse behavioral (e.g.,
emotional dysregulation)17,19 and neurodevelopmental
outcomes (e.g., psychopathology and brain changes).20,21

While the brain is believed to be at the center of this
process, the direct path linking SES factors to neurobio-
logical brain adaptive and maladaptive responses remains
largely unknown,9 with pain and stress as putative
contributing factors.

The link between SES factors and exposure to stress is
evident, given the broad definition of stress. However,
the relationship between SES and chronic pain is less
discernable. In the British Birth Cohort Study, a
45-year longitudinal study, increased risk for reporting
pain as adults was found in individuals from a lower
SES, and in those who experienced adverse life events
as children. However, the increased risk was partly
explained by other current life factors.22,23 In patients
followed through the emergency room after a major
physical trauma, a higher educational level was the
only social factor associated with persistent back pain.
Income and employment status before the injury were
not associated with persistent back pain after the
trauma.24 Educational level was also a protective factor
against frequent knee pain in a cohort of Swedish
patients examined for knee osteoarthritis.25 These find-
ings support the presence of a link between social stres-
sors, lower educational level, and onset of pain diatheses.
Nevertheless, a recent literature review found no relation-
ship between SES characteristics and the frequency of
seeking a medical consultation for back pain.26 In add-
ition, two longitudinal studies found no significant cor-
relations between chronic pain, socio-demographic
factors, adverse life events, and ‘‘dysfunction of the
stress system.’’27,28 These studies underscore the
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complexity of the relationship between social factors and
chronic pain, while challenging the common wisdom of a
direct link between social stressors such as low SES and
the onset of chronic pain.

The Neurobiology of Stress and Pain

The brain plays a central role in stress and pain
processes.4,29,30 As individuals interact with their envir-
onment, physical and psychological stressors can lead to
adaptive or maladaptive neural and hormonal responses.
Acute stress triggers the activation of the hypothalamic-
pituitary-adrenal axis (HPA) leading to the release of
adrenal glucocorticoids.29 These hormones have recep-
tors concentrated in the limbic brain including the hypo-
thalamus, amygdala, hippocampus, and prefrontal cortex
(PFC).31,32 In the limbic system, glucocorticoids act as
transcription factors and have therefore long-lasting
effects on cellular function. Acute stress also activates
the autonomic nervous system regulated by the brain-
stem,33 leading to increased blood pressure and diversion
of blood from the gastrointestinal tract to the brain and
muscles.29 In addition, perceived stress is integrated in the
limbic brain with past experiences (i.e., memory), current
physiological state (e.g., hunger/satiety), and decision-
making. Subsequently, emotional states are updated
accordingly (e.g., increased or decreased anxiety) with
an ultimate effect on behavior (e.g., fight or flight). The
limbic brain and HPA axis form an interconnected loop
as projections from the hippocampus, amygdala, and
PFC feed-back to the hypothalamus and regulate the
stress responses and glucocorticoid release (Figure 1).34

Other brain areas have been also shown to be active
during acute stress such as the insula and striatum.35

Pain requires conscious perception of the nociceptive
process. Nociceptive information is transmitted via per-
ipheral A-d and C-fibers to the brainstem and thalamus,
where it is then relayed to multiple cortical and subcor-
tical areas including primary and secondary somatosen-
sory areas, anterior cingulate cortex, insula, amygdala,
striatum, and medial PFC.36–39 Acute pain engenders
both a sensory and an emotional experience and is an
adaptive response protecting the body from tissue
damage like a burning fire or the attack of a predator.
Although acute pain can be easily conceptualized as a
form of acute stress, the details of the neural and endo-
crine response to acute pain and acute stress can be dif-
ferent. For example, while it is known that both acute
pain and stress activate the autonomic nervous
system,29,40 evidence that acute pain activates the HPA
axis and leads to peripheral adrenal cortisol secretion,
one of the hallmark endocrine responses to stress, is
unclear.41,42 Alternatively, at the brain level, functional
magnetic resonance imaging studies of response to stress

or pain demonstrate noticeable spatial overlap in the
amygdala, hippocampus, striatum, insula, and anterior
cingulate cortex.35,43

