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Abstract: Malnutrition, which commonly occurs in perioperative patients with cancer, leads to
decreased muscle mass, hypoalbuminemia, and edema, thereby increasing the patient’s risk of various
complications. Thus, the nutritional management of perioperative patients with cancer should be
focused on to ensure that surgical treatment is safe and effective, postoperative complications
are prevented, and mortality is reduced. Pathophysiological and drug-induced factors in elderly
patients with cancer are associated with the risk of developing malnutrition. Pathophysiological
factors include the effects of tumors, cachexia, and anorexia of aging. Metabolic changes, such as
inflammation, excess catabolism, and anabolic resistance in patients with tumor-induced cancer
alter the body’s ability to use essential nutrients. Drug-induced factors include the side effects
of anticancer drugs and polypharmacy. Drug–drug, drug–disease, drug–nutrient, and drug–food
interactions can significantly affect the patient’s nutritional status. Furthermore, malnutrition may
affect pharmacokinetics and pharmacodynamics, potentiate drug effects, and cause side effects. This
review outlines polypharmacy and malnutrition, the impact of malnutrition on drug efficacy, drug–
nutrient and drug–food interactions, and intervention effects on polypharmacy or cancer cachexia in
elderly perioperative patients with cancer.
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1. Introduction

Cancers are among the leading causes of morbidity and mortality worldwide, and the
number of new cases is expected to rise significantly over the next few decades. At the same
time, all types of cancer treatment, such as surgery, radiation therapy, and pharmacological
therapies, are improving in sophistication, precision, and in the power to target specific
characteristics of individual cancers. All of these treatments, however, are impeded by
the frequent development of malnutrition and metabolic derangements in cancer patients,
induced by the tumor or by its treatment [1]. It was previously suggested that malnutrition
increases the risk of cancer patient mortality and the length of hospital stay [2–6]. Therefore,
nutritional management of cancer patients is extremely important.

The relationship between polypharmacy and malnutrition is based on several mech-
anisms. The long-term use of multiple drugs results in anorexia, generally as a minor
or more serious impairment of the digestive tract. Additionally, many drugs have the
potential to negatively affect nutritional status by altering the sensory perception of
taste, intestinal absorption, and metabolism or inducing the elimination of essential vi-
tamins and minerals [7,8]. Conversely, malnutrition often decreases the bioavailability
of drugs and alters their pharmacokinetic and pharmacodynamic properties, which in-
creases the patient’s sensitivity to the drug; even at the usual dose, the drug will have a
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stronger effect and higher incidence rate of side effects. This gives rise to a vicious circle,
wherein polypharmacy, particularly in excess, degrades the nutritional status, and the
degraded nutritional status demands increased doses of drugs with the increased occur-
rence of undesirable side effects [9]. Hence, nutritional status needs to be assessed before
prescribing medications.

Elderly patients with cancer often take a large number of medications to prevent
or reduce side effects in addition to their multimorbidity. Therefore, they are prone to
polypharmacy. As mentioned above, polypharmacy is associated with malnutrition. In
elderly perioperative patients with cancer, a multidisciplinary team comprising physicians,
pharmacists, nurses, dietitians, and other professionals should be aware of the potential
effects of individual drugs and polypharmacy on perioperative nutritional status and seek
to reduce negative impacts. Polypharmacy has the potential for adverse clinical outcomes,
and it is therefore necessary to synthesize the current evidence to provide a practical
direction for future research and clinical practice. This review outlines polypharmacy and
malnutrition, the impact of malnutrition on drug efficacy, and drug–nutrient interactions
in elderly patients with cancer during the perioperative period.

2. Polypharmacy in Elderly Patients with Cancer

Elderly patients with cancer have a higher risk of requiring polypharmacy than pa-
tients of the same age without cancer [10]. Most cancer treatments, such as chemotherapy
and supportive care regimens, involve the prescription of multiple medications. Further-
more, drugs with anticancer agents are associated with numerous adverse drug reactions,
ranging from mild nausea to myelosuppression, which may prompt polypharmacy [11].
Due to these factors, older adults with cancer are at a high risk of requiring polyphar-
macy. It is estimated that >50% of older patients with cancer are administered at least five
medications and that the drug–drug interactions are associated with impaired physical
function [12,13].

