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It is well-established that the chemokine C-X-Cmotif ligand 13 (CXCL13) and its receptor,

the G-protein coupled receptor (GPCR) CXCR5, play fundamental roles in inflammatory,

infectious and immune responses. Originally identified as a B-cell chemoattractant,

CXCL13 exerts important functions in lymphoid neogenesis, and has been widely

implicated in the pathogenesis of a number of autoimmune diseases and inflammatory

conditions, as well as in lymphoproliferative disorders. Current evidence also indicates

that the CXCL13:CXCR5 axis orchestrates cell-cell interactions that regulate lymphocyte

infiltration within the tumor microenvironment, thereby determining responsiveness to

cytotoxic and immune-targeted therapies. In this review, we provide a comprehensive

perspective of the involvement of CXCL13 and its receptor in cancer progression. Studies

in recent years postulated novel roles for this chemokine in controlling the cancer cell

phenotype, and suggest important functions in the growth and metastatic dissemination

of solid tumors. Carcinogens have been found to induce CXCL13 production, and

production of this chemokine within the tumor milieu has been shown to impact the

proliferation, migration, and invasive properties of cancer cells. Thus, the complex

networks of cellular interactions involving tumoral CXCL13 and CXCR5 integrate to

promote cancer cell autonomous and non-autonomous responses, highlighting the

relevance of autocrine and paracrine interactions in dictating the cancer phenotype.

Dissecting the molecular and signaling events regulated by CXCL13 and how this

chemokine dynamically controls the interaction between the cancer cell and the

tumor microenvironment is key to identify novel effectors and therapeutic targets for

cancer treatment.
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INTRODUCTION

Chemokines are a family of small molecular weight proteins known for their ability to act as
chemoattractants, thereby functioning to induce the migration of nearby responding cells. These
secreted proteins, together with a host of other extracellular mediators, including growth factors
and eicosanoids, are key modulators of inflammation by controlling complex interaction networks
via autocrine and paracrine mechanisms. Multiple diseases have been associated with aberrant
production of chemokines and cytokines, including infectious diseases, chronic inflammation, and
autoimmune disorders (1–4).
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As part of the large family of cytokines, chemokines act on
specific membrane receptors to activate signaling cascades that
impact gene expression, thus inducing the production of other
factors that contribute to the intricacy of cell-cell interactions. A
distinctive characteristic of chemokines is the nature of receptors
to which they bind. Unlike cytokines, such as IL-1 that binds
to type I transmembrane receptors or TNFα that binds to pre-
assembled transmembrane trimers, chemokines act through the
activation of G protein-coupled receptors (GPCRs). Binding
of chemokines to their cognate seven transmembrane GPCRs
triggers structural rearrangements of the receptor that promotes
its coupling with heterotrimeric G-proteins, leading to second
messenger generation and the activation of intracellular signaling
pathways (5–7).

To-date, more than 40 chemokines have been identified
in humans, which are in all cases mostly basic, structurally
related proteins of 8–14 kDa. Chemokines can be grouped
into four classes based on the positioning of their N-terminal
cysteine residues: CC, CXC, XC, and CX3C (8–11). The
different chemokines play fundamental roles in development,
homeostasis, and function of the immune system. Aside from
chemotaxis, chemokines are known to have additional functions,
including roles in cell proliferation, angiogenesis, and T-cell
differentiation. Chemokines are also key players in inflammation,
and their levels could be significantly elevated in tissues and
plasma of patients with inflammatory conditions. Examples
include well-established association between chemokines
and diseases such as rheumatoid arthritis, asthma, and
psoriasis (12–14).

The causal association between inflammation and cancer
has been recognized for decades. Extensive data link chronic
inflammatory processes, tissue injury, or infections and the
development of cancer. In addition to cancer cells, solid tumors
comprise a variety of stromal cells, such as fibroblasts and
endothelial cells, as well as inflammatory cells that include
lymphocytes, macrophages and neutrophils. Inflammatory cells
in the tumormicroenvironment functionally interact with cancer
cells and other cells within that milieu to impact cancer cell
growth and survival, invasion, and metastatic dissemination.
In the tumor microenvironment, cancer cells, tumor-associated
leukocytes, and stromal cells synergize for the local production
of chemokines, among other factors. Tumor-derived chemokines
also determine the inflow of leukocytes into the tumor.
In the context of tumorigenesis, certain chemokines favor
tumor growth and progression, while others boost anti-tumor
immunity. The opposite functions of chemokines on tumor
development involve attracting cells with pro- or anti-tumoral
features (15–19). In this article, we comprehensively review the
involvement of the chemokine C-X-C motif ligand 13 (CXCL13)
in cancer progression, focusing primarily in novel aspects of
CXCL13 biology in solid tumors.

CXCL13 CHEMOKINE: THE LIGAND
FOR CXCR5

Interest in chemokines grew tremendously in the early 1980’s
after the identification of soluble factors responsible for

leukocyte and lymphocyte migration and activation. Whereas,
early studies identified chemoattractants for monocytes,
eosinophils, neutrophils, and T lymphocytes (20–23), B-cell
specific chemokines remained enigmatic until the late 1990s,
several years after discovery of the receptor for CXCL13, CXCR5
(originally called BLR1) (24).

First identified by comparing gene expression in malignant
vs. benign B-cells, BLR1 (Burkitt’s Lymphoma Receptor 1)
mRNA was detected in Burkitt’s lymphoma cell lines and
lymphatic tissue but not in undifferentiated B-lymphocytes or
hematopoietic cells of myeloid, monocytic, erythroid, or T-
lymphocytic origin (24). This finding suggested a role for BLR1
in B-cell development and trafficking into lymphoid tissues,
which was later demonstrated in mouse models (25). Because
BLR1 mRNA encoded for a protein with a predicted structure
containing seven hydrophobic transmembrane segments with a
high similarity to the IL-8 receptor, BLR1 was thought to be
the first GPCR identified in B-lymphocytes. The physiological
importance of this BLR1 receptor was revealed through a gene
deletion approach. BLR1-deficientmice failed to develop inguinal
lymph nodes and demonstrated severely compromised primary
follicle and germinal center formation in the spleen and Peyer’s
patches (26). This phenotype was explained in experiments
assessing the migration pattern of BLR1-deficient B-cells when
transferred into wild-type mice, which showed that BLR1−/−

B lymphocytes entered T-cell areas of lymphoid tissues but not
areas that foster B-cell development that are normally populated
by B-cells. Altogether, these studies provided strong evidence
that BLR1 was the receptor for a yet-unidentified factor and
that its activity facilitated B-cell homing and development in
lymphoid tissue.

