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Abstract: Major depressive disorder (MDD) is a chronic condition that affects one in six adults
in the US during their lifetime. The current practice of antidepressant medication prescription
is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond
to two or more antidepressant treatments. There are no valid clinical markers to personalize
currently available antidepressant medications, all of which have similar mechanisms targeting
monoamine neurotransmission. The goal of this review is to summarize the recent findings of
immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize
treatment selection, and the potential of targeting inflammation to develop novel antidepressant
treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment
assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests.
With this approach, 4.5 patients need to be treated for 1 additional remission as compared to
a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel
antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin
6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients
with chronic inflammatory conditions who report significant depressive symptoms. Additional novel
antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect
of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer
the potential not only to personalize antidepressant prescription but also to guide the development
of novel mechanistically-guided antidepressant treatments.
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1. Introduction

Major depressive disorder (MDD) affects one in six adults in the United States during their
lifetime [1,2]. For most patients, MDD has a chronic course that is marked either by persistent
symptoms or by repeated depressive episodes interspersed with periods of symptomatic improvement [3].
Additionally, patients with MDD report significant impairment across multiple domains of life such as
work productivity [4], non-work-related day to day activities [5], psychosocial function [6], and quality of
life [7]. The disability associated with MDD has increased over 50% in the last two decades, making it
the second leading cause of global disability [8]. The economic burden of MDD is estimated to exceed
$200 billion per year [9]. To reduce the disability and economic burden associated with MDD and to
improve the poor clinical outcomes in clinical practice [10], there is an urgent need to parse through
the syndromic and etiological heterogeneity of MDD [11]. This report aims to briefly review the role
of inflammation in the pathophysiology of depression along with the recent findings of inflammatory
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markers moderating antidepressant treatment outcomes and the efficacy of monoclonal antibodies
in reducing depressive symptoms in patients with chronic inflammatory conditions. Additionally,
a theoretical framework and potential future studies are discussed in order to personalize the prescription
of currently available antidepressants and to identify novel treatments.

2. Need for Personalized Antidepressant Prescription

The current practice guidelines recommend prescribing antidepressant medications based either
on clinical characteristics (such as side-effect profile, previous history of response) or non-clinical factors
(such as patient or provider preference, cost, availability on insurer’s approved drug list) [12]. This is
despite a lack of any clinical evidence that such clinical or non-clinical factors can guide antidepressant
medication prescription. Clinical factors such as severity of depressive symptoms at baseline [13],
onset of MDD before the age of 18 year [14], persistence of index major depressive episode longer than
2 years [15] or the presence of insomnia prior to treatment initiation [16] did not moderate outcomes in
reports that compared selective serotonin reuptake inhibitor (SSRI) monotherapy with antidepressant
medication combinations. Similarly, commonly used clinical subtypes of depression defined by the
presence of atypical, melancholic or anxious features have failed to predict any significant difference
among currently available antidepressant medications [17,18]. This is consistent with the failure
to find any significant differences in head-to-head trials of antidepressant medications within or
across different classes [19]. Hence, the current clinical practice continues to be a trial-and-error
process that necessitates multiple treatment trials to attain adequate symptomatic control for a
majority of patients [20,21]. Unsurprisingly, most patients stay on ineffective medications for too
long, switch treatments too early, or simply drop out of care [22,23]. Thus, there is an urgent need to
personalize antidepressant treatment by maximizing the likelihood of improvement and minimizing
the risk of adverse events [24].

3. Need for Novel Antidepressants

Large community trials such as the Sequenced Treatment Alternatives to Relieve Depression
(STAR*D) trial have shown that less than a third of patients adequately respond to the initial
antidepressant medication trial [25]. In fact, over 35% of depressed patients fail to respond to two or
more adequate courses of antidepressant medications [20,21,26], i.e., they have treatment-resistant
depression (TRD). These patients experience persistence of depressive symptoms over a long
period of time and are exposed to adverse consequences of ineffective medications. Additionally,
TRD patients report higher rates of suicidality and lower quality of life as compared to treatment
responsive depressed patients [27]. All currently available and commonly prescribed antidepressant
medications target monoamine neurotransmission [28–30]. Thus, there is an urgent need to identify
antidepressant medications with novel non-monoaminergic mechanisms of action. The search for
novel antidepressants is currently hindered by our subjective practice of diagnosing depressive
disorder. The National Institute of Mental Health has launched the Research Domain Criteria (RDoC)
initiative to promote novel objective ways for conceptualizing and classifying mental disorders [31].
The RDoC initiative offers an opportunity to understand the pathophysiology of depressive disorders.
Novel antidepressants that are target-driven against the pathophysiological mechanisms offer the
potential for personalized medicine for MDD patients.