There are various definitions of polypharmacy, which makes it challenging to under-
stand the scope and impact of the associated problems. A previous review suggested that
there are 24 distinct definitions of polypharmacy in general use [14], including concepts
ranging from unnecessary or inappropriate medication use to the use of an excessive
number of medications [15]. The most common definition of polypharmacy is receiving
≥5 medications daily; however, due to the wide variance in definitions, the appropriateness
of medication usage is described only in a minority of the definitions [16]. In Japan, there
is no strict definition of how many drugs constitute polypharmacy. The Ministry of Health,
Labor and Welfare’s definition of polypharmacy refers to not only the intake of multiple
drugs but also to the fact that polypharmacy is associated with conditions that increase
the risk of adverse drug reactions, drug errors, and decreased medication adherence. In
some cases, adverse drug events may occur when the patient is only administered two or
three drugs, as it is equally important to consider the ingredients of the prescription when
managing drug–drug interactions. Thus, in defining polypharmacy, the administration
of prescriptions must be optimized with the primary aim of ensuring safety rather than
focusing only on a uniform number of drugs or types of drugs.

Polypharmacy can lead to various adverse events. Polypharmacy has been associated
with increased falls [17], hospitalization [18], decreased physical and cognitive capabil-
ity [19], impaired activities of daily living (ADL) [20,21], and mortality [22] in older adults
without cancer. Hence, elderly patients with cancer are at a greater risk of medication-
related events, as they are usually prescribed an extensive number of medicines, both to
treat the disease itself and to provide supportive care in treating the side effects of both
the disease and the medications used. Therefore, cancer-related therapy contributes to the
prevalence of polypharmacy, which can lead to compromised cancer management plans
(i.e., postoperative complications, treatment delays, and/or premature treatment discon-
tinuation) [23]. Additionally, in an oncology setting, polypharmacy with inappropriate
medications is likely to contribute to the patient’s worsened condition, frailty syndrome,
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poor physical function, poor survival, and a higher number of comorbidities [24,25]. As
is evident from the above descriptions, polypharmacy in elderly patients with cancer is
a crucial factor to consider when treating the health conditions of elderly patients with
cancer, as it affects the process and outcomes of cancer treatment.

3. Effects of Polypharmacy and Malnutrition on Elderly Perioperative Patients
with Cancer

Drugs are also associated with causes of malnutrition. Factors in drug-induced
malnutrition are the side effects of anticancer drugs. The common side effects of cytotoxic
chemotherapy include anorexia, nausea, and vomiting, which directly limit food intake.
Additionally, cytotoxic anticancer drugs such as oxaliplatin, cisplatin, doxorubicin, 5-
fluorouracil, and irinotecan are taken up by muscle cells. These drugs suppress protein
synthesis and induce atrophy, oxidative damage, cellular energy depletion, and apoptotic
or necrotic cell death [26]. Decreased de novo lipogenesis and increased lipolysis are
additional effects that cisplatin and doxorubicin induce in the adipose tissue [26]. Thus,
anticancer drugs affect the nutritional status. Additionally, since many drugs are often
prescribed to prevent the side effects of anticancer drugs, elderly perioperative patients
with cancer are prone to polypharmacy.

Polypharmacy and anticholinergic drugs have also been associated with the risk of
developing malnutrition [27–29]. The long-term use of multiple drugs results in anorexia,
which generally manifests clinically because of a minor or serious impairment of the diges-
tive tract, which may result in lower food intake and affect the patient’s nutritional status.
The inverse relationship between medication use and nutritional status has been demon-
strated previously, with 50% of those taking ≥10 medications found to be malnourished
or at risk of malnourishment [30]. Elderly perioperative patients with cancer commonly
have concomitant lifestyle-related diseases such as hypertension, diabetes mellitus, and
atherosclerosis. Drugs used to treat these diseases are also known to affect the nutritional
status (see Table 1).

Anticholinergic drugs have also been associated with malnutrition. Elderly patients
with cancer often take antipsychotic drugs to prevent delirium and improve symptoms
of restlessness. Antipsychotic drugs with anticholinergic effects, such as chlorpromazine,
haloperidol, and risperidone, block dopaminergic neurons and potentially inhibit the
swallowing reflex, which can induce aspiration pneumonia. Additionally, these drugs can
cause extrapyramidal disorders, difficulty opening and closing the mouth, and limitations
in lingual movement, thus making mastication, the formation of a food bolus, and its
passage into the pharynx difficult.

Malnutrition in patients with cancer is based upon multiple factors. As evidenced from
the above descriptions, it is difficult to distinguish between drug-induced malnutrition
and malnutrition due to disease or other causes. A multidisciplinary team comprising
physicians, pharmacists, nurses, dietitians, and other professionals should comprehensively
evaluate malnutrition.