By searching EST databases for putative CXC chemokines,
two simultaneous studies reported the identification of the
ligand for BLR1 (27, 28). The novel recombinant chemokine
induced B-lymphocyte chemotaxis and it did so only in B-cells
expressing BLR1 but not other known chemokine receptors.
This was the first identification of a B-cell specific chemokine,
and it was termed B cell-Attracting Chemokine 1 (BCA-1).
The BCA-1 transcript hybridized most strongly to B-cell-rich
follicles in the spleen, germinal centers in Peyer’s patches, and
lymph node follicles. The BCA-1 protein sequence contained four
cysteine residues in a typical CXC chemokine pattern and was
located on chromosome 4q21, in close proximity to most other
known CXC chemokine genes (29). This chemokine was later
renamed CXCL13.

The receptor for BCA-1/CXCL13, later renamed CXCR5,
has ∼40% amino acid homology to CXCR1, the receptor for
IL-8 (30). Building on this sequence homology and the well-
characterized structure and function of CXCR1, CXCR5-CXCR1
chimeras were used to dissect the function of the intercellular
domains of CXCR5. Similar to CXCR1, CXCR5 activation
was found to stimulate intracellular Ca2+ influx, ERK/MAPK
signaling, and induce cellular chemotaxis (31), an effect that
was mediated primarily by the second intracellular domain of
CXCR5, called IC2. The CXCR5 IC2 shares 52% amino acid
homology with CXCR1, including a DRY motif followed by a
conserved YLXIV motif that is common to most chemokine
receptors at the junction of the third transmembrane domain
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and IC2, which facilitates binding to intracellular heterotrimeric
G proteins (32). Although the signaling pathways activated
downstream of the GPCR CXCR5 have not been fully analyzed, it
is known that this receptor couples to the PI3K/Akt, MEK/ERK,
and Rac pathways to induce multiple cellular responses, not only
in immune cells but also in cancer cells, as it will be discussed
in other sections of this review. These pathways are depicted
in Figure 1.

THE CXCR5:CXCL13 AXIS IN THE
PATHOGENESIS OF AUTOIMMUNE
DISEASE

Ectopic germinal center-like lymphoid structures have been
recognized within the affected tissues in numerous autoimmune
diseases, including myasthenia gravis (33) and rheumatoid
arthritis (34), long before the cloning of CXCL13 and CXCR5.
After the studies outlined above identified the roles of CXCL13
and CXCR5 in the development of differentiated B-cells and their
secondary lymphoid structures, it was natural to hypothesize
that aberrant activation of this signaling axis contributes
to autoimmune conditions. Abnormal lymphocyte aggregates
similar to germinal centers were known to form within the
synovium of affected joints in rheumatoid arthritis. Indeed,
strong overexpression of CXCL13 mRNA and protein was
found in the synovia of patients with rheumatoid arthritis,
particularly in the regions of B-cell aggregation (35). Larger-
scale analysis of patient synovia demonstrated an extremely
high correlation between synovial B-cell rich germinal centers
and CXCL13 overexpression, strongly suggesting that CXCL13
signaling contributes to the pathogenesis of these aberrant
lymphoid structures (36). Similar contributions of CXCL13 to

FIGURE 1 | Activation of signaling pathways by CXCL13. The chemokine

CXCL13 binds specifically to the GPCR CXCR5. Upon activation, CXCR5

couples to the activation of pathways implicated in cell survival, proliferation,

and migration, therefore impacting on the tumorigenic and metastatic activity

of cancer cells.

the formation of ectopic lymphoid structures was later identified
in Sjögren’s syndrome (37, 38), autoimmune thyroiditis (39),
myasthenia gravis (40), systemic lupus erythematosis (SLE)
(41), and multiple sclerosis (42). CXCL13 expression has been
correlated with disease exacerbation and unfavorable prognosis
in multiple sclerosis, Sjögren’s (43), myasthenia gravis, and SLE,
and CXCL13 has been proposed as a biomarker for diagnosis and
progression in these conditions (44).

Whereas, the CXCL13:CXCR5 axis has been best
characterized in these autoimmune disorders through the
aberrant activity and differentiation of B-cells, numerous other
autoimmune conditions appear to be driven by T follicular
helper cells TFH cells (45, 46). TFH cells develop from naïve
CD4+ T-cells within the interfollicular T cell zone area of
lymphoid tissue in response to signals from dendritic cells
that cause upregulation of CXCR5 and down-regulation of the
T-cell homing marker CCR7 (47). This facilitates relocation of
CD4+/CXCR5+/CCR7– TFH cells from T-cell zones to germinal
centers within B-cell follicles, where they function primarily to
support B-cell expansion and differentiation. Dysregulation of
this process in autoimmune disease was first described in SLE
(48), wherein an aberrant overabundance of TFH cells can cause
spontaneous germinal center formation and autoimmunity
(49). Indeed, circulating CXCR5+/CD4+ T-cells that resemble
TFH cells have been identified in SLE patients, where they
facilitate pathologic B cell differentiation and correlate with
disease progression. Pathogenic roles for TFH cells have also
been reported for many other autoimmune entities such as
Sjögren’s syndrome (50), primary biliary cholangitis (51), vitiligo
(52), ankylosing spondylitis (53), and pemphigus vulgaris (54).
Overall, dysregulation of the CXCL13:CXCR5 axis affecting
both B- and TFH cell function is major player in autoimmune
disorders, and potentially serves as a biomarker for disease
progression and therapeutic response.

CXCL13 AND CXCR5 IN INFECTIOUS
DISEASE

Based on the crucial roles the CXCL13:CXCR5 axis plays in
both physiologic and pathologic immunity, it is not surprising
that this axis has been implicated in the pathogenesis of a
number of infectious diseases. Before CXCL13 had been cloned,
CXCR5 was identified as a co-receptor for HIV-2 that renders
THF cells susceptible to viral infection. Expression of CXCR5
and CXCL13 was shown to be dysregulated in HIV infection,
such that the number of CXCR5+ B cells decreases with
progression of HIV infection, together with an increase in plasma
levels of CXCL13 (55). Later studies confirmed elevations of
serum CXCL13 during chronic HIV infection and showed that
CXCL13 levels correlated both with disease progression and viral
load. CXCL13 levels decrease after highly active antiretroviral
treatment (HAART) (56).

