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Introduction
Strawberry plants (Fragaria × ananassa) cultivation has 
changed from seasonal land-based cultivation to counter-sea-
son cultivation such as mulching and greenhouse cultivation, 
and as a result, strawberry plants increasingly are suffering seri-
ous diseases, including gray mold, anthracnose, and powdery 
mildew.1 Gray mold is caused by Botrytis cinerea, a necrotrophic 
fungus, and is one of the most serious diseases that affect 
strawberries. It often results in a large amount of fruits rotting 
during harvest, storage, or transportation, causing serious eco-
nomic losses.

Early diagnosis of disease in plants may help plants a suc-
cessful protection from bad damage. A big challenge in dealing 
with latent pathogen infection is how to choose the appropri-
ate time to apply fungicides. During pathogen infection, plant 
metabolism is usually agitated. Therefore, metabolomics may 
help to identify biomarkers and pathways related to plant-
pathogen interactions that can be used to diagnose disease dur-
ing the latent infection stage of some pathogens in crops, as 
well as to provide metabolic clues for elucidating the host-
pathogen interaction mechanism.2,3

There is still only limited knowledge about how host-
pathogen interactions affect the host’s metabolome. More 
than 200 000 kinds of metabolites have been found in plants;4 
some are primary metabolites necessary for maintaining plant 
life, growth, and development and some are secondary metabo-
lites that are produced by primary metabolites and are closely 

related to plant stress.5 When plants are infected by pathogens, 
small-molecule metabolites such as cellular signal transduction 
substances, primary metabolites, and secondary metabolites are 
adjusted in response to the infection. These adjustments include 
a number of complex cell rearrangements that rely mainly on 
changes in gene expression, protein modifications, and the 
induction of various compounds that are active in the defense 
response. Connecting phenotype and genes, metabolomics has 
recently proved to be effective in fully understanding specific 
changes in plant metabolites caused by external stimuli6,7 and 
has played an important role in the study of host-pathogen 
interactions.5,8–16 Steinfath et al17 for the first time showed that 
metabolomics can be used to predict important phenotypes of 
crops grown in different environments and confirmed that 
tyrosine was a potential indicator of the sensitivity of black 
spot bruising to potato tissues.

There have been reports of research that metabolites have 
played an important role in the interaction between host and 
pathogens.18–20 The changes in metabolism caused by the 
interaction between B. cinerea and strawberry are not yet clear. 
Here, a comparative metabolome method based on gas chro-
matography and mass spectrometry (GC-MS) was applied to 
B. cinerea-infected and non-infected strawberry plants to look 
for biomarkers associated with pathogen infection and to setup 
a diagnostic partial least squares discriminant analysis 
(PLS-DA) method. The aim was to further understand the 
interaction mechanism between B. cinerea and strawberry 
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plants and provide technical support for the early diagnosis of 
Botrytis gray mold disease in strawberry.

Materials and Methods
Fungus strain

Strain B. cinerea 52 was isolated from strawberry plants grown 
in strawberry professional cooperatives of Beijing in 2014. 
Genomic DNA was extracted from the isolates using the cetyl-
trimethylammonium bromide (CTAB) method as described by 
Angelini et al.21 The DNA concentration of each sample was 
measured on a spectrophotometer at 260 and 280 nm, and their 
genomic purity was determined. The isolates were identified as 
B. cinerea based on morphology and the DNA sequences of 
three nuclear genes: glyceraldehyde-3-phosphate dehydroge-
nase (G3PDH), heat-shock protein 60 (HSP60), and DNA-
dependent RNA polymerase subunit II (RPB2).22

Collection and pretreatment of samples

Strain B. cinerea 52 was cultivated on potato dextrose agar 
(PDA). After incubation in the dark for 4 days at 20°C, myce-
lial plugs (5 mm) were taken from the colony margin and trans-
ferred to fresh casein (CA) and incubated in the dark for 4 days 
at 20°C and then under ultraviolet light for 4-8 days. Conidia 
were recovered by flooding the cultures with sterile distilled 
water containing surfactant (Tween 20, 0.05%) and rubbing 
the sporulating colony with a bent glass rod. The spore suspen-
sion was filtered through four layers of sterilized cheesecloth 
and collected on a membrane filter (pore size = 5 μm) under 
vacuum. The conidia were counted with a hemocytometer and 
the suspension was diluted to 105 conidia/mL in water for use 
as inoculum.23