4. Effects of Hypoalbuminemia on Drug Efficacy

Elderly patients with cancer may suffer from hypoalbuminemia due to deteriorated
swallowing function, loss of dental occlusion, decreased food intake, and the debilitating
effects of chronic inflammatory diseases, such as cachexia. When dietary intake is no
longer possible and protein and amino acids are not taken into the body as nutrients, the
total amount of protein synthesized by the liver reduces, resulting in hypoalbuminemia.
If the required amount of energy-producing nutrients is not supplied, amino acids will
be used as an energy source and not for body protein synthesis. When protein intake
is insufficient, skeletal muscle is broken down and used to sustain life. Hence, when
fasting reduces the ability to masticate and swallow, complete loss of the ability to swallow
is likely to occur [31]. Additionally, acute inflammation, such as infection or invasion,
causes an increase in the serum levels of C-reactive protein. At the same time, albumin
synthesis is inhibited, which results in a decrease in the serum levels of albumin. In
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chronic inflammation, such as cachexia, inflammatory cytokines inhibit albumin synthesis
in hepatocytes and promote C-reactive protein production. However, the inhibition of
albumin synthesis is usually mild compared with that in acute inflammation.

Drugs sensitive to protein binding affect drug efficacy in hypoalbuminemia. When an
administered drug is distributed in the bloodstream, it binds to albumin because of the
drug’s pH, electrical charge, steric structure of the molecule, and hydrophilic/hydrophobic
properties. Albumin-bound drug molecules are unable to express drug effects. Only free
drugs that are not bound to albumin pass through the cell membrane and enter the cell to
produce a drug effect. The percentage of drugs that produce a drug effect depends on the
type of drug and the amount of albumin and water in the blood. Drug dosage is established
by administering the drug to healthy subjects or patients during a clinical trial (dose-finding
study). However, there are few data on the appropriate dose for patients with malnutrition
and hypoalbuminemia. When albumin in the blood decreases because of undernutrition,
the free drugs, which cannot bind to albumin, increase in the blood, resulting in stronger
drug effects and more frequent side effects, even at normal doses (Figure 1). Additionally,
when the plasma water content is reduced and the blood concentration is increased because
of dehydration, the incidence and severity of side effects increase as well. Accordingly,
when administering drugs during hypoalbuminemia or dehydration, attention should be
given to the changes in the patient’s symptoms.
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Figure 1. When a single drug is used alone or in combination with two drugs, or in case of hy-
poalbuminemia, the amount of free drug that does not bind to plasma albumin increases. Conse-
quently, the amount of drug that passes through the cell membrane increases, and the drug effect is
strongly expressed.

Albumin binds to calcium, and the binding is affected by pH and temperature. Ap-
proximately 40% of the total blood calcium is bound to plasma proteins, primarily albumin.
The remaining 60% includes ionized calcium plus calcium complexed with phosphate
and citrate. Total calcium (i.e., protein-bound, complexed, and ionized calcium) is usually
determined by clinical laboratory measurement. However, ideally, ionized (or free) calcium
should be estimated or measured because it is the physiologically active form of calcium in
plasma and because its blood level does not always correlate with total serum calcium.
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5. Interaction of Drugs with Nutrients or Diet
5.1. Effects of Drugs on Nutrients

More than 250 drugs have been reported to have adverse effects on the patient’s
nutritional status because of drug-induced alterations in taste, intestinal absorption, and
metabolism or excretion of essential vitamins and minerals [7,8]. Table 1 shows the effects
of major drugs on nutrients.

5.1.1. Antihypertensive Drugs and Zinc

Antihypertensive drugs such as thiazide diuretics, angiotensin receptor blockers,
angiotensin-converting enzyme inhibitors, and potassium-conserving diuretics decrease
zinc levels [7]. Zinc deficiency is a common cause of taste disorders, which can lead to
weight loss and malnutrition. Thus, zinc administration may be used to improve or prevent
these symptoms. A Cochrane review that examined the improvement of taste perception
due to zinc supplementation in patients with idiopathic and zinc-deficient taste disorders
found very low-quality evidence that zinc supplementation improves taste perception
(relative risk: 1.42, 95% confidence interval: 1.09–1.84; 292 participants, two trials) [32].
Zinc could be useful in the prevention of oral toxicities during irradiation; however, it does
not alleviate chemotherapy-induced side effects [33]. Accordingly, several studies have
proposed that zinc does not have a positive effect on patient weight or food intake [32].

