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Residue-residue contact prediction has become an increasingly important tool for modeling the three-dimensional structure of a
protein when no homologous structure is available. Ultradeep residual neural network (ResNet) has become the most popular
method for making contact predictions because it captures the contextual information between residues. In this paper, we
propose a novel deep neural network framework for contact prediction which combines ResNet and DenseNet. This framework
uses 1D ResNet to process sequential features, and besides PSSM, SS3, and solvent accessibility, we have introduced a new
feature, position-specific frequency matrix (PSFM), as an input. Using ResNet’s residual module and identity mapping, it can
effectively process sequential features after which the outer concatenation function is used for sequential and pairwise features.
Prediction accuracy is improved following a final processing step using the dense connection of DenseNet. The prediction
accuracy of the protein contact map shows that our method is more effective than other popular methods due to the new
network architecture and the added feature input.

1. Introduction

Proteins perform a wide range of cellular functions and, in
most instances, their function is related to their structure.
Experimental determination of protein structure is time-
consuming and expensive; therefore, accurate protein struc-
ture prediction can play a vital role in understanding protein
function. If a protein of interest is homologous to one whose
structure has already been determined, it is possible to model
the structure using the homologous protein’s structure as a
template. For many proteins, there are no suitable templates
available and it is therefore necessary to develop methods
that can use only the amino acid sequence to predict protein
structure. It has been shown that the best method to obtain a
structure is to determine whether a pair of residues in a pro-
tein sequence is in contact.

The current prediction methods used to construct protein
contact maps are divided into direct coupling analysis (DCA)
methods and machine learning methods. DCA methods uti-
lize multiple sequence alignments (MSAs) to determine the

correlation between residue pairs. While this method achieves
results when the target protein sequence has many homolo-
gous sequences in the protein database, the evolutionary cou-
pling information generates “noise signals.” DCA generally
uses graphical lasso and pseudo-likelihood maximization
methods to solve this problem [1]. Graphical lasso can esti-
mate the graph structure from the covariance matrix using a
likelihood estimation of the precision matrix with L1 regular-
ization. Pseudo-likelihood maximization is an approximate
method for probabilisticmodels to estimate the strength of inter-
actions between residues. Popular DCA methods include
CCMPred [2], FreeContact [3], GREMLIN [4], and PSICOV
[5].While thesemethods are useful for constructing protein con-
tact maps when a high number of sequence homologs are avail-
able, their accuracy is poor when the number of homologs is low.

Machine learning methods have been widely used to make
various protein predictions and can perform better than DCA
methods when fewer homologous sequences are available
because they can learn sequence feature relationships when
given a labelled dataset. The first machine learning methods
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used support vector machines (SVM) [6] and other related
methods such as SVMCon [7] and R2C [8], due to their
capacity to construct classification models. With the devel-
opment of artificial neural networks, deep learning methods
(including various forms of recurrent neural networks [9]
and deep belief networks [10]) have become mainstream
frameworks for biological prediction programs including
Betacon [11], CMAPPro [12], DeepConPred [13], NNCon
[14], and MetaPSICOV [15]. RaptorX-Contact [16] and
DNCON2 [17] are recently released methods and are the
approaches that attempt to use the entire protein image as a
context prediction. It should be noted that all methods,
except for DEEPCOV [18], use one or several DCA methods
as their inputs.

RaptorX-Contact [16] is one of the state-of-the-art con-
tact predictors. Its high accuracy, as confirmed by CASP
[19, 20], demonstrates the benefit of acquiring the whole pro-
tein for use as a context for constructing a contact map. It
applies the ResNet structure for the prediction which can
solve the problems of gradient disappearance and explosion
due to its identity and residual mapping characteristics, but
the number of parameters is proportional to its depth.
DNCON2 [17] divides its predictor into two parts. The first
uses a series of intermediate convolutional neural networks
to predict the contact map at five distances (6~10Å), and
the second combines these separate predictions into another
convolutional neural networks to provide a final contact map
at 8Å. The PconsC4 method [21] is one of the latest contact
map prediction methods which is composed of ResNet [22]
and U-net [23] network structures. It can capture 1D and
2D protein features to predict the contact map. However,
the feature map size from the U-net network differs between
input and output and is therefore inconsistent before and
after downsampling. This means that upsampling data can-
not be restored entirely before downsampling, which may
have a negative impact on prediction accuracy.

