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A major clinical challenge in adolescent idiopathic scoliosis (AIS) is the difficulty of
predicting curve progression at initial presentation. The early detection of progressive
curves can offer the opportunity to better target effective non-operative treatments,
reducing the need for surgery and the risks of related complications. Predictive models
for the detection of scoliosis progression in subjects before growth spurt have been
developed. These models accounted for geometrical parameters of the global spine and
local descriptors of the scoliotic curve, but neglected contributions from biomechanical
measurements such as trunk muscle activation and intervertebral loading, which could
provide advantageous information. The present study exploits a musculoskeletal model of
the thoracolumbar spine, developed in AnyBody software and adapted and validated for
the subject-specific characterization of mild scoliosis. A dataset of 100 AIS subjects with
mild scoliosis and in pre-pubertal age at first examination, and recognized as stable (60) or
progressive (40) after at least 6-months follow-up period was exploited. Anthropometrical
data and geometrical parameters of the spine at first examination, as well as biomechanical
parameters from musculoskeletal simulation replicating relaxed upright posture were
accounted for as predictors of the scoliosis progression. Predicted height and weight
were used for model scaling because not available in the original dataset. Robust
procedure for obtaining such parameters from radiographic images was developed by
exploiting a comparable dataset with real values. Six predictive modelling approaches
based on different algorithms for the binary classification of stable and progressive cases
were compared. The best fitting approaches were exploited to evaluate the effect of
accounting for the biomechanical parameters on the prediction of scoliosis progression.
The performance of two sets of predictors was compared: accounting for
anthropometrical and geometrical parameters only; considering in addition the
biomechanical ones. Median accuracy of the best fitting algorithms ranged from 0.76
to 0.78. No differences were found in the classification performance by including or
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neglecting the biomechanical parameters. Median sensitivity was 0.75, and that of
specificity ranged from 0.75 to 0.83. In conclusion, accounting for biomechanical
measures did not enhance the prediction of curve progression, thus not supporting a
potential clinical application at this stage.
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INTRODUCTION

Adolescent idiopathic scoliosis (AIS) is a three-dimensional
deformity of the spine occurring in the general population with
prevalence between 2 and 3%. It begins at the time of the pubertal
growth spurt and its cause is unclear (Weinstein et al., 2008; Nnadi
and Fairbank, 2010). Approximately 10% of the diagnosed cases
require conservative treatment and 0.1–0.3% operative correction
(Negrini et al., 2018). A major clinical challenge is the difficulty of
predicting curve progression at the initial presentation. The early
detection of progressive curves can indeed offer the opportunity to
better target effective non-operative treatments, reducing the need for
surgery and the risks of related complications (Donzelli et al., 2020).
The failure to accurately predict the risk of progression can lead to
non-optimal treatment either by precluding timely, appropriate and
efficient management or by generating unnecessary medical visits
and radiographs. Moreover, uncertainty regarding curve progression
and outcome can create anxiety in families and patients as well as
unnecessary psychosocial stress associated with brace treatment
(Weinstein et al., 2008).

Historically, curve magnitude, skeletal maturation and
chronological age were considered as relevant risk factors of curve
progression (Peterson and Nachemson, 1995; Kohashi et al., 1996;
Lonstein and Carlson, 1984; Sanders et al., 2008; Noshchenko et al.,
2015).Moreover, it was suggested that the three-dimensional shape of
the scoliotic curve could be indicative of progression risk (Perdriolle
and Vidal, 1981). Recently, predictive models for the early detection
of the progression of scoliosis in subjects before growth spurt have
been developed. Skalli et al. have proposed a severity index for
classifying scoliosis as “stable” or “progressive” in subjects with
mild scoliosis (Skalli et al., 2017; Vergari et al., 2019), the
validation of which has been recently extended in a multicentric
cohort of subjects (Vergari et al., 2021). The application requires the
subjects to undergo radiographic examination by the EOS Imaging
system (EOS Imaging, Paris, France), providing the simultaneous
acquisition of the coronal and sagittal anatomical planes and allowing
for the geometrical 3D reconstruction of the spine (Illes and
Somoskeoy, 2012; Somoskeoy et al., 2012). Differently, Nault et al.
evaluated mild andmoderate cases and tried to predict the severity of
scoliosis at full skeletal maturity (Nault et al., 2020). In both studies,
the predictive models accounted for geometrical parameters
describing the global spine, regional segments (scoliotic curve), or
local descriptors of the curve (apex, cranial and caudal vertebrae), but
neglected potential contributions from biomechanical measures.