5.1.2. Acetylcholinesterase Inhibitors

The typical side effects of acetylcholinesterase inhibitors include nausea, vomiting,
diarrhea, and anorexia, and each of these symptoms may lead to weight loss. Weight loss
is often observed after 3 months of use, but studies have shown that weight loss does not
persist over the long-term use of the inhibitors [34]. However, its use in elderly patients
with weakness or anorexia should be carefully considered [34].

5.1.3. Proton Pump Inhibitors (PPIs)

Several studies have examined the association between long-term PPI use and the risk
of developing vitamin B12 deficiency [35,36]; most, [36] but not all [37], studies reported
a 2- to 4-fold increased risk of vitamin B12 deficiency associated with PPI therapy. The
complex relationship between PPI use and nutritional status has not been fully elucidated.
However, it has been reported that the long-term use of PPIs may improve nutritional
status in elderly patients admitted to a long-term care ward, convalescent rehabilitation
ward, or community-integrated care ward [35].

Several meta-analyses have reported that PPI use is also associated with the develop-
ment of hypomagnesemia [38,39]. A dose–response relationship was found between PPI
use and the development of hypomagnesemia [38]. Hypomagnesemia increases the risk
of developing cardiovascular events [40]. Thus, PPI users should be aware of the risk of
developing hypomagnesemia.

PPIs can decrease the absorption of water-insoluble calcium (e.g., calcium
carbonate) [41]; however, this effect is not relevant for water-soluble calcium salts [42] or
calcium-containing milk or cheese [43]. When calcium supplementation is necessary for
patients taking PPIs, calcium supplements that do not require acid for absorption, such as
calcium citrate, are recommended. PPI-induced hypochlorhydria can augment osteoclas-
tic activity, thereby decreasing bone density [44,45]. Hence, calcium supplementation is
necessary for such patients. Although an association between PPI use and bone fracture is
plausible, a causal link has not been established [46].

Gastric acid plays a role in the absorption of nonheme iron, and the use of PPIs
has been associated with decreased iron absorption [47–51]. However, few studies have
specifically evaluated the potential association between PPIs and iron deficiency [52]. In
most cases, the decreased absorption of iron does is not clinically significant [52]. In
patients with Zollinger–Ellison syndrome, 6 years of taking PPIs was not associated with
decreased total body iron levels or iron deficiency [53]. Conversely, PPI use in patients with
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hereditary hemochromatosis was associated with a significant reduction in the absorption
of nonheme iron over the short term as well as a significant reduction in annual phlebotomy
requirements over the long term [48]. Such patients may need a higher dose or a longer
duration of supplementation.

5.1.4. Statins

Statins decrease the production of coenzyme Q10 (CoQ10) by inhibiting mitochon-
drial oxidative phosphorylation and inducing mitochondrial apoptosis [7,54]. Decreased
CoQ10 results in decreased adenosine triphosphate production and energy deficiency.
Consequently, the number of cellular processes decreases, which may induce frailty
and sarcopenia.

Mitochondrial function has been associated with myopathy, which is a side effect
of taking statins. Since skeletal muscle is highly energy-consuming and deeply depen-
dent on mitochondrial activity, mitochondrial dysfunction is largely associated with the
development of statin-induced myopathy [54]. In a recent meta-analysis examining the
effects of CoQ10 on statin-induced myopathy, the concomitant use of CoQ10 significantly
improved statin-related muscle symptoms, such as muscle pain, muscle cramps, and mus-
cle fatigue [55]. A previous study demonstrated a reduction in CoQ10 after statin treatment,
which may have been associated with statin-induced myopathy [56]. As is evident from
the above description, the concomitant use of statin with CoQ10 supplements may be a
complementary approach to symptom relief of statin-induced myopathy.

5.1.5. Aspirin

The long-term use of high-dose aspirin has been associated with decreased vitamin
C levels. It has been suggested that this leads to gastritis, peptic ulcer disease, nausea,
anorexia, and thinning of the gastric mucosa with hypotrophy [7]. At this time, there is
no evidence suggesting a decrease in vitamin C levels or the need for vitamin C supple-
mentation in patients taking low-dose aspirin for primary or secondary prevention of
cardiovascular disease.