Mechanistically, a loss of CXCR5+ B-cells in HIV viremia
was shown to drive expansion of CXCR5+ TFH cells within
lymph nodes. These TFH cells secrete cytokines, such as IL-
21, that induce plasma cell differentiation and immunoglobulin
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secretion, namely IgG1, explaining the B cell dysfunction and
hypergammaglobulinemia observed in chronic HIV infection
(57). Later studies confirmed expansion of CXCR5+ THF cells
within lymph nodes during HIV infection and demonstrated that
TFH cells serve as the major in vivo reservoir for HIV infection,
replication, and production (58). Whereas, TFH cells within
lymphoid tissues are expanded, the frequency and functionality
of peripheral CXCR5+ TFH cells has been shown to decline
during chronic HIV-1 infection. A subset of CXCR5+ THF cells
that also express programmed death-1 (PD-1) have been shown
to facilitate the development of a strong B-cell response in early
HIV infection (59), and preservation of peripheral CXCR5+ TFH

cells correlate with long-term control of infection. Finally, by
demonstrating temporal correlation of CXCL13 plasma levels
with progression of HIV infection, CXCL13 was proposed as a
biomarker of systemic immune activation during HIV infection
that may serve to predict AIDS-defining events (60).

It is clear that the CXCL13:CXCR5 axis is intimately
involved in the initial and chronic phases of HIV infection,
and, considering the central role this axis plays in humoral
immunity, it is not surprising that CXCL13 has been implicated
in the pathogenesis of several other infectious diseases. Of
these, perhaps the best studied are the stages of Lyme
disease and syphilis affecting the central nervous system
(CNS) (Lyme neuroborreliosis and neurosyphilis). CXCL13
is overexpressed within the muscles of monkeys chronically
infected with Borrelia burgdorferi (the etiological agent of
Lyme disease), and CXCL13 was later shown to contribute
to the formation of ectopic germinal centers within the
central nervous system. Interestingly, whereas infection with
B. burgdorferi appears to have no impact on plasma CXCL13
levels, once the bacteria establishes CNS infection, it leads
to constitutively elevated CXCL13 levels in cerebrospinal fluid
(CSF), which could be often more than several 100-fold greater
than in the plasma (61). CXCL13 appears to recruit B-cells
within the CNS and facilitate their differentiation to plasma
cells that produce a burgdorferi-targeted humoral response.
Indeed, CSF CXCL13 level has been proposed as a diagnostic
biomarker for neuroborreliosis, and a recent meta-review of
18 studies calculated a pooled sensitivity and specificity of 89
and 96%, respectively, for CNS CXCL13 as a biomarker of
disease (62).

Similar to neuroborreliosis, CXCL13 has been implicated in
the pathogenesis of neurosyphilis, a serious complication of
untreated syphilis. Neurosyphilis is typically a late manifestation
of prolonged infection but can also occur in early disease,
and it generally manifests as chronic meningitis, stroke-like
symptoms, or neurological symptoms (dementia, tabes dorsalis,
and paresis). Notably, CSF levels of CXCL13 were found to be
100-fold higher in patients infected with Treponema pallidum
(the etiological agent of syphilis) than in uninfected individuals,
although approximately four times lower than individuals with
neuroborreliosis. Mechanistically, enrichment and activation of
B-cells have been observed within the CNS in neurosyphilis,
as well as ectopic germinal centers, suggesting that CNS
T. pallidum infection leads to CXCL13 overexpression and
a positive feedback loop that recruits and activates a strong

humoral response within the CNS that contributes to destruction
of neurological tissue (63). Similar to neuroborreliosis, CSF levels
of CXCL13 have been proposed as a biomarker for neurosyphilis
with a sensitivity and specificity of 85 and 89%, respectively
(64), with the highest diagnostic value being in HIV-infected
patients (65).

CXCL13 IN LYMPHOPROLIFERATIVE
DISEASES AND LYMPHOMA

As outlined in the previous section, CXCL13 is strongly expressed
by dendritic cells in the follicles within the spleen, lymph
nodes, and Peyer’s patches, where it binds to CXCR5 on
mature B cells and THF cells to facilitate the development
of these B cell-rich structures and B-cell differentiation.
Imbalances in the CXCL13:CXCR5 axis may contribute to
pathologies involving B-cells and THF cells. Early studies
revealed that CXCL13 and CXCR5 are highly expressed in
primary and secondary follicles within gastric lymphomas
(66). Malignant cells in follicular lymphoma, which mimics
the architectural and cellular structures of normal secondary
lymphoid follicles in ectopic neoplastic foci, were shown to
express CXCR5, secrete CXCL13, and migrate in response to
CXCL13, suggesting that CXCL13 recruits malignant B-cells to
ectopic germinal centers and contributes to their development
(67). Shortly thereafter, overexpression of CXCL13 or CXCR5
was demonstrated in primary central nervous system B-cell
lymphoma (68), cutaneous B and T-cell lymphoproliferative
disorders, intraocular lymphomas, and chronic lymphocytic
leukemia (69).

Just as CXCL13 has demonstrated potential clinical utility
as a biomarker in infectious diseases involving the CNS,
this chemokine has been also proposed as a marker of
certain lymphomas. One of the strongest correlations has
been demonstrated for angioimmunoblastic T-cell lymphoma
(AITL), an aggressive nodal T cell lymphoma that accounts for
approximately 1.5% of all non-Hodgkin lymphoma and 20%
of peripheral T cell lymphomas. Because AITL is derived from
TFH cells, CXCL13 was first suggested as a biomarker for this
disease (70), and the 2016 WHO classification of lymphomas
included CXCL13 in the diagnostic criteria for AITL (71).
Elevated CXCL13 levels in the CSF have been demonstrated
for CNS lymphomas (72), and when elevated together with IL-
10 in the CSF, CXCL13 has a >99% specificity for primary
and secondary lymphomas, leading to similar proposals that it
serves as a biomarker for non-Hodgkin lymphoma involving the
CNS (73).