4. Role of Inflammation in Depression

Several lines of investigation implicate inflammation in the pathophysiology of depression in
a sub-group of patients with MDD [32,33]. Patients, who receive cytokines as a treatment for their
medical conditions, such as hepatitis C or malignancies, develop MDD at high rates. Over a third of
patients initiated on interferon α (IFN-α) treatment for chronic hepatitis C develop moderate or severe
depressive symptoms [34]. While IFN-α results in worsening of symptoms across multiple domains
of MDD (mood, cognition, anxiety, and neurovegetative), treatment with antidepressant medication
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results only in the improvement of core mood and not in other symptom domains [35]. Additionally,
patients who developed depressive symptoms following IFN-α treatment had poorer hepatitis C
viral clearance as compared to those who did not develop depressive symptoms [36]. Due to recent
advances in the treatment of hepatitis C, the use of IFN-α has decreased markedly [37], thus restricting
the utility of this treatment paradigm to study the role of immune dysfunction in depression.

Patients with MDD also have elevated markers of non-specific inflammation, such as c-reactive
protein (CRP). Produced by the liver, CRP is a pentameric protein that increases thousands of folds
in response to acute infection or injury and is hence also referred to as acute-phase reactant [38].
Chronic low-grade systemic inflammation is associated with elevated CRP levels, which in turn have
been associated with increased mortality (both vascular and non-vascular) and a higher likelihood of
cardiovascular disease and ischemic stroke [39]. In depressed patients, elevated CRP levels have been
associated with higher likelihood of hospitalization related to depression [40]. In epidemiologic studies,
higher levels of CRP have been associated with higher severity of depressive symptoms [41]. In a recent
report from the Genome-Based Therapeutics Drugs for Depression (GENDEP) study, the association of
CRP with depression severity was seen only in women but not men [42]. This may have been related
to the higher proportion of females in the GENDEP study as compared to males. Notably, other studies
have reported an association of CRP with depression only in males and not in females [43]. In addition
to the association with depression severity and risk of inpatient hospitalization, high levels of CRP
have also been associated with greater likelihood of completed suicide [44].

Among specific inflammatory markers, elevated levels of interleukin 6 (IL-6) have been most
consistently reported in patients with MDD as compared to healthy controls. Several meta-analyses
have found elevated levels of IL-6 in peripheral circulation in depressed patients as compared to
controls with moderate to large effect size [45–48]. Higher levels of IL-6 have also been reported
in cerebrospinal fluid of depressed patients [49] as well as in suicide attempters [50] as compared
to non-depressed controls. Higher levels of both CRP and IL-6 have also been shown to predict
subsequent depressive symptoms [51]. Obesity partly accounts for the elevated IL-6 levels in depressed
patients [52]. Patients with MDD also have elevated levels of other pro-inflammatory cytokines such
as tumor necrosis factor α (TNF-α).

Recent evidence also implicates interleukin 17 (IL-17) in the pathophysiology of MDD. One of the
downstream consequences of IL-6 elevation is the differentiation of native T-helper (Th) lymphocytes
into IL-17 producing Th17 lymphocytes, thus promoting secretion of IL-17 [53]. The role of IL-17,
which was initially identified in 1995 [54], and Th17 cells, which were identified as distinct from the
common Th1 and Th2 sub-types in 2005 [55,56], is well established in the pathophysiology of systemic
inflammatory disorders such as psoriasis, systemic lupus erythematosus, asthma, and rheumatoid
arthritis [57]. In an elegant set of animal experiments, Beurel et al. recently demonstrated the role of
IL-17 and Th17 cells in the pathophysiology of depression [58]. They showed that (1) levels of Th17
cells were higher in brains of rodents that exhibited learned helplessness; (2) infusion of Th17 cells
was associated with depression-like behaviors at sub-threshold stimulation; (3) infusion of anti-IL-17
antibody or administration of SR1001, an inhibitor of retinoid-related orphan receptor- γT (RORγT,
a transcription factor essential for differentiation of naïve CD4+ T cells to Th17 cells) mitigated the
effects of Th17 cell infusion; and (4) RORγT knockout mice exhibited marked resistance to learned
helplessness paradigm [58]. While one study has previously reported higher levels of Th17 cells
and lower regulatory T cells in peripheral circulation, along with higher levels of RORγT mRNA in
peripheral blood lymphocytes of depressed patients as compared to control subjects [59], a recent
meta-analysis did not find a significant difference in IL-17 levels between depressed and healthy
control subjects [47].