5.1.6. Metformin

Metformin causes vitamin B12 deficiency in a dose- and duration-dependent man-
ner [7]. Vitamin B12 deficiency is associated with serious outcomes, such as anemia and
cognitive impairment; thus, patients taking metformin should have their vitamin B12 levels
measured regularly and consider supplementation if they are deficient.

Metformin inhibits the breakdown of muscle proteins and affects muscle mass and
strength. Metformin activates 5′ adenosine monophosphate-activated protein kinase,
suppresses inflammatory responses, and inhibits muscle protein degradation. Studies
of sarcopenia have revealed numerous health benefits of 5′ adenosine monophosphate-
activated protein kinase activation. First, sarcopenia promotes skeletal muscle protein
synthesis and cell proliferation. Second, sarcopenia inhibits apoptosis in skeletal mus-
cle. Third, sarcopenia improves dysfunction by promoting mitochondrial biogenesis.
Finally, sarcopenia induces the growth of bone marrow-derived muscle progenitor cells
in skeletal muscle [57]. Specifically, in a double-blind randomized controlled trial, met-
formin was found to improve the walking speed of older adults with no diabetes, which
indicates that metformin has a positive effect on lower limb muscle strength [58]. In a
prospective cohort study of elderly women with diabetes, women who took metformin
experienced reduced loss of walking speed compared to the controls [59]. In another cohort
study, metformin reduced the age-related loss of lean body mass in elderly male diabet-
ics [60]. These findings suggest that metformin has a positive effect on muscle mass and
muscle strength.
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5.1.7. Sodium Glucose Transporter 2 Inhibitors

Sodium glucose transporter 2 (SGLT-2) inhibitors may induce sarcopenia by causing
protein breakdown, particularly in elderly patients with inadequate dietary intake. SGLT-2
inhibitors cause a decrease in serum insulin levels and an increase in glucagon levels.
Consequently, they reduce the uptake of glucose and amino acids into muscle and promote
protein breakdown [61]. Dapagliflozin, ipragliflozin, and empagliflozin have been shown
to decrease muscle mass and skeletal muscle mass index [62–65]. However, further studies
are needed to determine the frequency of the occurrence of SGLT-2 inhibitor-related sar-
copenia and whether SGLT-2 inhibitors cause diabetes-related sarcopenia, as clinical data
are limited.

Table 1. Effects of drugs on nutrients.

Drugs Effects of Drugs
on Nutrients Symptoms Caused Countermeasure References

Antihypertensive drugs:
thiazide diuretics,

ARBs, ACE inhibitors, and
potassium-retaining diuretics

Zinc deficiency
Taste disorder,

anorexia, lethargy, and
delayed wound healing

•Determination of zinc levels
in plasma or urine

•Blood pressure monitoring to
determine the need for

continued administration

[7]

Acetylcholinesterase
inhibitors Unknown

Nausea, vomiting,
diarrhea, and loss of

appetite

•Monitoring changes in
appetite and weight loss
•Assessing the benefits of

using medications for the risk
of malnutrition

[34]

Proton pump inhibitors Deficiency of VB12,
Mg, Ca, and Fe

Clostridium difficile
diarrhea, pneumonia,
femoral neck fracture,
hypomagnesemia, and

hypocalcemia

•Measurement of VB12, Mg,
Ca, ferritin, and FRAX score
•Evaluate the need for

continued administration

[35–39,41,53]

HMG-CoA reductase
inhibitors (stains) CoQ10 deficiency Frailty, sarcopenia, and

myopathy

•Examining the use of CoQ10
in combination

•Evaluate the need for
continuous administration in

patients over ≥75 years

[7,54]

Long-term, high-dose aspirin VC deficiency Gastric mucosal
thinning

•Long-term use of low-dose
aspirin (80–400 mg/day)

•VC supplementation if higher
doses are needed

[7]

Metformin

•VB12 deficiency
•Inhibits the

breakdown of
muscle proteins

•Anemia, fatigue, and
cognitive impairment
•Improvement of
muscle mass and

strength

Monitor vitamin B12 and
consider switching to another

drug if it is low
[7]

SGLT-2 inhibitors Protein degradation

Sarcopenia, decrease in
muscle mass, and

skeletal muscle mass
index

Consider the need for
continued administration [62–65]

Diuretics (loop, thiazide, and
osmotic), corticosteroids,

kanzo, insulin, β2-adrenergic
stimulation

Lower potassium
Vomiting, anorexia,
weakness, muscle
weakness, tetany

Monitor potassium and
consider eating foods rich in

potassium or taking
supplements

[66–70]