Very recently, CXCL13 was identified as the most up-
regulated cytokine in plasma from patients with idiopathic
multicentric Castleman Disease, a poorly understood
syndrome involving a “cytokine storm” driving polyclonal
lymphoproliferation. Elevated CXCL13 plasma levels has
been demonstrated in lymph nodes from these patients, likely
in follicular dendritic cells and TFH cells (74). A schematic
representation of the major physiological and pathological
functions of CXCL13 is depicted in Figure 2.
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FIGURE 2 | Major functions of CXCL13 in immune responses, inflammation, and lymphoproliferative diseases. The chemokine CXCL13 has been identified as a major

regulator of immune responses and plays key roles in the pathophysiology of inflammatory, infectious, and lymphoproliferative diseases. In addition, emerging

evidence identified CXCL13 as a biomarker for cancer progression and response to therapy.

CXCL13:CXCR5 AXIS IN SOLID TUMORS

CXCL13:CXCR5 Involvement in Tertiary
Lymphoid Structure Formation in Tumors
Naive CD4+ T helper precursor cells can differentiate into a
variety of different T helper subsets, including T helper type-1
(exerting antitumoral responses), T helper type-2 (displaying
inhibition of antitumoral responses), T helper 17 and regulatory
T-cells. Noteworthy, T helper type 1-cells produce a particular
set of cytokines such as IL-2, IFNγ, and TNFα, while T helper
type-2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13. It has been
reported that a shift from an immunological pattern with a T
helper type-1 orientation to a T helper type-2 pattern mediated
by cytokines is a key event in carcinogenesis (75, 76) (Figure 3A).

Tertiary lymphoid structures present in the tumor
microenvironment of solid tumors are basically characterized
by mature dendritic cells in a T-cell zone adjacent to B-cell
follicle including a germinal center representing sites of
lymphoid neogenesis (77–79) (Figure 3B). These tertiary
lymphoid structures are essential sites for the initiation and/or
maintenance of the local and systemic T- and B-cell responses
against tumors and associate with a favorable clinical outcome for

cancer patients. Hence, they can be considered novel biomarkers
to stratify the overall survival risk of untreated cancer patients
and as markers of efficient immunotherapies (80). Going deeper
into the analysis of tertiary lymphoid structure neogenesis,
several studies revealed an important participation of the
CXCL13:CXCR5 axis in this process. For instance, the presence
of functional tertiary lymphoid structures has been associated
with long-term survival in lung cancer patients, and signaling
by CXCL13, among other chemoattractants, has been shown
to mediate T-cell recruitment to tertiary lymphoid structures
(81). Regarding the orchestration of the T-cell migration
mechanisms, it was demonstrated that T-cells express CXCR5. A
new gateway mechanism proposed for T-cell migration into the
tumor involves their recruitment via high endothelial venules
mediated by chemokine/chemokine receptor interactions, thus
reinforcing the concept that recruitment of tumor specific T-cells
to intratumoral tertiary lymphoid structures is mediated by the
CXCL13:CXCR5 axis (82).

Infiltration of TFH cells (83) is important for tertiary
lymphoid structure formation and to generate germinal center B
cell responses at the tumor site by the production of CXCL13.
These tumor-infiltrating CXCL13-producing TFH cells were
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FIGURE 3 | CXCL13 and the formation of tertiary lymphoid structures. (A) Cytokines play key roles in the immunomodulation of both T helper type-1 (cellular immunity)

or T helper type-2 responses (humoral immunity). The shift from an immunological pattern with a T helper type-1 orientation to a T helper type-2 pattern mediated by

cytokines is a key event in tumorigenesis. (B) CXCL13 produced by T-cells plays a fundamental role in the formation of tumor-associated tertiary lymphoid structures

and germinal center orchestration: tumor infiltrating T-cells are recruited into the tumor site by transendothelial migration via high endothelial venules mediated by

chemokine/chemokine receptor interactions. Intra-tumoral infiltration of TFH cells is a key step in the formation of tertiary lymphoid structures, thus generating and

promoting B-cell responses in the germinal center (i.e., local memory B cell differentiation, as well as with the expansion of a subpopulation of T regulatory cells).

linked with promoting local memory B cell differentiation, as
well as with the expansion of a subpopulation of T regulatory
cells. Moreover, these cells were also related with the de
novo activation of adaptive antitumor humoral responses in
the chronic inflammatory breast cancer microenvironment.
CXCL13:CXCR5 axis is involved in many biological responses in
immune cells as well as in cancer cells (Figure 4), as described in
subsequent sections.

Role of CXCL13:CXCR5 Axis in Lung
Cancer
Lung cancer is the leading cause of cancer-related deaths
worldwide. The immune system exerts a central role in the lung
cancer biology given, at least in part, by its pro-inflammatory
milieu. While several studies provided solid evidence supporting
the starring role of the CXCL13:CXCR5 axis in the promotion of
lung tumor progression, studies focused on CXCL13 produced
by immune cells also highlight its high predictive potential for
response to immunotherapy.

CXCL13 was initially identified as part of an invasive network
module in lung adenocarcinomas (84–86). A comparative
analysis of an inflammatory signature in non-small cell lung
cancer (NSCLC) and chronic obstructive pulmonary disease
(COPD) patients revealed that CXCL13 was included among
the chemokines elevated in NSCLC patients (86, 87). An
inflammation score based on CXCL13 and three additional
markers (CRP, MDC/CCL22, and IL-1RA) provided good
separation in 10 year cumulative risks of lung cancer. CXCL13
was also identified as a predictive factor for risk of early stage

lung adenocarcinoma (88). A specific gene expression signature
associated with T-cell presence in tertiary lymphoid structures
was identified in human lung cancer, which includes CXCL13 and
other chemokines (89).