In this regard, biomechanical parameters such as trunk muscle
activation and intervertebral loading could provide additional
advantageous information (Bassani et al., 2017; Schmid et al.,
2020). Although not measurable in vivo due to the invasiveness of
the procedures, such parameters can be obtained by numerical

simulation based on musculoskeletal modelling approach, which
allows for calculating the biomechanical loads in assigned
kinematic conditions by means of inverse dynamic analysis
(Dreischarf et al., 2016; Bassani and Galbusera, 2018). The
present study exploits a thoracolumbar spine model with
articulated ribcage, developed in AnyBody software (AnyBody
Technology, Denmark) (Ignasiak et al., 2016a; Ignasiak et al.,
2016b), and recently adapted and validated by our group for the
subject-specific characterization of the scoliotic spine in mild
severity cases (Barba et al., 2021). An existing dataset of 100 AIS
subjects with mild scoliosis and in pre-pubertal age at first
examination (acquired by EOS system), and recognized as
stable or progressive after at least 6-months follow-up period
is exploited. Anthropometrical data and geometrical parameters
of the spine, as well as biomechanical parameters from
musculoskeletal modelling, are accounted for as predictors of
the progression of scoliosis. Six predictive modelling approaches
based on different algorithms for the binary classification of stable
and progressive cases are compared to find the best fitting ones.
The identified models are exploited to evaluate the effect of
accounting for the biomechanical parameters on the prediction
of scoliosis progression. The classification performance between
two sets of predictors is compared: accounting for
anthropometrical and geometrical parameters, and considering
in addition the biomechanical ones.

MATERIALS AND METHODS

The workflow of the study accounted for three consecutive steps
(Figure 1): i) identification of the dataset of subjects and
extraction of anthropometrical parameters; ii) computation of
geometrical and biomechanical parameters; iii) evaluation of the
effect of accounting for the biomechanical parameters on the
prediction of the scoliosis progression.

Step i)
A retrospective search of the Picture Archiving and
Communication System (PACS) of the IRCCS Istituto
Ortopedico Galeazzi (Milan, Italy) was performed on
anonymized data acquired in the period 2014–2020. Subjects
with the following criteria were included: age ranging from 10 to
18 years; at least two radiographic examinations of the spine and
pelvis acquired with the EOS system. Subjects with vertebral
deformities or underwent operative correction were excluded, as
well as those presenting non-standard position in biplanar
radiography. The Cobb angle, quantifying the severity of
scoliosis in the coronal plane, and the Risser sign, determining
the skeletal maturity as state of ossification and fusion of the iliac
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apophysis, by integer values ranging from 0 to 5 (Risser, 2010),
were manually measured on the radiographic images under the
supervision of an experienced spine surgeon. Subjects in the early
adolescence (Risser sign ranging from 0 to 2) with mild scoliosis
(Cobb angle ranging from 10 to 25) at first examination, and
identified after at least 6-months follow-up period as “stable”
(Risser>2, increase in Cobb angle <10 ) or “progressive” (Risser
0–2, increase in Cobb angle >10) were selected. According to that,
a dataset of 100 subjects (60 stable and 40 progressive cases,
respectively) was obtained. Age, sex, and Risser sign at first
examination were accounted for as anthropometrical parameters.