Chemokines have been implicated in depression by facilitating migration of peripheral immune
cells into the central nervous system [60]. A recent meta-analysis found elevated chemokines (CXCL8,
and CXCL 7) and reduced levels of CCL4 in plasma of depressed patients as compared to healthy
controls, of which plasma CXCL8 had a negative predictive value of 93.5% [61].
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5. Pathophysiological Mechanisms Underlying Role of Inflammation in Depression

While the brain has been considered an immune-privileged organ, emerging evidence implicates
the role of peripheral inflammation in the pathophysiology of depression [62]. The factors that increase
the likelihood of inflammation in depression have been reviewed in detail by Kiecolt-Glaser et al. [63].
Peripheral injection of lipopolysaccharide (LPS) in rodents is associated with depressive symptoms,
including anhedonia, even after the acute sickness syndrome has resolved and serves as a model to
demonstrate the pathophysiological role of inflammation in depression [32]. In humans, injection
of LPS is associated with worsening of depressive symptoms and reduction in ventrostriatal reward
activity to monetary reward cues [64]. Peripheral inflammation leads to activation of indoleamine
oxygenase (IDO), which diverts tryptophan metabolism from serotonin to kynurenine [32]. Peripheral
kynurenine is transported across the blood-brain barrier (BBB) by the L-type amino acid transporter
(LAT-1) and is converted to quinolinic acid in microglia by activation of kynurenine 2-monooxygenase
(KMO) [65]. An additional mechanism underlying the role of inflammatory cytokines in depression
is related to the susceptibility to stress. In rodent studies of repeated social defeat stress (RSDS),
animals susceptible to stress exhibited increased levels of IL-6 early after exposure to stress as compared
to those who were resistant to stress [66].

The putative mechanisms underlying the role of IL-17 involves its effect on the BBB. Peripheral
IL-17 binds to the IL-17 receptors on the BBB leading to the generation of reactive oxygen species (ROS),
which in turn increase BBB permeability [67]. Increased BBB permeability is associated with infiltration
of immune cells, which in turn have been shown to promote depressive behavior [60,68]. Dysfunction
of the BBB induces nitric oxide synthase (NOS) and produces inflammatory cytokines from microglial
cells [69,70]. The resultant neuroinflammation diverts tetrahydrobiopterin, an essential cofactor of both
NOS and tyrosine hydroxylase, away from the conversion of tyrosine to L-3,4-dihydroxyphenylalanine,
the rate-limiting step of dopamine synthesis [71]. Reduced dopamine synthesis, in turn, is associated
with worsening of symptoms of anhedonia [64,72–74]. Thus, peripheral inflammation has been shown
to affect serotonin, dopamine, and glutamate neurotransmitter systems.

6. Effects of Antidepressant Treatments on Inflammation

It is widely acknowledged that antidepressant treatments affect the immune system. A recent
meta-analysis found significant reductions in IL-4, IL-6, IL-1β (specific only to SSRIs) and IL-10 after
antidepressant treatment along with no changes in IL-2, TNF-α, IFN-γ, and CRP [75]. These findings
were partly replicated in a difference meta-analysis, which reported reductions in IL-6, IL-10, TNF-α,
and CCL-2 with antidepressant treatment along with no changes in IL-1β, IL-2, and IFN-γ [76]. In a
rodent model, administration of citalopram, an SSRI medication, was associated with increased levels of
proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) in the frontal cortex, and co-administration
of non-steroidal anti-inflammatory drugs (NSAIDs) blocked the increase of cytokines but also resulted
in the loss of effect of citalopram in animal models of depression [77]. A potential reason for
this increase in Th1-related cytokines by SSRIs could be their effect on Th2 cell-mediated immune
response. SSRIs have been shown to suppress IL-2 and IL-4-producing cells in the thymus [78].
Reviews of the effect of antidepressant medications on cytokine levels have been more mixed.
Most studies demonstrate a decrease in IL-6 with antidepressant treatment [79], which is not
correlated with a reduction in depression severity [80] and is most notable specifically with SSRI
medications [81]. Among other inflammatory cytokines, persistently elevated levels of TNF-α have
been associated with a failure to respond to antidepressant medications [80]. In a recent report,
Gadad et al. found that an increase in eotaxin levels after antidepressant treatment was associated with
improved treatment outcomes, whereas a decrease in IFN-γ was associated with failure to remit after
12 weeks of antidepressant treatment [82]. Based partly on these findings, Martino et al. proposed a
theoretical model whereby serotonergic antidepressants suppress the Th2-mediated immune response,
whereas noradrenergic antidepressants suppress the Th1-mediated immune response [83]. However,
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this model is limited by the omission of innate immune markers, Th17 cell-mediated immune response,
and the antidepressant effect of dopaminergic medications as well as anti-inflammatory medications.