One interesting recent study focused on the prognostic
relevance of tertiary lymphoid structures in lung squamous
cell carcinoma patients treated with corticosteroid together
with chemotherapy (90). This study identified a perivascular
CXCL13 positive niche that supports tertiary lymphoid structure
development, which is associated with improved patient survival.
Steroid treatment impaired the formation of these lymphoid
structures when compared with those untreated patients, who
showed high tertiary lymphoid structures intratumoral density,
as well as the expression of adaptive-immune response genes.
This led to the hypothesis that corticosteroid treatment as
neoadjuvant therapy abrogates germinal center formation with
the subsequent loss of the tertiary lymphoid structures (90).
Recent evidence also showed that CD8+ lymphocyte populations
with high PD-1 expression from NSCLC patients express and
secrete very high levels of CXCL13. Secretion of CXCL13
by the tumor infiltrating lymphocytes expressing high PD-1
levels serves to attract other immune cell subsets to the
tumor microenvironment, including TFH cells and B-cells, and,
strikingly, it strongly predicts response to anti-PD-1 therapy
that correlates with increased overall survival and durable
responses. Thus, CXCL13 and the immune cells that produced
this chemokine in the NSCLC tumor microenvironment may
represent novel biomarkers for response to targeted PD1/PD-L1
therapy (91).
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FIGURE 4 | The CXCL13:CXCR5 axis is a key element in B-cell and tumor cell

responses. The chemokine CXCL13, acting on the GPCR CXCR5, promotes

chemotaxis, germinal center formation, and the differentiation to plasma cells

and B-memory lymphocytes. CXCL13 also target cancer cells to promote

proliferation, migration, and invasion. These effects vary depending on the

cancer type, which may express different levels of CXCR5.

Compelling data for the involvement of CXCL13 in lung
cancer development was provided by Wang et al. (92), who
studied the relationship between lung cancer development and
environmental pollution in Xuanwei, a city in the Yunnan
Province with one of the highest lung cancer incidences in China.
This has been attributed to smoky coal combustion-generated
polycyclic aromatic hydrocarbons (PAHs) pollution. A screening
analysis of abnormally high inflammatory factors in NSCLC
patients from this region revealed that 90% of the tumor tissues
have elevated CXCL13 levels. CXCR5 could be also detected in
human lung tumors, however its levels were not significantly
different between cancer and normal tissue. The causal link
between carcinogens and CXCL13 production was confirmed
using a normal human lung epithelial exposed to the PAH
benzo(a)pyrene (Ba[a]P), which caused elevated transcriptional
activity of the CXCL13 gene via the aryl hydrocarbon receptor
(AhR), a ligand-activated transcription factor that binds to
a xenobiotic-responsive element (XRE) in this gene located
1.7 kb downstream from the transcription start site. Lung
tumors from mice treated with Ba[a]P display elevated CXCL13
mRNA and protein levels. The relevance of CXCL13 in Ba[a]P-
induced lung cancer was further confirmed using CXCL13 and
CXCR5 knockout mice, which have impaired tumor formation
in response to the carcinogen. CXCL13 within the tumors
was produced by CD68+ macrophages. CXCL13 markedly
increase the production of the macrophage-secreted cytokine
SPP1 (secreted phosphoprotein-1 or osteopontin). The potential
involvement of SPP1 was confirmed by silencing its expression,
which led to impairedmigration of lung cancer cells in co-culture

models. CXCL13 and SPP1 serum concentrations were elevated
in B[a]P-treated mice, and tumors show elevated SPP1 staining.
Notably, the CXCL13-CXCR5-SPP1 signal induced an EMT
phenotype in lung tumors from B[a]P-treated mice, which was
characterized by E-cadherin down-regulation and up-regulation
of mesenchymal markers N-cadherin, vimentin, Slug and Snail.
SPP1 overexpression was also linked to increased levels of
nuclear β-catenin.

Another study in NSCLC patients revealed significantly
higher expression of CXCR5 in carcinomas relative to non-
neoplastic lung tissue (93). Further, nuclear and membrane
CXCR5 intensities were higher in NSCLC relative to non-
neoplastic tissues. The relevance of the nuclear CXCR5 staining
is unknown. Interestingly, this study also revealed higher
levels of CXCL13 in serum of NSCLC patients compared
to healthy controls. The functional significance of the high
CXCR5 expression was analyzed using migration assays, which
revealed a pro-migratory phenotype in NSCLC cells subject to
CXCL13 stimulation. These results suggest that CXCL13 in the
tumor microenvironment may act upon the cancer cell, possibly
contributing to tumorigenic and metastatic phenotypes. It would
be of great interest to determine whether lung cancer cells
respond to CXCL13 by activating signaling pathways related
to proliferation and survival, as this may reveal important
direct effects of the chemokine resulting from paracrine or
autocrine mechanisms.

Relationship Between the CXCL13:CXCR5
Axis and Breast Cancer Progression
Breast cancer exhibits one of the strongest relationships between
CXCL13:CXCR5 axis and tumor progression. Using a microarray
analysis, a study found significant CXCL13 overexpression in
breast cancer specimens (94). Moreover, CXCL13 was identified
as the most strongly overexpressed chemokine in breast cancer
tissue compared with normal breast tissue. A positive correlation
was found between the expressions of CXCL13 and CXCR5 in
breast tumors. Analysis in breast cancer cell lines also revealed
high levels of CXCL13 and expression of CXCR5. Strikingly,
both ligand and receptor could be only detected intracellularly
in cell lines growing in culture, with no measurable levels of
the CXCL13 in the culture medium (by ELISA) or plasma
membrane CXCR5 (by flow cytometry). Nonetheless, elevated
serum concentrations of CXCL13 could be detected in patients
with metastatic disease, possibly reflecting differences between
2-D cultures and tumors. Biswas et al. reported high co-
expression of CXCL13 andCXCR5within primary breast tumors,
as determined by immunohistochemistry (95). Chemokine and
receptor up-regulation are driven by different mechanisms
involving transcriptional control via RelA and Nrf2 in the case
of the CXCL13 gene, and epigenetic regulation (lack of CpG
island methylation) in the case of the CXCR5 promoter (95).
Along the same line, a study revealed high CXCL13 expression
in primary tumors from Chinese young breast cancer patients
(≤45 yo) but not in those from older women (≥65 yo). Moreover,
CXCL13 expression was associated with grade 2/3, lymph node
positive and ER negative status (96). Despite the differential
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CXCL13 expression found in breast cancer, a study failed to show
elevated CXCL13 plasma levels in breast cancers patients relative
to healthy controls (97). CXCL13 was also included in a set of 14
prognostic gene predictors of longer metastasis-free survival in
early stage hormone receptor-negative and triple-negative breast
cancer (TNBC) (98).

The analysis of a T-cell signature in breast cancer that includes
CXCL13 revealed additional levels of complexity. In univariate
analysis, mRNA expression of CXCL13 and other T-cell markers
associate with longer metastasis free-survival, with a stronger
prognostic effect in HER2 positive breast cancer (99). In a recent
study, a four-gene signature that includes CXCL13 and predicts
the extent of lymphocytic infiltration after neoadjuvant therapy
in TNBC has been developed. This signature associates with good
outcome, adding novel prognostic information for this aggressive
breast cancer subtype (100). Likewise, the recent association
between high CXCL13 and distant disease-free survival in early-
stage breast cancer patients provided evidence that humoral
immunity influences the survival outcomes in these patients,
particularly those with TNBC (101).