The strawberry variety of  “Hong Yan” susceptible to gray 
mold was used in the study. The strawberry plants were potted  
in a peat:sand (50:50) compost and cultivated in a heated glass-
house at 20°C with one plant per pot. Conidial germination 
requires dark conditions, so the inoculations were performed at 
about 7: 00 p.m. Before inoculation, the surfaces of the leaves 
were washed with sterilized water and then blotted with water-
absorbent paper. A 25-mL spore suspension was sprayed uni-
formly on the aerial parts of the whole potted plants. After 
inoculation, the pots were placed in a water tray and sealed 
with plastic film. Strawberry plants inoculated with B. cinerea 
were placed in the dark for 12 hours at 20°C and then cultured 
under natural light conditions. The plastic film was removed 
after 3 days of incubation. The whole process was conducted in 
a greenhouse. Each set of B. cinerea-treated and control plants 
had 18 repetitions. The control plants were inoculated with 
sterilized water containing surfactant (Tween 20, 0.05%) and 
then treated in the same way as the treated plants.

All the strawberry leaves in every repetition were harvested 
2, 5, and 7 days after inoculation with sterilized scissors. 
Harvested samples were immediately quenched in liquid 
nitrogen and stored at −80°C until further processing. The 

metabolites were extracted from the leaf samples and derived 
as reported previously24 with some modification. Briefly, each 
of the frozen leaf samples was milled to a fine powder with a 
liquid nitrogen pre-cooled mortar. The homogenized samples 
(100 ± 2 mg fresh weight) were weighed into 2.0 mL Eppendorf 
tubes and extracted with 1.8 mL of pre-cooled methanol:water 
(4:1, v/v) containing 10 µg/mL salicin as the internal standard 
by vortexing for 1 minute and then resting in an ultrasonic bath 
at room temperature for 20 minutes. The samples were centri-
fuged at 14 000×g for 15 minutes at 4°C, and then, 600 μL of 
the supernatant was transferred into 0.6 mL centrifuge vials. 
The samples were evaporated overnight using a centrifugal 
evaporator (Labconco, Eppendorf, Concentrator plus) at 45°C. 
For derivatization, 100 μL of methoxyamine hydrochloride in 
pyridine (20 mg/mL) was added to the dried extractions prior 
to incubation at 30°C for 2 hours. Then, 100 μL of N,O-
bis(trimethylsilyl) trifluoroacetamide containing 1% trimethyl-
chlorosilane (v/v) was added, and the mixtures were incubated 
at 37°C for 6 hours. After centrifuging at 14 000×g for 15 min-
utes, 160 μL of supernatant was transferred to vials for detec-
tion. All the solutions were tested within 48 hours.

Methanol (chromatographically pure) was purchased from 
the Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). 
Ultrapure water was obtained from a milli-Q system 
(Millipore). N,O-bis(trimethylsilyl) trifluoroacetamide (v/v; 
containing 1% trimethylchlorosilane [99%], pyridine [99.8%], 
and methoxyamine hydrochloride [8%]), the internal standard 
salicin, and the 40 metabolite standards with active ingredients 
>99% were purchased from Sigma-Aldrich.

Gas chromatography and mass spectrometry analysis

For separation and detection of analytes, an Agilent 7890A gas 
chromatograph coupled to a 5975C inert XL mass selective 
detector (MSD; Agilent Technologies, Waldbronn, Germany) 
was used. The instruments were controlled by ChemStation 
software (Agilent Technologies, version E.02.01.1177). The 
syringe was cleaned with acetone three times before each use. A 
volume of 1 µL of the liquid sample was injected into the split/
splitless injector at 250°C in split mode using a split ratio of 
25:1. An HP-5ms capillary column (30 m × 0.25 mm × 0.25 µm; 
Agilent Technologies) was operated at a constant flow of 1 mL/
min helium. The oven was kept at 65°C for 2 minutes and then 
heated to 185°C (5°C/min), to 200°C (1°C/min), and then to 
280°C (15°C/min) and kept at this temperature for 5 minutes. 
The MSD interface was kept at 290°C throughout the run. 
After 5 minutes of solvent delay, the MSD was used in scan 
mode m/z 20-650. The electrospray ionization source was kept 
at 230°C and the transmission line was at 230°C. All samples 
were measured in a randomized manner.