Bupropion, a dopaminergic noradrenergic antidepressant, has been shown to suppress the
Th1- [84] and Th17- [85] mediated immune response. Similarly, pramipexole, a dopamine agonist
with evidence of efficacy in treatment-resistant depression [86], has been shown to inhibit the
production of IL-17 [87]. Exercise, an effective augmentation strategy after initial non-response
to SSRI medication [88], has been shown to be more effective in depressed patients with higher levels
of TNF-α at baseline [89]. Additionally, reduction in IL-1β with exercise is positively correlated with a
reduction in overall depression severity and hypersomnia [89,90].

7. Inflammatory Markers to Personalize Antidepressant Prescription

Inflammatory biomarkers are poised for widespread application to profoundly change the
current clinical practice. Systematic reviews have found that elevated inflammation predicts poor
response to commonly used antidepressant medications [80]. Two recent reports have shown CRP,
a non-specific marker of inflammation can help in selecting between antidepressants with serotonergic
versus non-serotonergic action. In the initial report, Uher et al. used data from the GENDEP
study to evaluate if CRP at baseline predicted differential reduction in depression severity with
escitalopram versus nortriptyline [91]. They found that depressed patients with CRP levels less
than 1 mg/L prior to treatment initiation experienced significantly greater reduction in depression
severity with escitalopram as compared to nortriptyline. Conversely, depressed patients with
CRP levels ≥ 1 mg/L responded significantly better to nortriptyline as compared to escitalopram.
In an unrelated study, Jha et al. recently evaluated if baseline CRP levels predicted differential
response to escitalopram monotherapy versus bupropion-escitalopram combination [92]. Depressed
patients with lower CRP levels responded better to escitalopram monotherapy whereas those with
higher levels responded better to bupropion escitalopram combination. Depressed patients with
biomarker matched treatment (those with CRP < 1 mg/L received escitalopram whereas those with
CRP ≥ 1 mg/L received bupropion-SSRI combination) had significantly higher remission rates (53.1%)
as compared to the 30.9% remission rate in the biomarker mismatched treatment arm. As shown in
Figure 1, this potential CRP-matched treatment assignment had a number-needed-to-treat (NNT) = 4.5.
Additionally, it is worthwhile to note that the remission rate with the CRP-matched treatment
assignment was significantly higher than that with the first step treatment in the STAR*D study
where only 33% depressed patients attained remission with citalopram monotherapy [25].

While CRP is a clinically pragmatic biomarker for treatment assignment, its level may be elevated
due to a multitude of acute and chronic factors. Thus, there is a need to identify more specific
factors which can guide differential treatment selection among currently available antidepressant
medications. Among specific inflammatory markers, IL-17 has emerged as a potential candidate.
In two separate samples, Hennings et al. recently demonstrated that lower pre-treatment levels of
ROR α mRNA, a transcription factor involved in differentiation of naïve CD4+ T cells into Th17
cells [57], were associated with better response to antidepressant treatment [93]. Hence, Jha et al.
recently explored a panel of IL-17, Th1- (IFN-γ and TNF-α), Th2- (Il-4, IL-5, IL-9, and IL-13), and non-T
cell-related (IL-1β, IL-1 receptor antagonist, IL-6, IL-8, and macrophage inflammatory protein (MIP)
1 α and β) markers as antidepressant treatment selection biomarkers. While depressed patients with
elevated IL-17 levels prior to treatment initiation experienced a greater reduction in depression severity
with the bupropion-SSRI combination as compared to those with lower IL-17 levels, no such association
was seen in SSRI monotherapy and venlafaxine-mirtazapine combination treatment arms [94]. In a
follow-up report that evaluated the role of platelet-derived growth factor (PDGF), Jha et al. reported
that improvement in anhedonia completely accounted for the differential improvement in depression
severity seen with bupropion-SSRI combination versus SSRI monotherapy based on PDGF levels [95].
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Figure 1. Superiority of CRP-matched treatment assignment to SSRI monotherapy of combination of 
bupropion and SSRI. CRP is c-reactive protein, CO-MED is Combining Medications to Enhance 
Depression Outcomes, SSRI is selective serotonin reuptake inhibitor. This figure is based on the 
findings reported by Jha et al. [92]. CRP-matched treatment assignment refers to participants who 
received escitalopram only and had CRP < 1 mg/L received escitalopram whereas those with CRP ≥ 1 
mg/L received bupropion-SSRI combination. The rest of the participants were grouped in the CRP-
mismatched category. The NNT was obtained by subtracting the remission rate in the CRP-
mismatched assignment (30.9%) from the remission rate in the CRP-matched assignment (53.1%) and 
dividing the aforementioned difference by 100. 