Step ii)
Geometrical Parameters
The radiographic images acquired at first examination (in
orthostatic position with arms raised and fingertips on
cheekbones) were processed by a trained operator with
sterEOS software, allowing for the reconstruction of the 3D
orientations of the thoracolumbar vertebrae (from T1 to L5)
and the pelvis in the anatomical planes, as well as for the
identification of the scoliotic curves, characterized by Cobb
angle larger than 10 (Figures 2A,B) (Illes and Somoskeoy,
2012; Somoskeoy et al., 2012; Melhem et al., 2016). The
following geometrical parameters were obtained: thoracic

kyphosis (TK) from T1 to T12, lumbar lordosis (LL) from L1
to S1, sacral slope (SS), pelvic incidence (PI), number of scoliotic
curves, Cobb angle of the most severe curve, curve sagittal angle
(measuring the relative angle between the upper and lower end
vertebrae in the sagittal plane), and largest vertebral axial rotation
inside the curve. The type of scoliosis was determined as well
according to the Lenke scheme, which classifies the deformity
into six different types depending on the location and number of
curves (Lenke et al., 2001). In total, nine geometrical parameters
were accounted for.

Biomechanical Parameters
The procedure for replicating the subject-specific spinal
alignment with the AnyBody musculoskeletal model (Figures
2C,D), including the rearrangement of ribs and sternum,
positioning of the vertebral centers of mass, preservation of
the abdominal muscle structure, setting of the trunk muscle
parameters, simulation of the load of the raised arms, and
muscle co-activation in maintaining the upright posture, is
reported in detail in (Barba et al., 2021). In brief, the pelvis is
constrained to the ground and rigidly connected to the sacrum.
The spinal alignment is replicated by setting the orientation of the
sacrum in the sagittal plane and the rotation of the intervertebral
spherical joints from T1 to L5, according to the vertebral

FIGURE 1 | Workflow of the study. Consecutive steps from top to bottom row: i) identification of the subjects dataset and extraction of the anthropometrical
parameters; ii) computation of the geometrical and biomechanical parameters; iii) evaluation of the effect of accounting for the biomechanical parameters on the
prediction of the scoliosis progression.
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orientations obtained from the geometrical reconstruction. Joint
moments, representing the stiffness-related contribution of
passive elements such as ligaments and facet joints, are
assumed as zero to replicate neutral upright position. The
physiological cross-section area of the trunk muscles is scaled
according to reference values acquired in adolescent subjects and
depending on age (Been et al., 2018). As regards the scaling of the
body model, weight and height were predicted by exploiting
linear regression models taking into account anthropometrical
and geometrical parameters manually measured on the
radiographic images (see Appendix section), since real data
were not recorded together with the images in the PACS.
These models were trained by another available dataset of 85
AIS subjects with comparable age range and scoliosis severity and
known weight and height data, evaluated by our group in a
previous study (Bassani et al., 2019). The predicted values were
exploited to scale the body model by default length-mass-fat
approach. Inverse static analysis was run to calculate muscle
activation and intervertebral reaction force (F) in the assigned
standing posture. The activity of each muscle fascicle ranged
between 0 and 1, obtained by dividing the muscle force by the
maximum force generating capacity (set as the product of the
cross-section area and the assumed uniform muscle stress, 90 N/
cm 2). The asymmetry of erector spinae (ES) and multifidus (MF)
muscle activity, between the convex and concave side of the
scoliotic curve, was calculated by the normalized activity ratio
(nES, and nMF) at each vertebral level inside the curve. As
explained in detail in (Barba et al., 2021), this parameter is
calculated by accounting for the sum of the activations of the
individual fascicles crossing the respective vertebral mid-plane. It
measures the (convex − concave)/(convex + concave) activity at
specific vertebral level, providing values near zero in

correspondence of balanced activation, and positive and
negative values (ranging from 0 to ±1) in case of larger
activation in the convex and concave side, respectively. As
regards F, the absolute value of the intervertebral lateral shear
(Flat), expressed in the local coordinate system of the vertebra
(Figure 2E), was taken into account since expected as the most
affected by lateral deviations of the spine in the coronal plane
which characterize scoliosis. The following eleven biomechanical
parameters were accounted for: Flat, nES, and nMF calculated at
apex, upper and lower end levels of the scoliotic curve
(Figure 2E), and nES and nMF along the whole curve,
obtained by summing the contributions at all levels (from
upper to lower end) in the convex and concave side. The
setting steps and the simulations were run in batch process
using custom routines written in MATLAB (MathWorks Inc.,
Natick, MA, United States), as well as the procedures for
predictive modelling and statistical analysis reported in the
next sections.