In this paper, we present an integrated deep learning
network-based approach to predict a protein contact map.
We trained the network framework using a protein training
dataset with known structures then tested it on public data-
sets including the CASP [19, 20], CAMEO [24], and mem-
brane protein [25] datasets. In our method, sequential and
pairwise features are used as input for the network structure.
For the sequential features, besides sequence profile (PSSM),
predicted protein secondary structure (SS3) and solvent
accessibility (ACC), we introduce a new position-specific fre-
quency matrix (PSFM) feature which we have found comple-
ments the PSSM features. The pairwise features include
direct coevolution information generated by CCMPred,
mutual information from MSA, and pairwise potential [26].
Fusion of these features effectively represents the features
of the protein sequence necessary for protein contact pre-
diction. The deep learning framework used in our method
is composed of ResNet and DenseNet. This network struc-
ture fully integrates the advantages of identical mapping
and residual mapping of ResNet with the dense connec-
tion of DenseNet, so that the network depth of our
method is not too deep, it can effectively reduce gradient
disappearance, enhance feature transmission, and to a cer-

tain extent, reduce the number of parameters. DenseNet’s
input and output feature map formats remain the same,
which allow for greater feature retention and thus improve
the accuracy of predicted protein contact map. Our exper-
imental results show that our method yielded better accu-
racy than other popular methods.

2. Models and Methods

2.1. Datasets. The dataset used is a subset of PDB25, extracted
from the PDB database (http://www.rcsb. org/pdb/home/ho-
me.do), in which the sequence identity of any two proteins is
less than 25%. Proteins satisfying any one of the following
conditions were excluded (1) sequence length is less than
26 or greater than 700 amino acids, (2) resolution is less than
2.5Å, and (3) has multiple protein chains. To eliminate
redundancy in the dataset, we exclude any proteins which
had >25% sequence identity which left us with 6767 proteins.
We randomly chose 6000 proteins to train the model and
used the remaining proteins to validate it. To evaluate our
method, we used the widely used and publically available
hard target datasets, CAMEO [24], Mems400 [25], and
CASP12 and 13 [19, 20]. In these test sets, the sequence iden-
tity between any two protein sequences was less than 25%.

2.2. Contact Map Definition. If two residues are in contact in
the protein contact map [12] means that the Euclidean dis-
tance between the two Cβ atoms of the residues (glycine is
a Cα atom) is less than 8Å. Contacts are divided into three
categories based on the separation between the two residues:
(1) long-range contacts, when the separation is greater than
24 residues; (2) medium-range contacts, when the separation
is between 12 and 23 residues; and (3) short-range contacts,
when the separation is between 6 and 11 residues.

A protein contact map example is shown in Figure 1. It
illustrates the probability of contact between the two residues.
The horizontal and vertical coordinates represent the protein
sequence, with colored dots indicating the probability of con-
tact between the two residues (range between 0 and 1, the red-
der the color, the higher the possibility of contact).