8. Anti-Inflammatory Drugs as Novel Antidepressants 

While personalizing the prescription of currently available antidepressant medications can 
improve clinical outcomes for over half the patients with MDD in 12 weeks [86], novel 
antidepressants are still needed for those patients with TRD. The potential antidepressant effect of 
anti-inflammatory drugs is suggested by the efficacy of NSAIDs, specifically celecoxib, as an 
adjunctive treatment in patients with MDD [96]. Anti-cytokine treatments have emerged as 
candidates for novel antidepressants. They offer the potential to specifically target inflammatory 
pathways that have been implicated in the pathophysiology of depression. In the first study of its 
kind, Raison et al. recruited 60 TRD patients with no history of systemic inflammatory disorders and 
randomized them to either placebo or infliximab, a monoclonal antibody against TNF-α. While there 
was no overall difference between infliximab and placebo, in post hoc analyses they found that in a 
subgroup of TRD patients with CRP ≥ 5 mg/L, infliximab was superior to the placebo in the 
improvement of depressive symptom severity [97]. Husain et al. recently found a significant 
antidepressant effect in a meta-analysis of anti-inflammatory agents (including adjunctive NSAIDs, 
infliximab, and minocycline) in patients with MDD [98]. In another recent meta-analysis, 
Kappelmann et al. reported significant improvement in depressive symptoms with anti-cytokine 
treatments in patients with chronic inflammatory conditions [99]. While agents against TNF-α have 
been studied most often, humanized monoclonal antibody against IL-6 has also been shown to be 
effective in reduction of depressive symptoms [100]. Two recent reports have also raised the 
antidepressant potential of monoclonal antibodies targeting IL-17-mediated immune response. 
Specifically, a phase 3 trial of brodalumab, a monoclonal antibody against the IL-17 receptor, 
evaluated its effect on depressive symptoms in psoriasis patients who had moderate/severe 
depression at baseline (n = 106). The rates of symptomatic remission (improved to normal on the 
hospital anxiety and depression rating scale) were significantly higher (p < 0.05) with brodalumab 
140mg q2week (47%) and 210 mg q2week (43%) as compared to the placebo (9%) [101]. Notably, 
improvement in psoriasis symptoms did not completely account for the improvements in depressive 
symptom severity. A similar improvement in depression has also been reported with ixekizumab, a 

Figure 1. Superiority of CRP-matched treatment assignment to SSRI monotherapy of combination
of bupropion and SSRI. CRP is c-reactive protein, CO-MED is Combining Medications to Enhance
Depression Outcomes, SSRI is selective serotonin reuptake inhibitor. This figure is based on the
findings reported by Jha et al. [92]. CRP-matched treatment assignment refers to participants
who received escitalopram only and had CRP < 1 mg/L received escitalopram whereas those
with CRP ≥ 1 mg/L received bupropion-SSRI combination. The rest of the participants were grouped
in the CRP-mismatched category. The NNT was obtained by subtracting the remission rate in the
CRP-mismatched assignment (30.9%) from the remission rate in the CRP-matched assignment (53.1%)
and dividing the aforementioned difference by 100.