Learning and Neural Remodeling in
Chronic Stress and Chronic Pain

Stress and pain engage the learning circuitry of the hippo-
campus, amygdala, and PFC (Figure 1), as animals inter-
act adaptively with the challenges of their environment to
maintain homeostasis.9,43 Animals have to learn about
their environment to seek places where food can be
found while avoiding the threat of an attack from a
predator or the ingestion of poisonous substances. Fear
(Pavlovian) conditioning and extinction are paradigms of
learning in which both chronic pain and chronic stress
can be conceptualized.44,45 In a Pavlovian model, a pre-
viously neutral stimulus acquires the ability to induce fear
behavior in animals (e.g., conditioned stimulus) after
being paired with an unconditioned painful stimulus,
like a foot-shock.46 Extinction of the fear association,
or the unlearning of the fear, occurs when the condi-
tioned stimulus is presented multiple times without the
unconditioned stimulus.47 PTSD and chronic pain can
be considered conditions where the brain fails to extin-
guish the negative memory (i.e., memory of trauma or
pain).44,45 Consistently, both PTSD and chronic pain
patients show deficiency in extinction learning.48,49 In
addition, similar to findings in traumatic stress preclinical
literature,50 an animal model of chronic neuropathic pain
shows impaired context-related fear extinction.51 The
hippocampus, amygdala, and PFC each play a critical
role in fear learning and extinction.45,52,53 The neuro-
chemical properties of the learning circuitry and its adap-
tive response to chronic stress or pain are believed to be
crucial in determining remission or persistence of pain
and stress response beyond what is required for an evo-
lutionary advantageous adaptive response.45,54–56 Below,
we expand on details of the role played by each of these
regions in chronic stress and chronic pain demonstrating
the compelling conceptual overlap between the fields yet
highlighting important empirical differences.

The hippocampus is active during acute stress,35 but
rarely seen active during acute pain in humans.57 An
intact hippocampus is important during acquisition of
fear conditioning and association of context with stimuli
that necessitates decision-making such as finding food or
avoiding pain.58–62 In addition, the hippocampus contrib-
utes to contextual fear extinction.63,64 It contains gluco-
corticoid receptors,65 projects to the hypothalamus,66 and
is thought to down-regulate the response to stress.9,67–69

Neurogenesis persists in the adult mammalian hippocam-
pus70 and contributes to learning and memory.71 In
humans, chronic pain and stress-related psychiatric
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disorders have been associated with shrinkage of the hip-
pocampal volume.51,56,72,73 Vachon-Presseau et al.
demonstrated that hippocampal volume is inversely cor-
related to elevated basal cortisol levels in CBP patients
but not in matched healthy control arguing for a ‘‘stress
model of chronic pain’’ centered on the hippocampus.
Interestingly, smaller hippocampal volume predicts the
risk of persistence of back pain after three years of a
new episode of sub-acute back pain (SBP; pain duration
6–16 weeks),56 and is present in individuals at risk for
PTSD and depression.74,75

Both chronic pain and stress were associated with sup-
pressed hippocampal neurogenesis,51,72 a process that

could be mediated by elevated glucocorticoids during
stress.72 However, the relationship between neurogenesis
and acute pain or stress is more complex. A recent study
in rodents found that adult hippocampal neurogenesis is
necessary for the emergence of pain behavior after nerve
injury.76 Nevertheless, neurogenesis was suppressed once
the pain became chronic,51 implying that the interaction
between peripheral injury and central hippocampal learn-
ing mechanisms is critical for the onset of pain behavior.
These results are in resemblance to findings by Kirby
et al.77 showing that acute immobilization for 3 h, but
not foot shock for 30min, increased hippocampal neuro-
genesis. The effect of immobilization stress on

Figure 1. Schematic depiction of the circuitry involved in chronic pain and chronic stress. Light-blue arrows indicate anatomical or

physiological links. Dark blue arrows indicate time. Black and red arrows indicate magnitude. Abbreviations: Amy, Amygdala; Hipp,

Hippocampus; Hypo, Hypothalamus; PTSD, post-traumatic stress disorder; VMPFC, ventro-medial prefrontal cortex.
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neurogenesis could be reproduced with corticosterone
injections, which leads to a delayed onset (at 2 weeks)
of enhanced fear extinction.77 These studies highlight
the fact that acute pain (i.e., foot shock) cannot be fully
conceptualized as an acute stressor and that learning after
nerve injury might have different long-term behavioral
effects from stress. It also underscores the beneficial
effects of acute stress, which increased neurogenesis and
enhanced extinction. Consistently, Mutso et al.51 demon-
strated impaired contextual fear extinction after periph-
eral nerve injury. In contrast, Kirby et al.77 demonstrated
enhanced fear extinction two weeks after an acute stressor
presentation.