Abbreviations: Angiotensin-converting enzyme inhibitors, ACE inhibitors; angiotensin II receptor blockers, ARBs; calcium, Ca; coenzyme
Q10, CoQ10; hydroxymethylglutaryl-CoA, HMG-CoA; ferrum, Fe; fracture risk assessment tool, FRAX; magnesium, Mg; sodium glucose
transporter-2, SGLT-2; vitamin B12, VB12; vitamin C, VC.
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5.1.8. Diuretics, Corticosteroids, Kanzo (Kampo), Insulin, and β2-Adrenergic Stimulation

Loop, thiazides, and osmotic diuretics cause hypokalemia [66]. These drugs act on the
renal tubules to inhibit the reabsorption of water along with sodium, thereby producing
a diuretic effect. At the same time, they promote the excretion of potassium, resulting in
hypokalemia. Hypokalemia may be accompanied by symptoms such as vomiting, loss of
appetite, and weakness. The diuretic effect also causes dry mouth. These symptoms may
affect food intake. Steroids cause hypokalemia via their mineralocorticoid action [67]. The
main ingredient in kanzo is glycyrrhizic acid. Glycyrrhizic acid acts on the distal tubules
of the kidneys, causing retention of sodium and water in the body, hypokalemia, and
increased blood pressure [68]. These effects are referred to as pseudohypoaldosteronism.
Both insulin and β2-adrenergic stimulation activate potassium uptake by stimulating
activity of the adenosine triphosphatase sodium/potassium pump predominantly in skeletal
muscle [69,70].

5.2. Nutrient–Drug and Diet–Drug Interactions

Typical nutrients or diets, including vitamins, calcium, high-fat meals (approximately
≥900–1000 kcal), and high-protein meals (protein accounting for ≥20% of the total caloric
content of the meal), and their drug interactions are listed in Table 2. It is important to
be aware of these interactions and to keep their risks in mind when managing patient
treatment plans. However, nutrient–drug or diet–drug interactions are still in the develop-
mental stage, and there are not many cases in which the management of such interactions
has been established. Under these circumstances, careful observation in the clinical setting
is essential to assess the frequency and severity of adverse effects due to nutrient–drug or
diet–drug interactions and to identify unknown interactions.

Table 2. Nutrient–drug and diet–drug interactions.

Vitamin
Vitamin Drug Effects of Interactions Reference

A Paclitaxel
Vitamin A inhibits the metabolism of

paclitaxel and increases the blood
concentration of paclitaxel

[71]

B6

Phenytoin Decrease in blood phenytoin level [72]

Aluminum hydroxide
Decreased absorption of riboflavin and

prolonged time for urinary excretion to reach
its maximum

[73]

Levodopa Accelerates levodopa degradation and
reduces its migration in the brain [74]

B12 Cimetidine Decreased absorption of vitamin B12 with
intake of 1000 mg/day [75]

C Iron sulfate Iron absorption increases with concurrent
intake of ≥200 mg of vitamin C [76]

D
Thiazide Diuretics Hypercalcemia [77]

Digoxin Hypercalcemia can lead to digitalis poisoning [78]

E Warfarin Prolongation of prothrombin time and
appearance of ecchymosis [79]

K Warfarin Decreased effect of warfarin [80]
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Table 2. Cont.

Calcium
Drug Effects of Interactions Reference

Aspirin

AUC and Cmax significantly decreased by
approximately 30% and 28%, respectively,
and disappearance speed rate of aspirin

also decreased

[81]

Tetracycline antibiotics

Calcium and the drug bind together to form a
chelate, which reduces absorption from the

small intestine

[82]

New quinolone antibiotics [83]

Bisphosphonate
osteoporosis drugs [84]

Estramustine phosphate [85]

Digoxin Large amounts of calcium should be avoided
as hypercalcemia causes digitalis toxicity [86]

Alfacalcidol, rocartrol,
andeldecalcitol

Promotes the absorption of calcium in the
intestinal tract [87]

High-fat meals
Drug Effects of Interactions Reference

Cyclosporine Significantly increased blood concentration
(approximate 1.5-fold AUC increase) [88]

Theophylline Faster absorption of theophylline, significant
increase in AUC [89]

Griseofulvin Significantly increased absorption of
griseofulvin by approximately 120% [90]

Oxycodone Approximately 20% increase in AUC [91]

Ivermectin AUC increased to approximately 2.6 times
that of fasting administration [92]