2.3. Feature Extraction. In this method, there are two types of
protein features, one-dimensional (sequential feature) and
two-dimensional (pairwise feature), which are used in the
prediction of the protein contact map. The one-dimensional
feature includes sequence profile (position-specific scoring
matrix, PSSM), 3-state protein secondary structure (SS3),
and 3-state solvent accessibility (ACC). The 20-dimensional
position specific scoring matrix (PSSM) [27] is obtained by
searching the uniprot_sprot database (ftp://ftp.uniprot.org/
pub/databases/uniprot/current_ release/knowledgebase/com-
plete) with HHblits [28] to generate sequence profiles with
three iterations and E-values set to 0.001. The 3-state protein
secondary structure is taken from Bi-LSTM [29], and the 3-
state solvent accessibility is taken from DSPRED [30]. Two-
dimensional features include direct coevolution information
generated by CCMPred, mutual information from the multi-
ple sequence alignment (MSA), and pairwise potential [26].
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Because the position-specific frequency matrix (PSFM)
[31] contains the frequency of amino acids in the protein
sequence, we can add it to the input feature to comple-
ment the advantages of the position-specific scoring
matrix. Here, we ran the HHblits [28] program, with three
iterations and E-values set to 0.001, to search the uniprot_
sprot database to generate MSA, and then calculate PSSM
and PSFM based on the HHblits results. With L = protein
sequence length and n = feature dimension, PSSM is rep-
resented by a two-dimensional matrix of L × 20, the sec-
ondary structure is represented by a two-dimensional
matrix of L × 3, the solvent accessibility is denoted by a
two-dimensional matrix of L × 3, and the PSFM is repre-
sented by a two-dimensional matrix of L × 20 (Figure 2).
The one-dimensional feature of our method is then
expressed by a two-dimensional matrix of L × 46. The two-
dimensional feature is represented by a three-dimensional
matrix of L × L × 5. The element in the PSFM matrix is the
target frequencies, which represents the occurrence fre-
quency of one amino acid at a specific position in the protein
sequence in the evolutionary process. The sum of the fre-
quencies in each line is 1.

2.4. Prediction Model. We propose a new integrated deep
learning method to map predicted protein contacts com-
posed of residual neural network (ResNet) [22] and densely
connected convolutional networks (DenseNet) [32] which
form a neural network framework.

2.4.1. Residual Neural Network. The residual neural network
(ResNet) consists of a residual learning model (Figure 3)
which can be defined as:

y = F x, Wif gð Þ + x, ð1Þ

where x and y are the input and output vectors of the layers to
be considered, Wi is the weight in the weight matrix, and F
represents the residual mapping to be learned. For an exam-
ple that has two layers (Figure 3), its residual mapping func-
tion is as follows:

F =W2 f W1x + b1ð Þ + b2, ð2Þ

f xð Þ =max 0, xð Þ, ð3Þ
where f denotes the Rectified Linear Unit activation func-
tion, and W1, W2, b1, and b2 are the weights and biases of
the first layer and the second layer, respectively.

2.4.2. Densely Connected Convolutional Networks. Compared
with the convolutional neural network and other deep learn-
ing methods, the residual neural network can, to a certain
extent, solve the problems of gradient descent and disappear-
ance. The number of residual neural network parameters is
proportional to its depth and because each layer has indepen-
dent weights, when the number of layers increases, the num-
ber of parameters does too. Fortunately, this problem can be
effectively solved by the densely connected convolutional
networks (DenseNet). DenseNet consists of a dense block, a
transition layer, and a bottleneck layer. The dense block
(Figure 4) is composed of an l-layer network and a composite
function. The composite function consists of a normalization
function, linear rectification unit, and convolution function.
The l-layer of its lth layer network has l inputs, that is, the l
th layer receives all the outputs of feature maps from the pre-
vious l − 1 layer. Its construction formula is as follows:

Xl =Hl X0, X1,⋯,Xl−1½ �ð Þ, ð4Þ

where ½X0, X1,⋯,Xl−1� means to connect the feature map
from layer 0 to layer l − 1.

The transition layer is composed of convolution and pool
layers. The bottleneck layer consists of a 1 × 1 convolution
which is used to reduce the number of feature maps and
improve calculation efficiency.
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Figure 1: Protein contact map.
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2.4.3. Integrated Model. Our framework is based on an inte-
grated deep neural network (Figure 5) and is composed of
one-dimensional residual and densely connected convolu-
tional networks. ResNet can, to a certain extent, solve the
problems of gradient disappearance and explosion due to
its identity and residual mapping characteristics and can

train the deep network structure, but the number of ResNet
parameters is proportional to its depth. DenseNet can effec-
tively reduce the problem of gradient disappearance due to
its dense connection characteristics and it can, to a certain
extent, reuse features, thus strengthening feature transfer
and reducing parameter numbers. DenseNet retains the
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Figure 4: Dense block connections of DenseNet.
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input and output feature map formats, so it can maintain fea-
tures as much as possible.