In addition to the immune-related effects of CXCL13 in
breast cancer, this chemokine exerts direct effects on breast
cancer cells. In an early study using CXCR5-expressing breast
cancer cells, CXCL13 induced changes in the expression of
markers consistent with epithelial-to-mesenchymal transition
(EMT). Indeed, CXCL13 up-regulates mesenchymal markers
vimentin, Snail, Slug, N-cadherin, MMP9 and RANKL
while down-regulating E-cadherin expression. In addition,
CXCL13-treated breast cancer cells acquire a more elongated
shape and a highly migratory phenotype characteristic of
mesenchymal cells. From a signaling perspective, these
effects are sensitive to p110α PI3K and Src inhibition (95).
Interestingly, a recent study showed that an anti-CXCL13
antibody reduces MDA-MB-231 breast cancer cell viability
by promoting apoptosis. CXCL13 inhibition reduced active
ERK and cyclin D1 levels, and enhanced caspase-9 cleavage
(47). Extra backing proof of the concept that CXCL13 plays
a pivotal role in breast cancer growth and lymph node
metastasis was gained in tumorigenesis experiments using 4T1

breast cancer cells. Treatment of mice with an anti-CXCL13

antibody impaired 4T1 tumor growth and ERK activation,
thus affording a theoretical frame for clinical trials targeting
CXCL13 (102).

An inverse correlation between the expression of CXCR5
and the p53 tumor suppressor was reported in the MCF-7
human breast cancer cell line. Silencing of p53 in these cells
not only up-regulates CXCR5, but also potentiates CXCL13-
mediated chemotaxis. Therefore, CXCR5 up-regulation may
contribute to the anomalous phenotypes of p53-deficient cells.
A CXCR5 promoter analysis revealed that p53 acts indirectly
by repressing the activity of NF-κB transcription factors (103).
Similar mechanisms for CXCR5 gene regulation may operate
upon loss of related tumor suppressors p63 and p73 (104). These
studies suggest a potential relationship between genotoxic stress
and CXCR5 responses that could have significant prognostic and
therapeutic implications in the context of chemotherapy.

CXCL13:CXCR5 Axis and the Progression
of Gastrointestinal Tract Tumors
Colorectal carcinoma is one of the most common malignancies
worldwide. Extensive analysis of circulatory inflammatory
factors at the time of colorectal cancer surgery, including
cytokines, chemokines and interleukins, revealed CXCL13 as
one of the factors associated with increased mortality (105). In
agreement with this information, immunohistochemical analysis
of advanced colorectal cancer specimens revealed significant
elevation of CXCL13 and CXCR5 in tumors relative to normal
tissue, which correlated with lymph node metastasis and
neural invasion. Furthermore, patients with positive CXCR5
and CXCL13 expression have poor prognosis, both in terms
of 5 year overall survival and 5 year relapse-free survival.
Interestingly, CXCR5 staining localized primarily in the epithelial
cells, whereas CXCL13 staining was mainly found in the
mesenchymal cells (106). These results suggest a role of
CXCR5 and CXCL13 as prognostic markers for colorectal
carcinoma progression.

From a functional standpoint, CXCL13 induces proliferation
and migration in CXCR5-expressing colon cancer cells
(107). Interestingly, CXCR5 expression in mouse CT26
colon carcinoma was low in vitro, up-regulated in vivo,
and rapidly lost when cells were explanted in vitro. In the
liver, after intrasplenic injection, these CXCR5 transfectants
initially grew faster than controls; however, the growth rate
of control tumors accelerated later to become similar to the
transfectants, likely due to CXCR5 up-regulation. These results
suggest that expression of CXCR5 in tumor cells promotes
their growth in the liver and, at least for CT26 cells, the
receptor is required for outgrowth to large liver tumors.
CXCL13 also promotes growth, migration, and invasion
in human SW620 colon carcinoma cells. From a signaling
standpoint, CXCL13 activates, and the migratory/invasive
phenotype is sensitive to PI3K inhibition (108). This has
significant clinical implications since abnormal PI3K signaling
is a hallmark of colon cancer (109). Studies using the
Nirp12 KO mouse model revealed that elevated CXCL13
expression occurs as a consequence of high non-canonical
NF-κB activation (85). As in other cancers, CXCL13 and its
receptor also play roles within the immune landscape of colon
cancers (110).

In gastric cancer, CXCL13 expression is predictive of
shorter overall survival. Within the T2–T4 stage patient
group, low CXCL13 expression is associated with longer
survival, particularly in patients who received adjuvant
chemotherapy. High CXCL13 levels in gastric tumors are
associated with larger tumor diameters (111). Notably,
a transcriptome analysis of biopsies from gastric cancer
patients revealed significant up-regulation of CXCL13,
which is mainly expressed in isolated lymphoid follicles
and small lymphoid aggregates (112). In gastric biopsies
from H. Pylori infected patients, who have increased risk
of developing gastric carcinoma, there is also significant
CXCL13 overexpression (113). This finding fits with an
early analysis in H. Pylori gastritis showing that CXCL13
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expression was mainly confined to lymphocyte aggregates
as well as to primary and secondary follicles. Analysis of
CXCL13 expression in mucosa-associated lymphoid tissue
(MALT) lymphomas shows that the transformed blasts seem
to be the major source of the chemokine (66). Consistent
with observations in other cancers, serum levels of CXCL13
were higher in patients with gastric cancer compared to
healthy individuals, and this correlates with a high number of
circulating TFH cells. Notably, CXCL13 concentrations were
higher in patients with lymph node metastasis and high-grade
disease (114).