8. Anti-Inflammatory Drugs as Novel Antidepressants

While personalizing the prescription of currently available antidepressant medications can
improve clinical outcomes for over half the patients with MDD in 12 weeks [86], novel antidepressants
are still needed for those patients with TRD. The potential antidepressant effect of anti-inflammatory
drugs is suggested by the efficacy of NSAIDs, specifically celecoxib, as an adjunctive treatment
in patients with MDD [96]. Anti-cytokine treatments have emerged as candidates for novel
antidepressants. They offer the potential to specifically target inflammatory pathways that have
been implicated in the pathophysiology of depression. In the first study of its kind, Raison et al.
recruited 60 TRD patients with no history of systemic inflammatory disorders and randomized them
to either placebo or infliximab, a monoclonal antibody against TNF-α. While there was no overall
difference between infliximab and placebo, in post hoc analyses they found that in a subgroup of
TRD patients with CRP ≥ 5 mg/L, infliximab was superior to the placebo in the improvement
of depressive symptom severity [97]. Husain et al. recently found a significant antidepressant
effect in a meta-analysis of anti-inflammatory agents (including adjunctive NSAIDs, infliximab,
and minocycline) in patients with MDD [98]. In another recent meta-analysis, Kappelmann et al.
reported significant improvement in depressive symptoms with anti-cytokine treatments in patients
with chronic inflammatory conditions [99]. While agents against TNF-α have been studied most
often, humanized monoclonal antibody against IL-6 has also been shown to be effective in reduction
of depressive symptoms [100]. Two recent reports have also raised the antidepressant potential of
monoclonal antibodies targeting IL-17-mediated immune response. Specifically, a phase 3 trial of
brodalumab, a monoclonal antibody against the IL-17 receptor, evaluated its effect on depressive
symptoms in psoriasis patients who had moderate/severe depression at baseline (n = 106). The rates
of symptomatic remission (improved to normal on the hospital anxiety and depression rating scale)
were significantly higher (p < 0.05) with brodalumab 140mg q2week (47%) and 210 mg q2week
(43%) as compared to the placebo (9%) [101]. Notably, improvement in psoriasis symptoms did not
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completely account for the improvements in depressive symptom severity. A similar improvement in
depression has also been reported with ixekizumab, a monoclonal antibody against IL-17. In a recent
report based on three double-blind randomized controlled phase 3 trials, Griffiths et al. reported on
psoriasis patients with moderate or severe depression severity (n = 320), defined as scores ≥ 11 on
the Quick Inventory of Depressive Symptomatology Self-Report [102]. Remission rates after 12 weeks
of ixekizumab treatment at 80 mg every 4 weeks and 80 mg every 2 weeks were 33.6% and 45.2%,
i.e., significantly higher (p < 0.01) than the remission rate of 17.8% with placebo [102]. However,
these anti-IL-17 treatments have not been studied in depressed patients without autoimmune diseases.
Non-targeted treatment with anti-cytokine treatment in depressed patients carries substantial risk.
Further caution with the use of anti-IL-17 treatment is warranted due to reports of 2 completed suicides
during phase 3 trials of brodalumab [103–105].

9. Future Directions

Future studies are needed to test the superiority of inflammatory marker-based antidepressant
prescription relative to the current practice of clinical decision-making. A CRP-matched treatment
assignment offers the most pragmatic choice in this regard [106]. In individual patients, CRP levels
are unaffected by time of the day or meal intake, varies little year-to-year in the absence of
acute events, and can be measured inexpensively through commercial laboratories [38,107,108].
In fact, CRP levels can now be measured with a fingerstick to provide clinically-actionable
information in a primary care setting [109,110]. Real-world clinical trials are needed to test if
implementing a CRP level-based treatment assignment results in higher rates of remission as
compared to high-quality measurement-based care. Further work is also needed to identify the
pathophysiological mechanism which underlies the differential treatment responses seen with
serotonergic versus non-serotonergic antidepressants. Finally, these findings have opened the potential
to guide the selection of dopaminergic drugs in the treatment of depression—an exciting potential,
especially for treatment-resistant depressed patients who have failed to respond to currently FDA
approved antidepressants.

In the search for novel antidepressants targeting inflammation, Figure 2 presents a theoretical
framework. In the subset of depressed patients who exhibit elevated inflammatory cytokines, such as
IL-6, IL-17, and TNF-α, targeted use of monoclonal antibodies against these cytokines can result in
reduced anhedonia and overall depression severity. A major limitation of this approach is the lack of
tests for these cytokines through commercial CLIA certified labs. However, it is noteworthy that an
ongoing phase 2 clinical trial is testing the efficacy of augmentation with sirukumab, a monoclonal
antibody against IL-6, in depressed patients with CRP levels ≥ 3 mg/L (NCT02473289) and in TRD
patients who have failed to respond to at least one but no more than three adequate antidepressant
treatments during their current episode of depression.