Erlotinib AUC of erlotinib almost doubled compared
to fasting [93]

Sirolimus Increased tmax, Cmax, and AUC [94]

Regorafenib Decrease in Cmax and AUC of
active metabolites [95]

Sorafenib Decrease in plasma concentration [96]

Lenalidomide Decrease in AUC and Cmax [97]

Trametinib

Plasma trametinib AUC and Cmax of plasma
trametinib were decreased by approximately

10% and 70%, respectively, compared
to fasting

[98]

Dabrafenib
AUC and Cmax decreased by approximately

31% and 51%, respectively, compared
to fasting

[99]

High-protein meals
Drug Effects of Interactions Reference

Propranolol 74% increase in clearance of propranolol [100]

Theophylline 32% increase in the clearance of theophylline
and 26% decrease in half-life [100]

Levodopa Reduced levodopa absorption due to drug
transporter competition [101]

Aluminum hydroxide Decreased antacid effect of
aluminum hydroxide [102]

Abbreviations: Area under the curve, AUC; maximum serum concentration, Cmax.
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6. Drug and Eating Habits

Changes in eating habits also affect the efficacy of drugs. A previous study has
examined the relationship between the time trends of caloric intake and statin use. Caloric
and fat intakes increased among statin users over time, which was not true for nonusers.
The increase in BMI was faster for statin users than for nonusers. Efforts aimed at dietary
control among statin users may be becoming less intensive [103]. Additionally, another
study has shown that eating habits affect blood pressure control in outpatients treated with
antihypertensive drugs. Habitual intake of foods rich in potassium and magnesium were
associated with reduced intensity and cost of medication and with preservation of blood
pressure control in elderly hypertensive outpatients [104]. This change in eating habits will
also affect the efficacy of the drug. Elderly perioperative patients with cancer often have
concomitant lifestyle-related diseases. It should be noted that a change in eating habits
may also have a small effect on nutritional status.

7. Intervention Effects on Polypharmacy, Cancer Cachexia, and Rehabilitation Nutrition
7.1. Intervention Effects on Polypharmacy

Effective interventions for polypharmacy have been studied. A systematic review by
Hill-Taylor et al. revealed that intervention using the STOPP&START criteria [105] reduced
the proportion of potentially inappropriate medications (PIMs) prescribed. PIMs include
prescriptions of an incorrect dose, frequency, or mode of administration or duration that
are likely to result in clinically significant drug–drug or drug–disease interactions or have
no clear evidence-based clinical indication [106,107]. Another intervention study showed
that hospital pharmacists reduced the number of PIMs by using the STOPP&START crite-
ria [108]. In this study, out of 651 PIMs, 292 (44.9%) were changed or discontinued [109].
A retrospective cohort study of 569 older adults based on “rehabilitation pharmacother-
apy” [110] reported an association between a decrease in the Beers criteria for [111] PIMs
and an improvement in the motor ADL at discharge [112].

Alternatively, a recent systematic review of interventions to reduce polypharmacy
failed to show a benefit based on clinical evidence such as mortality rates, the number
of hospitalizations, and the frequency of falls [113–115]. In patients admitted to an acute
care ward, the frequency of emergency room visits and readmissions was smaller in the
multimodal intervention group, which combined a medication reduction review with moti-
vational interviewing and follow-up by a multidisciplinary team, than in the other group
with usual care [116]. However, there was no significant difference in the outcomes be-
tween the usual care group and the medication review-only group. Similarly, interventions
that combined patient interviews and patient education with a medication review reduced
the number of hospital visits and drug-related hospitalizations [117] and the frequency of
emergency department visits [117,118]. Thus, a reduction of polypharmacy is expected to
improve the frequency of emergency department visits, readmissions, and quality of life.
However, if the goal is to improve clinical outcomes such as mortality rates, the number of
hospitalizations, and the frequency of falls, patient-centered multimodal interventions such
as the combination of a medication review, multidisciplinary collaboration, and patient
education may be more effective.

7.2. Intervention Effect on Cancer Cachexia

Cachexia includes “objective” components (e.g., inadequate food intake, weight loss,
inactivity, loss of muscle mass, and metabolic derangements inducing catabolism) and
“subjective” components (e.g., anorexia, early satiety, taste alterations, chronic nausea,
distress, fatigue, and loss of concentration) [119]. Thus, comprehensive treatment requires
a multitargeted and multidisciplinary approach, such as nutrition, rehabilitation, and
pharmacotherapy aimed at evaluating objective signs and symptom relief.