The amygdala is another major node of the limbic
brain (Figure 1) that is highly interconnected with the
hippocampus.78 It plays a major role in emotional learn-
ing53 and in the response to stress and pain. The amyg-
dala is active during response to threats such as angry
faces79,80 and in response to acute pain.81,82 It is critical
in the expression of fear46 and shows hyperactivity in
chronic stress-related conditions such as PTSD, and in
chronic pain disorders such as CBP or migraine.83–85

Animal data show that the amygdala plays a dual role
in the perception of nociceptive input depending on the
context of the painful stimulation. Lesion of the central
nucleus of the amygdala (CeA) abolishes or decreases
aversive stimulus-induced hypoalgesia (i.e., pain reduc-
tion).86 Corticosterone implant in the CeA enhances anxi-
ety-like behavior and visceral hypersensitivity to balloon
distention of the colon or acetic acid infusion in the
colon.87 In addition, CeA neurons show increased sensi-
tization in a rodent model of arthritis, independent of
peripheral nociceptive input.88 In animal models, chronic
stress and chronic pain are both associated with dendritic
growth in the amygdala89–91 suggesting enhanced synap-
tic activity, possibly in response to increased glucocortic-
oid levels.92 At the macroscopic level, humans suffering
from depression, PTSD, or chronic pain were found to
have smaller amygdala,56,93–96 although not without
inconsistency (e.g., Kuo et al.97). Interestingly, depressed
patients on medications have increased amygdala
volume.93 In addition, a cohort of 10 patients with hip
osteoarthritis showed an increase in amygdala volume
after total hip replacement and remission of pain98 sug-
gesting that volume shrinkage is a consequence of chronic
pain and depression, and could therefore recover if both
conditions are adequately treated. This data, along with
the decreased hippocampal volume in chronic pain, is
consistent with the concept of allostatic-load from chronic
pain as volumetric shrinkage can be considered the wear-
and-tear manifested in the brain secondary to the chronic
exposure to nociception lending support to the view that
chronic pain can be considered a form of chronic stress.6

Nevertheless, other data showed that amygdala volume
stays unchanged and predicts the persistence of back pain

three years after a sub-acute episode of back pain,56 sug-
gesting that a smaller amygdala volume could be a risk
factor for chronic pain and not the consequence of expos-
ure to chronic pain.

Both the hippocampus and amygdala are highly inter-
connected with the ventro-medial PFC (vmPFC)99,100

(Figure 1), which is a critical area in fear extinc-
tion52,54,101,102 and in assigning value to rewarding and
aversive stimuli.103,104 vmPFC volume shrinks in chronic
pain, PTSD, and depression.105,106 Activity in the vmPFC,
on the other hand, increases after repeated acute stress in
healthy subjects,35 and is increased in patients suffering
from chronic pain and depression84,85,107–109 but is
decreased in patients suffering from PTSD.45,110 In add-
ition, vmPFC activity is positively correlated with pain
intensity in CBP patients,84,85,107 but negatively correlated
with severity of symptoms in PTSD. Therefore, the physi-
ology of chronic pain and chronic stress might be diver-
ging in the vmPFC. Behaviorally, altered vmPFC activity
could explain impaired extinction in PTSD and impaired
emotional decision-making in chronic pain10,11,111,112 and
depression.113

Contentious Points in Borrowing From
Stress to Explain Chronic Pain

Despite the significant neuroanatomical and physio-
logical overlap reported above between chronic pain
and chronic stress, upholding the stress model of chronic
pain faces some challenges. First, as we outlined above,
the data on the contribution of psycho-social factors and
markers of biological stress to the onset or the persistence
of chronic pain is conflicting.22,26–28 Second, the data on
the ‘‘dysregulation of the HPA axis and cortisol’’ level in
chronic pain does not fit any clear consistent pattern. As
such, studies of chronic pain conditions have reported
increases6,114–119 and decreases41,120–124 in cortisol level,
while many studies reported no changes.125–128

Furthermore, different reports present conflicting data
within the same condition such as CBP,6,41 fibromyal-
gia,125,129 or migraine.117,119,128 Third, the definition of
stress is very broad; for example, showing violent pictures
and acute aversive stimuli-like acute pain can be both
stressful but involve different physiology. Furthermore,
release of cortisol and activation of the hippocampus
are often observed following stress,35 but rarely seen
after acute pain.57 Similarly, although chronic conditions
that are thought to arise after repeated stress or trauma
such as PTSD and depression share markers of vulner-
abilities with chronic pain within the limbic brain like a
smaller hippocampus and a smaller amygdala,56,75,93–95

the brain endophenotypes appear to be different. For
example, vmPFC global brain connectivity is decreased
in depression,130 yet increased in PTSD131,132 and chronic
pain.133 This observation does not preclude a role of
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stress physiology in the onset and persistence of chronic
pain, but rather calls for more specific definitions of the
biological markers of stress.

Conclusion

Taken together, the data discussed above provide a
rationale for the attempts to use the stress model in
chronic pain, yet emphasize the difficulties in classifying
the concept of chronic pain under the general framework
of chronic stress. We believe that unifying both processes
under one theoretical framework would be enhanced by
understanding how different chronic painful or stressful
conditions induce continuous emotional learning cen-
tered particularly around the properties and remodeling
of amygdala and hippocampus.
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