In summary, we have integrated two kinds of network
structures (ResNet (Figure 3) and DenseNet (Figure 4)) and
made use each one’s advantages to improve the accuracy of
the predicted protein contact map. In the data preparation
stage of our framework, sequential features (one-dimensional
features) are represented by a vector of L × 46, which are sent
into the ResNet network. Then, pairwise features (two-
dimensional features) are combined with one-dimensional
features from one-dimensional residual network, and all of
them are sent into the DenseNet network.

In ResNet, there are several residual learning models,
each of which is composed of two convolution layers with
convolution kernel size of 3. After each convolution layer,
there is a Rectified Linear Units activation function [33],
and then an outer concatenation function [16] is applied
to convert the output results from two-dimensional to
three-dimensional. Namely, let v = fv1, v2,⋯, vi,⋯, vLg be
the final output of the first module where L is the protein
sequence length and vi is a feature vector storing the output
information for residue i. For a pair of residues, i and j, we
concatenate vi, vði+jÞ/2, and vj into a single vector and use it
as one input feature of this residue pair. We then combine
them with pairwise features to form the input for the sec-
ond part of the network. To prevent the network from
overfitting, we utilize a dropout algorithm with an 80%
dropout ratio to randomly discard neurons during training.
We used an effective stochastic optimization method using
the gradient descent optimization and set the learning rate
as 0.01. In our model, the maximum likelihood function
is used to train the model parameters, and the loss function
is defined as a negative log-likelihood function, namely, the
cross-entropy function. The formula is

E t, yð Þ = −〠
i

ti log yi, ð5Þ

where ti is the label and yi is the predicted result.

2.5. Performance Evaluation. The results can be divided
into four categories: true positive (TP), false negative (FN),
false positive (FP), and true negative (TN). TP refers to a pos-
itive group samples that are correctly predicted, FN refers to a
positive group that is incorrectly predicted to be negative, FP
refers to a negative group that is incorrectly predicted to be
positive, and TN refers to a correctly predicted negative group.
Based on these indexes, we use the following evaluation cri-
teria to predict the performance of our method and compare
it to other methods.

Precision refers to the proportion of the correct number
of positive samples in the total number of samples deter-
mined by the classifier to be positive.

Precision = TP
TP + FP

: ð6Þ

Recall refers to the proportion of the correct number of
positive samples in the actual number of positive samples.

Recall =
TP

TP + FN
: ð7Þ

F1 score is the harmonic mean of the precision and recall.

F1 = 2∙
Precision∙Recall
Precision + Recall

: ð8Þ

3. Experimental Results

In our experiment, we use top L/k (k = 10, 5, 2, and 1) in
the long-range contact to evaluate prediction accuracy of
the protein contact map. L is the length of the sequence,
and prediction accuracy rates are given in three kinds of
contact. To verify our model’s validity, we tested our pre-
diction accuracy on the PDB25, CAMEO, and Mems400
datasets (http://raptorx.uchicago.edu/contactmap/), and on
easy and hard targets from CASP12 and 13 [19, 20]. We
chose some typical prediction methods implemented by
DCA and machine learning for the comparison. State-of-

Table 1: Comparison between our network structure and other ResNet and DenseNet combinations.