Data analysis

Qualitative and quantitative analyses were carried out by 
GC-MSD data analysis and the NIST mass spectrometry 
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database (MS 2.2). For analysis of variance (ANOVA), a 
multiple comparison between means was done using a least 
significant difference (LSD) test (P ⩽ 0.05) using the IBM 
SPSS Statistics (version 21) software.25 Detection of biomark-
ers in the metabolic profiles was based on orthogonal partial 
least squares (OPLS) regression coefficients, and standard 
errors were calculated using jack-knifing with 95% confidence 
interval.26 The performance of the developed models was 
assessed by the cumulative fraction of the total variation of 
the X’s that could be predicted by the extracted components (Q 
[cum]2) and the fraction of the sum of squares of all X’s and Y’s 
explained by the current component (R2X and R2Y, respec-
tively). For PLS-DA, two-thirds of the samples obtained from 
the experiment were selected randomly as the training set, and 
the remaining one-third was the testing set. The training set 
samples were first assigned as follows: the inoculated straw-
berry leaf samples obtained at the three sampling times had a 
value of 1; and the healthy samples had a value of 0. The PLS 
algorithm in the Unscrambler software27 was used to conduct 
regression analysis on the GC-MS data of the training set 
samples and the categorical variables of the samples. Cross-
validation was carried out using the leave-one-out method. 
The established PLS model was used to discriminate diseased 
from healthy plants in the validation set samples.

Results and Discussion
Metabolic profiles of strawberry leaves

A representative total ion chromatogram of the metabolome of 
strawberry leaves inoculated with B. cinerea is shown in Figure 
1. A total of 249 peaks were detected. The chromatographic 
peaks are qualitative based on the retention time and mass 
spectral characteristics of the standards. In addition, metabo-
lites with matching degrees >80% were identified by NIST 
MS 2.2 library searches. The metabolome of the strawberry 
leaves consisted mainly of sugars, organic acids, amino acids, 
and alcohols.

Effects of B. cinerea on metabolome of strawberry 
plants

Gray mold in strawberry has a long latency period between 
infection and the appearance of symptoms.28 B. cinerea usually 
infects strawberry inflorescences, causing flower death, espe-
cially during continuous rainy days, or it establishes symptom-
less infections, where the pathogen remains latent until the 
fruit ripens. In this study, the plants infected with B. cinerea 
had no visible symptoms of gray mold on their leaves, but later 
a layer of gray mold was found on the calyx of infected plants. 
Here, we tested the hypothesis that the B. cinerea-infected 
strawberry plants could be discriminated from the healthy 
plants in the latent period based on the composition of their 
metabolomes, which reflects the metabolic interaction between 
the plant and the pathogen.

The multivariate statistical analysis method has been suc-
cessful in separating biological samples with and without 
external stimuli.29 Such separation was based on comprehen-
sive comparative analyses between the metabolite profiles of 
different groups of samples. We subjected the metabolite pro-
files of the strawberry leaves to OPLS analyses to classify and 
detect potential biomarkers for B. cinerea infection. Trends 
within the data were visualized in an OPLS score plot (Figure 2), 
where each GC-MS spectrum (ie, a metabolite profile) is rep-
resented by a symbol and grouped with the next most similar 
spectrum or group of spectra. Figure 2 shows that the GC-MS 
spectrum for an individual sample is clustered closely with the 
spectra for other samples from the same treatment group. 
Good separation was obtained for both the B. cinerea-infected 
and control plants at the three sampling times (2, 5, and 7 days 
after inoculation), with 38% of the Factor-1 (predictive 
component) variables accounting for 97% of the Factor-2 
(orthogonal component) variables. Our findings confirmed 
that the metabolite profiles contained useful information 
related to changes in metabolism that were valuable for sepa-
rating diseased plants from healthy ones and showed that 

Figure 1.  Representative GC-MS total ion chromatograms of crude extracts using a mixture of methanol:water (4:1, v/v) of strawberry leaves incubated 

with B. cinerea. GC-MS indicates gas chromatography-mass spectrometry.
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pathogen inoculation caused changes in the plant metabolome 
even in the latent period after infection.