A parallel approach, as outlined by Remus et al., targets transport of kynurenine at the BBB
to reduce the effect of peripheral inflammation on the central nervous system. This approach is
based on the earlier work by Dantzer et al., which showed that peripheral inflammation leads to the
induction of IDO, which in turn diverts tryptophan away from the synthesis of serotonin to that of
kynurenine [65]. Kynurenine, in turn, is taken up the LAT-1 present on the BBB and converted to
quinolinic acid in microglial cells by the induction of KMO. As L-leucine, an essential amino acid is also
a substrate for the LAT-1 transporter, harmful effects of peripheral inflammation can be mitigated by
oral administration of L-leucine. A pilot double-blind placebo-controlled study is currently underway
to test this hypothesis (NCT03079297).
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Figure 2. Theoretical framework for developing novel antidepressants by targeting inflammatory 
pathways. Two distinct pharmacologic interventions with the potential to reduce depressive 
symptom severity. In the first pathway, activation of indoleamine oxygenase (IDO) results in 
increased levels of kynurenine, which is taken up by LAT-1 transporters and converted to Quinolinic 
acid by microglial cells. This results in glutamatergic excitotoxicity and depressive symptoms. 
Blockade of the LAT-1 transporter by a pharmacologic agent can disrupt this cascade and reduce 
depressive symptoms and mitigate central nervous system (CNS) effects of peripheral inflammation. 
Similarly, anti-cytokine treatments may be effective in depressed patients with elevated levels of 
inflammatory cytokines (interleukin 6 or IL-6, interleukin 17 or IL-17, and tumor necrosis factor alpha 
or TNF-α), which result in blood-brain barrier (BBB) dysfunction. 

10. Conclusions 

Due to the poor outcomes of depressed patients in clinical practice, there is a pressing need to 
identify newer treatments and better strategies to personalize currently available antidepressant 
treatments. In the search for biomarkers to personalize antidepressant medication selection, 
inflammatory biomarkers, such as CRP, have emerged as a robust and pragmatic option. However, 
as over a third of patients with MDD are resistant to currently available medications, novel 
antidepressants that target the pathophysiology underlying depression are also needed. Anti-
cytokine treatments have emerged as potentially selective agents to target proinflammatory cytokines 
in those patients with markers of systemic inflammation. Additional strategies include targeting of 
the BBB to mitigate the CNS effects of peripheral inflammation. In conclusion, inflammatory markers 
present clinically useful targets for both personalizing antidepressant prescription and for identifying 
novel antidepressants. 
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Figure 2. Theoretical framework for developing novel antidepressants by targeting inflammatory
pathways. Two distinct pharmacologic interventions with the potential to reduce depressive symptom
severity. In the first pathway, activation of indoleamine oxygenase (IDO) results in increased levels of
kynurenine, which is taken up by LAT-1 transporters and converted to Quinolinic acid by microglial
cells. This results in glutamatergic excitotoxicity and depressive symptoms. Blockade of the LAT-1
transporter by a pharmacologic agent can disrupt this cascade and reduce depressive symptoms and
mitigate central nervous system (CNS) effects of peripheral inflammation. Similarly, anti-cytokine
treatments may be effective in depressed patients with elevated levels of inflammatory cytokines
(interleukin 6 or IL-6, interleukin 17 or IL-17, and tumor necrosis factor alpha or TNF-α), which result
in blood-brain barrier (BBB) dysfunction.

10. Conclusions

Due to the poor outcomes of depressed patients in clinical practice, there is a pressing need
to identify newer treatments and better strategies to personalize currently available antidepressant
treatments. In the search for biomarkers to personalize antidepressant medication selection, inflammatory
biomarkers, such as CRP, have emerged as a robust and pragmatic option. However, as over a third of
patients with MDD are resistant to currently available medications, novel antidepressants that target
the pathophysiology underlying depression are also needed. Anti-cytokine treatments have emerged
as potentially selective agents to target proinflammatory cytokines in those patients with markers of
systemic inflammation. Additional strategies include targeting of the BBB to mitigate the CNS effects of
peripheral inflammation. In conclusion, inflammatory markers present clinically useful targets for both
personalizing antidepressant prescription and for identifying novel antidepressants.
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