Ours 1DResNet + 2DResNet 1DDenseNet + 2DDenseNet 1DDenseNet + 2DResNet

Long

L/10 0.745 0.723 0.693 0.654

L/5 0.675 0.654 0.627 0.597

L/2 0.575 0.554 0.514 0.483

L 0.432 0.421 0.415 0.386

Medium

L/10 0.742 0.721 0.701 0.675

L/5 0.665 0.647 0.621 0.603

L/2 0.568 0.541 0.529 0.487

L 0.349 0.332 0.318 0.298

Short

L/10 0.722 0.703 0.672 0.634

L/5 0.627 0.606 0.593 0.569

L/2 0.464 0.438 0.417 0.396

L 0.278 0.273 0.247 0.208
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the-art methods include CCMPred [2] (using DCA
method), RaptorX-Contact [16] (based on double ResNet),
and PconsC4 [21] (combination of ResNet and U-net). It
should be noted that amino acid sequences in the test
set have no similarity with the training set (at the 25%
identity level) to prevent any overestimation of our predic-
tor’s performance, and that we used the same datasets for
all four models.

Table 2: Comparison between our feature input and other feature
combinations.

Ours Ours without PSSM Ours without PSFM

Long

L/10 0.745 0.718 0.698

L/5 0.675 0.661 0.631

L/2 0.575 0.557 0.512

L 0.432 0.418 0.409

Medium

L/10 0.742 0.726 0.713

L/5 0.665 0.641 0.627

L/2 0.568 0.538 0.521

L 0.349 0.337 0.315

Short

L/10 0.722 0.709 0.678

L/5 0.627 0.611 0.585

L/2 0.464 0.442 0.413

L 0.278 0.271 0.259
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Figure 6: Comparison of method accuracy for long-range contact
on PDB25.

Table 3: Long-, medium-, and short-range contact results by four
different methods for PDB25.

Ours RaptorX-Contact PconsC4 CCMPred

Long

L/10 0.796 0.777 0.741 0.651

L/5 0.735 0.731 0.695 0.612

L/2 0.631 0.613 0.572 0.493

L 0.478 0.478 0.441 0.324

Medium

L/10 0.778 0.767 0.731 0.632

L/5 0.674 0.667 0.634 0.593

L/2 0.483 0.459 0.417 0.341

L 0.295 0.296 0.259 0.193

Short

L/10 0.775 0.761 0.728 0.632

L/5 0.646 0.635 0.617 0.514

L/2 0.398 0.400 0.372 0.295

L 0.238 0.240 0.229 0.192
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Figure 7: Comparison of method accuracy for long-range contact
on 76 hard CAMEO.

Table 4: Long-, medium- and short-range contact results for 76
hard CAMEO.

Ours RaptorX-Contact PconsC4 CCMPred

Long

L/10 0.711 0.691 0.665 0.304

L/5 0.672 0.652 0.647 0.268

L/2 0.563 0.548 0.543 0.207

L 0.420 0.420 0.411 0.159

Medium

L/10 0.705 0.690 0.664 0.278

L/5 0.632 0.614 0.598 0.227

L/2 0.435 0.426 0.419 0.145

L 0.278 0.278 0.271 0.103

Short

L/10 0.692 0.673 0.651 0.227

L/5 0.592 0.578 0.543 0.163

L/2 0.398 0.371 0.358 0.118

L 0.239 0.235 0.231 0.097
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Figure 8: Comparison of method accuracy for long-range contact
on Mems400.
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In order to verify the effectiveness of the proposed
neural network structure, we constructed three network
structures by different combinations of ResNet and Dense-
Net, namely, 1DDenseNet + 2DDenseNet, 1DResNet + 2
DResNet, and 1DDenseNet + 2DResNet and compared
them with our framework. The result is shown in the
attached Table 1. We find the prediction accuracy by our
network structure is higher than that by other three net-
work structures.

To verify the validity of the proposed feature input,
two other feature combinations (our feature combination
without PSFM feature or PSSM feature) were designed
for the experimental comparison. The result is shown in
Table 2. We find the feature combination in the proposed
method can obtain better accuracy than other two feature
combinations.