The “global” metabolite analysis of the GC-MS spectra 
confirmed that B. cinerea-infected strawberry plants had differ-
ent metabolic components compared to healthy plants. In the 
OPLS loading plot (Figure 3), the metabolic profiles contrib-
uted greatly to the observed discrimination of the samples, 
clearly reflecting their cellular metabolic diversity. In general, 
the different sample groups held dissimilar amounts and types 
of metabolites, resulting in distinctive metabolite profiling. The 
metabolites with the lowest and highest Factor-1 values con-
tributed more than 50% to distinguishing between the treated 
and control plants and were closely related to the discrepancy 
between the different groups separated on the score plot 
(Figure 2). Variations in the content of mainly organic acids, 
alcohols, and sugars in the strawberry leaves contributed most 
to the observed separation between the healthy and diseased 
groups and are good candidates to be biomarkers for the diag-
nosis of strawberry gray mold.

Signatory metabolites for the discrimination of 
strawberry plants incubated with/without  
B. cinerea

To determine significant fluctuations in the signatory metab-
olites in the B. cinerea-infected plants, the metabolites identi-
fies by the OPLS analysis were tested using one-way ANOVA. 
Table 1 listed the metabolites whose content had changed 
significantly at least once in 3 sample collection time points. 
As shown in Table 1, there were 16 metabolites selected from 
the multivariate OPLS approach were found to have changed 
significantly in a univariate one-way ANOVA in the infected 
plants at 2 days after inoculation compared with the controls. 
There were 13 metabolites whose content increased and 3 
metabolites whose content decreased in the infected plants. 
In the infected plants, 5 days after inoculation, 14 metabolites 
were found to have changed significantly. Among them, 
the content of 13 metabolites increased and the content of 
1 metabolite decreased. For the infected plants 7 days after 
inoculation, 13 metabolites were found to have changed 
significantly. Among them, the content of 11 metabolites 
increased and the content of 2 metabolites decreased. Among 
them, hexadecanoic acid, octadecanoic acid, sucrose, β-
lyxopyranose, melibiose, and 1,1,4a-Trimethyl-5,6-dimethyl-
enedecahydronaphthalene content continuously increased 
after inoculation. These metabolites were considered as tenta-
tive biomarkers closely related to B. cinerea infection.

It has been found that products of the cell signal transduc-
tion pathway and system resistance pathway are the first to 
change in plants after infection by pathogens, followed by 
changes in the primary metabolism, secondary metabolites, 
and metabolites related to tissue structure.3 In this study, we 
found that in the initial phase of infection with B. cinerea, the 
content of the signal metabolite inositol increased, which is 
consistent with the previous report.30 Hexadecanoic acid and 

octadecanoic acid, which are used for the synthesis of jasmonic 
acid, increased in infected plants, revealing a disturbance of the 
jasmonic acid pathway and possible activation of a series of 
defense reactions.31 Primary metabolites such as malic acid, 
fructose, galactose, and pyruvic acid contribute to the physio-
logical or morphological adjustment of strawberry plants to 
restrain the invasion of pathogens. For example, glucose is a 
precursor of shikimic acid and is also a constituent monomer of 
cellulose and hemicellulose, and their high content is related 
closely to the resistance of plants to pathogens.32 In addi-
tion, jasmonic acid can stimulate the production of phenolic 
substances.33 This study specifically selected strawberries of 

Figure 2.  OPLS score plot of the metabolite profiles of strawberry leaves 

with or without B. cinerea incubation for 2, 5, and 7 days. Factor-1 is the 

predictive component and Factor-2 is the first orthogonal component. The 

ellipse shows Hotelling T2-range (significance level 0.05). B. cinerea- 

infected plants at 2 days after inoculation (▇); controls at 2 days (•);  
B. cinerea-infected plants at 5 days after inoculation (○); controls at 

5 days (◆); B. cinerea-infected plants at 7 days after inoculation (▼); 

controls at 7 days (△). Here, Factor-1 and Factor-2 refer to the first and 

the second Factors used to explain the variance. OPLS indicates 

orthogonal partial least squares.