The European Society of Medical Oncology Clinical Practice Guidelines for cancer
cachexia indicated that nutritional interventions for cancer cachexia will meet energy and
nutrient requirements and simultaneously normalize metabolic status, including strength
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training and reduction of systemic inflammation and pain relief. To maintain nutritional
status, at least 25–30 kcal/kg/day and at least 1.2 g protein/kg/day is recommended, with
adjustments made to the regimen as required. Furthermore, regimens with fat accounting
for half of the nonprotein calories are recommended [120]. The American Society of Clinical
Oncology guideline for cancer cachexia indicated that the only nutritional intervention
recommended was nutritional counseling by a registered dietitian. A high-protein, high-
energy, nutrient-dense diet is the recommended dietary guideline [121].

There are a limited number of drugs that can be used in the pharmacotherapy of
cancer cachexia. The European Society of Medical Oncology guidelines state that short-
term corticosteroids and progestins can be used to increase appetite and weight gain [120].
The use of olanzapine may also be considered for the treatment of appetite and nausea
in patients with advanced cancer. The American Society of Clinical Oncology guidelines
similarly recommended the use of progesterone derivatives and corticosteroids for appetite
improvement and weight gain [121]. Anamorelin was approved in Japan in January 2021
for the first time in the world for cancer cachexia in patients with non-small-cell lung
cancer, gastric cancer, pancreatic cancer, or colorectal cancer. However, it has not been
approved in Europe based on the findings from the ROMANO studies [122,123], which
did not show the improvement in muscle strength that was demonstrated by the Japanese
trials. The approval of the use of anamorelin is expected to change the clinical practice of
cancer cachexia in Japan [124].

To reverse cancer cachexia, lean body mass should be increased, and muscle function
must be restored. Hence, a combination of improved nutrition, physical exercise that can
improve muscle function, and pharmacotherapy may be an option for reversing cachexia
in patients with cancer.

7.3. Intervention Effect on Rehabilitation Nutrition

The concept of rehabilitation nutrition, which combines rehabilitation and nutritional
therapy, has attracted attention in recent years [125]. Rehabilitation nutrition includes holis-
tic assessment by the International Classification of Functioning, Disability, and Health;
assessment for nutritional disorders, sarcopenia, and excessive or inadequate intake of
nutrients; diagnosis of rehabilitation nutrition; and goal setting. Rehabilitation nutrition
improves the nutritional status of sarcopenia patients with disabilities and frail, older
people, besides maximizing their functions, activities, participation, and quality of life.
This is achieved via “nutrition care management in consideration of rehabilitation” and
“rehabilitation in consideration of nutrition” [125]. Rehabilitation nutrition practices based
on the Rehabilitation Nutrition Care Process can improve function and ADL in cases of
malnutrition and sarcopenia [126]. The clinical practice guidelines of the 2020 rehabil-
itation nutrition edition weakly recommended the use of enhanced nutritional therapy
in cerebrovascular disease, hip fracture, cancer, and acute disease [127]. Furthermore,
improving the nutritional status can recover swallowing ability and ADL in malnour-
ished patients. Malnourished patients with stroke, hip fracture, or pneumonia are more
likely to achieve improved swallowing function and ADL following nutrition improve-
ment [128–130]. Therefore, in the case of malnutrition and sarcopenia, rehabilitation should
be combined with aggressive nutritional therapy so that energy and protein are added to
the daily energy expenditure, which will improve the nutritional status.

8. Conclusions

Pathophysiological and drug-induced factors are associated with the risk of devel-
oping malnutrition in elderly patients with cancer. Polypharmacy is associated with
malnutrition. The long-term use of several drugs, including anticancer drugs, leads to
anorexia as a gastrointestinal disorder and induces malnutrition. Furthermore, several
drugs are known to interact with nutrients and diet, which may adversely affect the
patient’s nutritional status. Conversely, malnutrition may affect pharmacokinetics and
pharmacodynamics, potentiate drug effects, and induce or worsen side effects. Therefore,
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nutritional management of elderly patients with cancer during their perioperative period
should consider pathophysiological factors such as tumors or cancer cachexia as well as
drug-related factors. In other words, it is necessary to simultaneously evaluate the devel-
opment of malnutrition from the perspective of drug interactions and the development of
adverse drug events from the perspective of malnutrition. To this end, multidisciplinary
teams should put forth an effort to recognize and mitigate the potential impact of the
patient’s perioperative nutritional status.
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