The accuracy of the long-range contact predictions on
the PDB25 dataset is illustrated in Figure 6, and the detailed
prediction accuracies of the long-range contact in L/k
(k = 10, 5, 2, and1) are shown in Table 3. Compared with
RaptorX-Contact, our method has an increase of 1.9%,
0.4%, and 1.8% in L/k (k = 10, 5, and 2), with PconsC4 an
increase of 5.5%, 4%, 5.9%, and 3.7% in L/k
(k = 10, 5, 2, and 1), and with CCMPred an increase of
14.5%, 12.3%, 13.8%, and 15.4% in L/k (k = 10, 5, 2, and 1).
We find that our prediction accuracy is better than that
of PconsC4 and CCMPred in long-range contact and
while our prediction accuracy in top L/k (k = 1) is like
that of RaptorX-Contact, our prediction accuracy of top
L/k (k = 10, 5, and 2) is higher. The prediction comparison
of the medium and short-range contacts in L/k
(k = 10, 5, 2, and 1) is also shown in Table 3.

The prediction accuracy of long-range contact on the 76
hard CAMEO test set is illustrated in Figure 7, and the
detailed prediction results for different methods on the 76
hard CAMEO dataset are shown in Table 4. Compared with
PconsC4, our method has an increase of 4.6%, 2.5%, 2%, and
0.9%, with RaptorX-Contact an increase of 2%, 2%, and 1.5%
in L/k (k = 10, 5, and 2), and with CCMPred a significant
increase for the accuracy of long-range contact in L/k
(k = 10, 5, 2, and 1). The prediction comparison of the
medium and short-range contact in L/k (k = 10, 5, 2, and 1)
is also shown in Table 4.

For the Mems400 dataset, the long-range contact pre-
diction accuracy is shown in Figure 8, and the detailed pre-
diction results by different methods are shown in Table 5.
Our model’s prediction accuracy of the long-range contact
in L/k (k = 10, 5, 2, 1) is 80.1%, 75.2%, 64.3%, and 47.1%,
respectively. Compared with PconsC4, there is an increase

Table 5: Long-, medium- and short-range contact results for Mems400.

Ours RaptorX-Contact PconsC4 CCMPred

Long

L/10 0.801 0.780 0.756 0.523

L/5 0.752 0.731 0.708 0.457

L/2 0.643 0.623 0.596 0.313

L 0.471 0.470 0.447 0.218

Medium

L/10 0.683 0.667 0.643 0.363

L/5 0.555 0.539 0.502 0.268

L/2 0.361 0.334 0.309 0.154

L 0.220 0.220 0.215 0.109

Short

L/10 0.621 0.602 0.583 0.275

L/5 0.483 0.468 0.435 0.193

L/2 0.301 0.273 0.261 0.117

L 0.160 0.159 0.154 0.089

Table 6: Long-, medium- and short-range contact results on the easy and hard CASP12 targets.

Long Medium Short
L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

Easy 0.649 0.601 0.514 0.403 0.675 0.577 0.403 0.255 0.662 0.551 0.321 0.273

Hard 0.642 0.596 0.503 0.394 0.583 0.564 0.395 0.249 0.653 0.543 0.315 0.272
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Figure 9: Comparison of method accuracy for long-range contact
on the easy CASP12 targets.
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of 4.5%, 4.4%, 4.7%, and 2.4%, with RaptorX-Contact an
increase of 2.1%, 2.1%, 2%, and 0.1%, and with CCMPred
there is also a significant increase for the accuracy of
long-range contact in L/k (k = 10, 5, 2, and 1).

For the CASP12 dataset, we separate the long, medium
and short contact results on the hard and easy CASP12 tar-
gets, which are shown in Table 6. We find the performance
on the easy CASP12 targets is a little better than the hard
CASP12 targets.

The accuracy comparison of long-range contact predic-
tion by different methods is illustrated in Figure 9, and
Table 7 shows the detailed prediction results with long,
medium and short contacts. For the long-range contact pre-
diction, our accuracy in L/k (k = 10, 5, 2, and 1) is 64.9%,
60.1%, 51.4%, and 40.3%, respectively. Compared to

PconsC4, there is an increase of 2.6%, 5.4%, 2.8%, and
0.6%, to RaptorX-Contact, the increase is about 1.0%, 1.2%,
1.2%, and 0.1% in L/k (k = 10, 5, 2, and 1) and with
CCMPred, there is also a significant increase for the accuracy
of long-range contact in L/k (k = 10, 5, 2, and 1). For medium
contact and short contact, we find most of our accuracy
results in L/k (k = 10, 5, 2, and 1) are better than PconsC4,
RaptorX-Contact, and CCMPred.