Figure 3.  Correlation loading plot of the predictive component of the 

OPLS based on the metabolite profiles of strawberry leaves with or 

without B. cinerea incubation for 2, 5, and 7 days. The correlation 

loadings plot contained two ellipses that indicated how much variance 

was considered by the model. The outer ellipse represented the unit 

circle, corresponding to 100% of the explained variance, while the inner 

ellipse corresponded to 50% of the explained variance. The dot 

represents that metabolites (name not provided) close to the outer ellipse 

were important for distinguishing between the inoculated and control 

samples. Encircled metabolites (name not provided) contributed 

considerably to the separation of samples on the scores’ plot. Here, 

Factor-1 and Factor-2 refer to the first and the second Factors used to 

explain the variance. OPLS indicates orthogonal partial least squares.
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susceptible varieties as research materials. If the strawberry of 
the resistant variety was selected as the material, different bio-
markers or signaling components may be obtained. Further 
studies are needed to clarify the functions of the tentative bio-
markers in the interaction between B. cinerea and strawberry.

Partial least squares discriminant analysis-based 
metabolic f ingerprinting of strawberry plants 
incubated with/without B. cinerea

In this study, we established a model for discriminating diseased 
strawberry plants from healthy plants. According to the ratio of 

the training and testing set (2:1), we collected 36 samples and 
randomly selected 24 samples as the training set, so the remain-
ing 12 samples were used as the testing set. The regression anal-
ysis of the GC-MS data and the categorical variables of the 
training set were carried out based on PLS, to establish a discri-
minant model of the strawberry plants with gray mold disease. 
As shown in Figure 4, the model clearly separated the B. cinerea-
infected plants from the controls, with 35% of the Factor-1 
variables accounting for 98% of the Factor-2 variables. Based on 
these results, we consider that the model has high reliability and 
can be used for discriminant analysis.

Table 1.  Metabolites with significant differences in B. cinerea-infected strawberry plants compared with the controls.

Metabolites NUMBER IN 
CORRELATION 
LOADINGS

RT 
(minutes)