CXCL13 also seems to play a prominent role in the
development of pancreatic adenocarcinoma, one of the most
aggressive and incurables forms of cancer. Human pancreatic
carcinoma cell lines express CXCR5, and this GPCR can
be detected in a significant proportion of human pancreatic
tumors (107). Several pancreatic ductal adenocarcinoma cell
lines display significant elevation of non-canonical NF-κB
target genes, including CXCL13. Constitutive activation of the
non-canonical NF-κB pathway requires stabilization of the
kinase NIK and IKKα-dependent processing of NF-κB2/p100
to p52, which via heterodimerization with RelB heterodimers
regulates the expression of genes encoding lymphoid-specific
chemokines and cytokines (115). Constitutive activation of the
non-canonical NF-κB pathway as observed in pancreatic cancer
models may contribute to a positive pro-migratory autocrine

loop via CXCR5 activation, as observed in prostate cancer models
(see below). More recently, the Simon laboratory identified
a pathway in KRas-driven pancreatic tumors that involves
CXCL13 and the master regulator of the hypoxic transcriptional
response HIF1α. Deletion of the Hif1a gene in mice surprisingly
accelerates pancreatic carcinogenesis, which was accompanied
by increased infiltration of B lymphocytes. Interestingly, one of
the chemokines up-regulated by HIF1α was CXCL13. Depletion
of B cells by administration of a CD20-specific monoclonal
antibody reduced the number of lesions (116). Taking into
consideration that CXCL13 staining can be detected in the
stroma surrounding human and mouse PanIN lesions, most
likely in the stromal fibroblast population, and that CXCL13
neutralization with a blocking antibody reduces pancreatic B
cell infiltration and the growth KRas-driven tumors (117), it is
logical to speculate that CXCL13 has a significant contribution to
pancreatic tumorigenesis.

Hepatocellular carcinoma (HCC), the primary malignant
tumor of the liver, has been highly associated with chronic
inflammation related to alcohol intake and viral hepatitis.
Many cytokines and chemokines have been linked to chronic
liver disease and HCC, including CXCL13. Elevated CXCL13
and CXCR5 expression has been reported in human HCC,
with a higher percentage of CXCR5+ or CXCL13+ cells in
poorly differentiated tumors compared with well-differentiated
tumors (118). Moreover, studies documented elevated CXCL13

FIGURE 5 | CXCL13 in prostate cancer. In prostate tumors, CXCL13 can be produced both by cancer cells as well as by cells in the tumor microenvironment, such

as myofibroblasts. In prostate cancer cells, up-regulation of the kinase PKCε and loss of the tumor suppressor Pten (which leads to elevated PI3K activity) lead to the

activation of the non-canonical NF-κB pathway, and transcriptionally activate the CXCL13 gene. CXCL13 produced in this autocrine manner, together with CXCL13

generated by stromal cells, may significantly impact on the tumorigenic and metastatic phenotypes of androgen-independent prostate cancer cells.
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serum levels in HCC patients, which correlate with tumor
size, metastatic disease, advanced stages, and Alanine
Transaminase/Aspartate Aminotransferase serum levels
(118, 119). Nonetheless, in hepatitis B-related HCC, elevated
serum CXCL13 did not correlate with overall survival and
rather correlated with recurrence-free survival (118). Analysis
of signaling networks revealed a mutual positive interaction
between CXCL13 and the Wnt/β-catenin pathway in promoting
liver cancer (119). These studies emphasize the potential roles of
the CXCL13:CXCR5 axis as a biomarker in HCC and its potential
prognostic relevance.

CXCL13:CXCR5 and the Development of
Prostate Cancer
Prostate cancer is the most commonly diagnosedmalignancy and
the second leading cause of cancer death in men. Metastasis,
particularly to the bone, occurs in most patients when disease
becomes androgen-independent (“castration-resistant prostate
cancer” or CRPC). Within the last decade, chemokines emerged
as key players in prostate cancer progression. In this context,
CXCL13 and CXCR5 appear to be highly relevant in prostate
cancer cell proliferation, migration, and invasion, ultimately
impacting disease progression and metastatic dissemination.

Early studies showed that CXCR5 is expressed in primary
prostate cancer tissues at higher levels than normal tissue.
In normal tissue and benign prostate hyperplasia samples,
CXCR5 displays a predominant membrane and/or cytoplasmic
distribution while in advanced prostate cancers it shows high
nuclear expression (120). CXCL13 is elevated in serum of
prostate cancer patients and was found to be a better predictor
of prostate cancer than prostate-specific antigen (PSA). Also,
CXCL13 is highly expressed in human bone marrow endothelial
cells and osteoblasts, but not in osteoclasts, in response to IL-
6 treatment. Furthermore, CXCL13 produced by bone marrow
endothelial cells in response to IL-6 was able to induce prostate
cancer cell invasion in a CXCR5-dependent manner (120).

Signaling studies revealed that DOCK2 (Dedicator of
cytokinesis 2), ERK1/2, JNK and Akt signals mediate CXCL13
invasive and proliferative responses in prostate cancer cells.
CXCL13 promotes proliferation in androgen-responsive LNCaP
cells in a JNK-dependent, DOCK2-independentmanner, whereas
this effect is dependent on DOCK2 in androgen-independent
PC3 cells. CXCL13-mediated invasion in prostate cancer cells
depends on PI3K/Akt, Src, ERK, and FAK, but it is independent
of DOCK2 (121, 122). Interestingly, androgen stimulates
CXCL13 production in prostate cancer cells, and CXCL13 was
found to be an androgen-responsive gene that contains a
canonical androgen-responsive element in its promoter. From
a functional standpoint, CXCL13 plays an important role in
androgen receptor-induced cellular migration and invasion in
LNCaP cells (123).

Our laboratory has recently implicated the oncogenic kinase
PKCε in prostate cancer progression (124–127). This kinase is
overexpressed in prostate cancer and cooperates with loss of the
tumor suppressor Pten, a common alteration in prostate cancer,
for the development of prostatic adenocarcinoma (128, 129).

Gene profiling of PKCε-overexpressing/Pten-deleted prostate
epithelial cells revealed CXCL13 as a top deregulated gene. PKCε

overexpression and Pten loss (which leads to PI3K activation)
up-regulates CXCL13 production and release, contributing to
CXCR5 signal amplification, and ultimately resulting in a cell
autonomous pro-migratory and tumorigenic autocrine loop.
Indeed, silencing CXCR5 from prostate cancer cells reduces
their proliferative, tumorigenic and motile capacities. CXCL13
up-regulation in prostate cancer cells is driven by the non-
canonical NF-κB pathway. A responsive element for the non-
canonical NF-κB pathway has been identified in the CXCL13
gene promoter, and CXCL13 promoter transcriptional activity is
sensitive to pharmacological inhibition of PKC, PI3K, and NF-
κB. Furthermore, silencing IKKα and NIK, key elements in the
non-canonical NF-κB pathway, down-regulates CXCL13 mRNA
levels and CXCL13 gene transcriptional activity (128) (Figure 5).