For the CASP13 dataset, we divide the CASP13 targets
into hard and easy targets which are shown in Tables 8 and
9. Besides, we separate the long, medium and short contact
results on the hard and easy CASP13 targets which are shown
in Table 10.

The accuracy of the long-range contact predictions on
the CASP13 dataset is illustrated in Figure 10, and the

Table 8: PDB code and chain identification for CASP13 hard targets.

T0954-D1 T0957s1-D2 T0959-D1 T0960-D3 T0963-D3 T0964-D1 T0965-D1

T0966 T0979-D1 T0981-D1 T0981-D4 T0981-D5 T0982-D2 T0999-D2

T1011-D1 T1015s2-D1 T1021s1-D1 T1021s2-D1 T1022s1-D1 T1022s1-D2 T1022s2-D1

Table 9: PDB code and chain identification for CASP13 easy targets.

T0951 T0960-D5 T0961 T0962 T0963-D5 T0967 T0971

T0973 T0974s1 T0976 T0977 T0982-D1 T0983 T0984-D1

T0984-D2 T0993s1 T0993s2 T0995 T0999-D3 T0999-D4 T0999-D5

T1002 T1003 T1004-D1 T1004-D2 T1006 T1013 T1014

T1016 T1017s1-D1 T1018 T1019s2-D1

Table 10: Long-, medium-, and short-range contact results on the hard and easy CASP13 targets.

Long Medium Short
L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

Hard 0.745 0.675 0.575 0.432 0.742 0.665 0.568 0.349 0.722 0.627 0.464 0.278

Easy 0.753 0.681 0.582 0.441 0.753 0.671 0.576 0.353 0.736 0.632 0.469 0.282

Table 7: Long-, medium-, and short-range contact results on the easy CASP12 targets.

Ours RaptorX-Contact PconsC4 CCMPred

Long

L/10 0.649 0.639 0.623 0.254

L/5 0.601 0.589 0.547 0.211

L/2 0.514 0.502 0.486 0.175

L 0.403 0.402 0.397 0.129

Medium

L/10 0.675 0.665 0.659 0.253

L/5 0.577 0.568 0.557 0.187

L/2 0.403 0.395 0.381 0.139

L 0.255 0.253 0.249 0.101

Short

L/10 0.662 0.651 0.643 0.252

L/5 0.551 0.543 0.538 0.186

L/2 0.321 0.314 0.301 0.127

L 0.273 0.273 0.269 0.095
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detailed prediction accuracies of the long-range contact in
L/k (k = 10, 5, 2, and 1) are shown in Table 11. Compared
with RaptorX-Contact, our method has an increase of 0.7%,
0.6%, 0.6%, and 0.1% in L/k (k = 10, 5, 2, and 1), with PconsC4
and CCMPred there is a significant increase for the accuracy
of long-range contact in L/k (k = 10, 5, 2, and 1). The predic-
tion comparison of the medium- and short-range contacts in
L/k (k = 10, 5, 2, and 1) is also shown in Table 11. We find that
our prediction accuracy is better than that of RaptorX-Con-
tact, PconsC4, and CCMPred methods.

To further analyze the performance of our network
framework, we made a comparison image of predicted con-
tact and real contact for the protein sequences in the related
test set. Figures 11–13 are the comparison chart between the
prediction contact map and true contact map, where red
(green) dots indicate correct (wrong) predictions and silver
dots indicate true contacts. 5eo9B is a 206-residue long
alpha-helix, beta-fold protein that binds to random curls
released by the CAMEO dataset on 2016-01-06, and the cor-
rect (wrong) predicted contact and true contact of this pro-
tein is shown in Figure 11. From this figure, we can see that
the overall majority of predicted contacts are correct.