Quantitative ions Change fold

(M/Z) 2 days 5 days 7 days

Pyruvic acid 13 7.92 217 147 148 0.76* 0.85 0.69*

Arabitol 79 23.16 217 103 147 1.14 0.24* 0.70

Malic acid 43 18.10 233 147 245 0.95 1.60 0.55*

2,3-Butanediol 78 23.11 117 147 75 0.71* 1.31 1.38

Maltitol 166 46.18 204 217 147 0.52* 1.72 1.27

Inositol 116 30.24 318 217 305 2.86* 0.92 1.40

Galactose 102 26.70 319 205 147 4.55* 1.31 0.92

D-Fructose 100 26.45 103 217 307 6.00* 1.62 0.76

Shikimic acid 93 25.31 204 147 205 4.27* 4.84* 1.00

Galacturonic acid 182 48.63 204 217 147 1.24 1.84* 1.82*

Arabinonic acid 157 45.28 217 147 75 1.29 3.33* 2.71*

Hexadecanoic acid 117 31.36 117 313 132 1.76* 1.38* 1.36*

Octadecanoic acid 131 39.06 117 341 132 2.06* 1.48* 1.39*

D-Ribose 83 23.78 217 204 191 1.12 1.60* 2.34*

D-Xylose 69 21.85 103 307 217 3.15* 1.65 1.40

Sucrose 154 45.04 361 362 217 3.19* 2.45* 1.55*

β-D-Glucopyranose 143 43.49 204 191 147 1.82* 1.35 1.83*

D-Mannopyranose 147 44.14 204 191 75 1.46 1.73* 1.63

β-Lyxopyranose 184 49.63 217 204 147 1.76* 2.52* 2.45*

Melibiose 186 50.30 204 217 191 1.86* 1.90* 1.75*

Phytol 126 35.76 143 75 144 1.20 1.65* 1.75*

Salidroside 172 46.94 204 193 192 1.75* 2.36* 1.63

1,1,4a-Trimethyl-5,6-
dimethylenedecahydronaphthalene

185 50.07 204 105 133 2.09* 1.98* 1.78*

Abbreviations: ANOVA, analysis of variance; RT, retention time.
The table listed the metabolites whose content had changed significantly at least once in 3 sample collection time points. “Change fold” column showed the amount of 
the metabolites content changed in samples incubated with B. cinerea compared to without ones. The numbers greater than 1 represent the upregulation of metabolites 
and less than 1 represent the downregulation of metabolites.
*The content of metabolites changed significantly (P ⩽ 0.05) in a one-way ANOVA.
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As can be seen from Figure 5, the discriminant model of 
strawberry plants infected with B. cinerea but without gray 
mold symptoms established by PLS regression was good. The 
regression lines of the calibration and verification results of 
the model basically coincide. The correlation coefficient 
between the correction value of the indicator variable and the 
verification value of the model were all >0.946. The calibra-
tion line passed through the origin and the validation line was 
close to the origin (Figure 5). The root mean square errors 
(RMSEs) of the calibration and verification results were 
0.0434 and 0.1210 (close to 0), the offsets were 0.0038 and 
0.0499 (close to 0), and the slopes were 0.9925 and 0.8853 
(close to 1), respectively. These parameters indicate that the 
discriminant model fits well.

The established model was used to discriminate the 12 test-
ing samples. All the samples had low prediction errors close to 
0.1, as shown in Table 2. The Ypred (predicted) values of sam-
ples 1-6 were all >0.5, which is close to 1, and were judged to 
be the infected samples, whereas the Ypred values of samples 
7-12 were all <0.5, close to 0, and were judged to be controls. 
All 12 samples were correctly discriminated, indicating that the 
PLS-DA model can well discriminate B. cinerea-infected 
strawberry plants from healthy ones, and the identification 
accuracy for these samples was 100%.

The diagnosis model of strawberry gray mold disease pre-
sented here needs to be used with larger sample sizes and with 
different diseases to verify its usefulness as a guide in the early 
diagnosis of strawberry diseases in the field.

Conclusion
B. cinerea caused changes in the metabolome of the leaves of 
infected strawberry plants. Signatory metabolites that fluctu-
ated before visible symptoms appeared were obtained based on 
OPLS and contributed to the distinction between healthy 
and diseased plants. The PLS-DA model that was established 

Figure 4.  PLS-DA score plot of the metabolome of strawberry leaves 

with or without B. cinerea incubation. Factor-1 is the predictive 

component and Factor-2 is the first orthogonal component. The ellipse 

shows Hotelling T2-range (significance level 0.05). B. cinerea-infected 

plants (T •) and healthy controls (C ■) in the testing sets. Here, Factor-1 

and Factor-2 refer to the first and the second Factors used to explain the 

variance. PLS-DA indicates partial least squares discriminant analysis.

Figure 5.  PLS-DA based on the metabolome of strawberry leaves with or 

without B. cinerea incubation. PLS regression chart of the real and 

predicted values obtained using the calibration model for sample 

classification variables. Here, T refers to treatments, C refers to controls, 

Cal refers to calibration, Val refers to validation, while Factor-3 refers to 

the third Factor used to explain the variance. PLS-DA indicates partial 

least squares discriminant analysis; RMSE, root mean square error.

Table 2. I dentification of the PLS-DA model for strawberry plant testing samples.

Samples Testing samples Y Predicted Deviations

1 1-52-5 1.1646 0.126

2 1-52-6 0.9049 0.1101

3 2-52-1 1.2138 0.1239

4 2-52-2 1.016 0.1095

5 3-52-4 1.0437 0.1216

6 3-52-5 0.9831 0.1108

7 1-CK-1 0.0667 0.1074

8 1-CK-2 0.1263 0.1132

9 2-CK-2 −0.074 0.1359

10 2-CK-3 0.0685 0.1214

11 3-CK-5 −0.1009 0.122

12 3-CK-6 −0.0734 0.102

Abbreviations: PLS-DA, partial least squares discriminant analysis.
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based on the metabolome successfully diagnosed latent infesta-
tion by B. cinerea.
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