Using a Myc-CaP mouse model, Karin and coworkers
studied the involvement of CXCL13 in CRPC. After castration,
there was elevated expression of CXCL13 in myofibroblasts
within the tumor remnants. Immunoablation of FAP (fibroblast
activation protein)-expressing cells led to the disappearance of
myofibroblasts that express CXCL13 in the tumor stroma of
androgen-deprived Myc-CaP tumors, reduced the infiltration
of T cells, B cells and dendritic cells into the tumor remnants,
and retarded the evolution of CRPC. Mechanistically, FAP
ablation prevented IKKα nuclear translocation in cancer cells.
Blockade of TGF-β signaling abrogated not only B and T
cell infiltration but also the induction of CXCL13-expressing
myofibroblasts. Interestingly, cultured fibroblasts isolated from
Myc-CaP tumors from non-castrated mice responded to hypoxic
conditions by converting into myofibroblasts that produced
CXCL13, an effect that is sensitive to phosphodiesterase
5 (PDE5) inhibition with sildenafil. Sildenafil significantly
delayed CRPC in castrated Myc-CaP tumor-bearing mice.
Myofibroblast activation, immune infiltration, and induction
of TGF-β and CXCL13 could be also observed upon castration
of TRAMP mice, a model that develops metastatic tumors with
neuroendocrine differentiation. This study also identified higher
expression of CXCL13 and nuclear HIF-1α in malignant
prostate tissue compared with normal tissue or benign
prostatic hyperplasia. Furthermore, B cells in malignant
tissues were located next to CXCL13-expressing cells. These
findings suggest that B lymphocytes recruited into androgen-
deprived tumors by CXCL13 play an important role in
malignant progression and metastatic dissemination of prostate
cancer (130).

Altogether, evidence indicates that a complex network
of cellular interactions involving CXCL13 and CXCR5
integrate to promote prostate cancer cell autonomous
and non-autonomous pathways. These findings merit
further translation into preclinical and clinical arenas, since
targeting the CXCL13:CXCR5 axis may be a promising
approach for the treatment of CRPC. Recent discoveries
linking up-regulation of the CXCL13:CXCR5 axis to
the dissemination of prostate cancer stem-like cells to
lymph nodes and bone marrow (131) further support
this concept.
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Involvement of the CXCL13:CRXR5 Axis in
Other Solid Tumors
A very recent study showed significant CXCL13 up-regulation
in clear renal cell carcinoma (ccRCC) that correlates with
advanced disease stage and poor prognosis, together with
elevated CXCL13 serum levels in ccRCC patients. Receiver
Operating Characteristic (ROC) curves showed that tissue and
serum CXCL13 expression may represent a useful diagnostic
biomarker for ccRCC.Notably, patients in the high CXCL13/high
CXCR5 expression group have a worse prognosis. CXCL13
promotes the proliferation and migration of ccRCC cells and
activates the PI3K/Akt/mTOR signaling pathway. Thus, the
CXCL13:CXCR5 axis plays a significant role in ccRCC and could
be a valuable therapeutic target and prognostic biomarker (132).

The CXCL13:CXCR5 axis has also been implicated in
the initiation and progression of other solid tumors, such
as ovarian cancer, melanoma, oral squamous cell carcinoma,
osteosarcoma, thyroid cancer, and neuroblastoma (133–143).
One interesting study showed that specific chemokine signatures
may contribute to overall survival in wild-type and mutant
p53 ovarian cancers, and CXCL13 was specifically associated
with better overall survival (137). Also, ascites in obese mice
have higher levels of macrophages and chemokines including
CXCL13, suggesting that obesity may accelerate the peritoneal
dissemination of ovarian cancer through higher production of
pro-inflammatory chemokines and macrophages recruitment
(138). CXCL13 has been also implicated in oral squamous
cell carcinoma tumor progression and osteolysis. The tumor
necrosis factor family member RANKL (Receptor Activator
of NF-κB ligand) plays an important role in cancer invasion
of bone/osteolysis. High CXCL13 expression levels have been
reported in primary human oral squamous cell carcinoma
tumors. c-Myc activation through the CXCL13:CXCR5 signaling
axis stimulates RANKL expression in stromal/preosteoblast
cells, therefore implicating CXCL13 as a potential therapeutic
target to prevent oral squamous cell carcinoma invasion of
bone/osteolysis (140).

Of note, immune dysregulation plays a key role in the
development of osteosarcoma. Peripheral blood CD4+CXCR5+
T-cells induce B-cell activation and produce a number of
cytokines that play critical roles in tumorigenesis. Patients with
high tumor grade have an elevated percentage of CD4+CXCR5+

T-cells compared to those with low tumor grade. Moreover,
Th1 and Th17 subtypes contribute to the upregulation of
peripheral CD4+CXCR5+ T-cells in patients with metastasis or
high tumor grade. These results argue for the involvement of
peripheral CD4+CXCR5+ T-cells and the CXCL13 pathway in
the pathogenesis and progression of osteosarcoma (136).

FINAL REMARKS

To summarize, CXCL13 and its receptor CXCR5 have emerged
as key players of cancer initiation and progression. The
identification of autocrine and paracrine interactions between the
tumor microenvironment and cancer cells mediated by CXCL13
highlights how autonomous and non-autonomous mechanisms

contribute to the development of the cancer phenotype and
the dissemination of cancer cells to metastatic sites. From our
perspective, the involvement of CXCL13:CXCR5 axis in solid
tumors deserves to be fully investigated. Many efforts are still
required to grasp a better and more conclusive understanding of
the fundamentals of this pathway. Due to the great complexities
and the wide spectrum of immunological and tumoral responses
in different cellular contexts, particularly considering the anti-
tumorigenic vs. pro-tumorigenic actions of this pathway and the
lack of specific targeting agents, it is not yet feasible to use it
for therapeutic intervention in cancer patients. The elucidation
of CXCR5 signaling effectors and target genes would help
profiling molecular scenarios controlling tumor development
and its response to targeted therapies. New discoveries in the
CXCL13:CXCR5 field would also aid clinical decision-making for
cancer patients, bringing us closer to the promise of translational
precision medicine.
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