We analyzed the contact prediction accuracy for other
proteins in this way. 1qd6C is a 240-residue long protein with
β-fold combining with random distortion released by the
Mems400 dataset in 1999-10-25. Figure 12(a) shows the cor-
rect (wrong) predicted and true protein contacts. T0944 is a
220-residue long alpha-helix, beta-folding protein that binds
to random curling released by the CASP12 dataset.
Figure 12(b) shows the correct (wrong) predicted and true
protein contacts. We also added the all-alpha and all-beta
proteins to show the contact prediction accuracy by the pro-
posed method. 2porA is a 301-residue long protein with all
β-fold released by the Mems400 dataset. And 4xmqB is a
254-residue long protein with all α-helix released by the
CAMEO dataset. Their correct (wrong) predicted and true
protein contacts are shown in Figures 13(a) and 13(b). It
can be seen that the proposed method is suitable for the con-
tact map prediction of all-alpha or all-beta proteins. From
these examples, we find that our method correctly predicted
most contacts, and these improved contact map results are
useful for the assisted structure prediction of proteins with
various structures.

4. Conclusion and Future Work

In this paper, we have presented a prediction method for
constructing protein contact maps using an integrated
framework with ResNet and DenseNet. This method com-
bines the advantages of ResNet’s identity and residual map-
ping with DenseNet’s dense connection and fully exploits
them to help reduce the gradient disappearance problem
and feature reusability, reduce the number of parameters,
and capture the complex sequence-contact relationship and
correlation between features. For the input feature, we have
added a new position-specific frequency matrix feature
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Figure 11: Predicted contacts of 5eo9B from the CAMEO dataset.
Red (green) dots indicate correct (wrong) predictions, and silver
dots indicate true contacts.
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Figure 10: Comparison of method accuracy for long-range contact
on the hard CASP13 targets.

Table 11: Long-, medium-, and short-range contact results on the
hard CASP13 targets.

Ours RaptorX-Contact PconsC4 CCMPred

Long

L/10 0.745 0.738 0.460 0.437

L/5 0.675 0.669 0.423 0.396

L/2 0.575 0.569 0.363 0.313

L 0.432 0.431 0.294 0.238

Medium

L/10 0.742 0.735 0.558 0.409

L/5 0.665 0.662 0.524 0.327

L/2 0.568 0.565 0.465 0.213

L 0.349 0.348 0.377 0.145

Short

L/10 0.722 0.718 0.427 0.357

L/5 0.627 0.621 0.373 0.289

L/2 0.464 0.453 0.301 0.176

L 0.278 0.278 0.216 0.124
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(PSFM) besides the position-specific scoring matrix (PSSM),
secondary structure (SS3), and 3-state solvent accessibility
(ACC). These measures can effectively process sequential
and pairwise features to predict the contact probability
between residues and improve the prediction accuracy. The
experimental results show that our proposed method is supe-
rior to other well-known methods. For easy implementation,
all data used in this work and the source code for feature

computing can be accessible at https://http://github.com/
lnyile/Protein-Contact-Map-Rse_Dense.

While the accuracy of ourmodel’s top L/k (k = 10, 5, and 2)
predictions was better than existing methods, the accuracy
of top L prediction was not always significantly better.
Combining more effective features as inputs and constructing
a new deep learning neural network framework will further
improve precision. Directions for future work include using
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Figure 13: (a) Predicted contacts of 2porA from the Mems400 dataset. (b) Predicted contacts of 4xmqB from the CAMEO dataset. Red
(green) dots indicate correct (wrong) predictions, and silver dots indicate true contact.
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Figure 12: (a) Predicted contacts of 1qd6C from theMems400 dataset. (b) Predicted contacts of T0944 from the CASP12 dataset. Red (green)
dots indicate correct (wrong) predictions, and silver dots indicate true contacts.
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the graphical representation and structural similarity of pro-
tein sequences to construct feature vectors as input for the
deep learning framework to improve our model’s predictions.
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included within the article.
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