Step iii)
Two sets of predictors for the binary classification of stable and
progressive cases were defined. The “reduced” model accounted
for 12 predictors: three anthropometrical and nine geometrical
parameters (Figure 1, middle row). The “full” model accounted
for the reduced set and for eleven biomechanical parameters in
addition (23 predictors in total). Two consecutive processing
phases were arranged: ‘pre-selection’ of the best classification
approaches, and ‘comparison’ between the reduced and full
model by exploiting the selected approaches (Figure 1, bottom
row). Specifically, in the pre-selection phase six different
algorithms for the binary classification of stable and
progressive subjects were evaluated to find the best fitting

FIGURE 2 | Coronal and sagittal radiographic images of one stable subject, with projection of the reconstructed vertebrae and illustration of Cobb angle, spinal
sagittal alignment (TK, LL) and spinopelvic angles (SS, PI) (A,B); and corresponding musculoskeletal model (C,D), also presented highlighting the scoliotic curve (apex,
upper and lower end levels) with muscles and ribcage not shown, and the local vertebral reference system, i.e., anteroposterior (ap), lateral (lat), and axial (ax)
component (E).
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approaches, both in case of reduced and full model (Figure 3).
Support vector machine (SVM), predictive discriminant analysis
(PDA), naive Bayes classifier (BAY), decision tree (DET),
k-nearest neighbors (KNN), and ensemble method (ENS) were
considered (Scholz and Wimmer, 2021; Galbusera et al., 2019;
Minasny, 2009; Harper, 2005). Preliminary tuning of the
hyperparameters was performed (Table1). Features selection
procedures, such as principal component analysis or
assessment of the correlation between parameters and binary
classification, were not applied because the comparison was
specifically aimed to evaluate the effect of accounting for the
whole sets of available measures. Data were processed in their
original format, avoiding standardization, because found as
generally providing slightly larger accuracy levels (i.e., the
percentage of correct predictions). Sex and Lenke type were
converted into dummy variables because characterized by
categorical values. The model accuracy was evaluated for each
classification algorithm according to repeated cross-validation
approach, by performing 10 repetitions of 4-fold cross-validation
procedure (Vanwinckelen and Blockeel, 2012). This approach is

appropriate for small to modestly-sized datasets and simple linear
models, to reduce the noise in the estimated performance (Kuhn
and Kjell 2013). In each repetition, the original dataset (100
samples) was shuffled and split into four non-overlapping folds
with 25 randomly assigned samples each, preserving the original
proportion of stable and progressive cases (15 (60%) and 10
(40%), respectively). Three folds at a time were used as training-
set to identify the model parameters (same set for all the
approaches and predictors set), and the fourth fold was
exploited to compute the model accuracy. In total, the
procedure provided forty values of accuracy for each evaluated
model. The best fitting approaches were identified as those
providing the largest average (or median) accuracy level, and
were then used in the subsequent phase.In the comparison phase,
the effect of accounting for the biomechanical parameters on the
prediction of the scoliosis progression was evaluated by
comparing the classification performance between the reduced
and full model. The original dataset was randomly split into
training-set and test-set (80 and 20% of total samples,
respectively, preserving the original proportion of stable and

FIGURE 3 | Step iii) in detail. Diagram illustrating the pre-selection phase, providing the identification of the best fitting algorithms; and the comparison phase,
providing the evaluation of the classification performance between the reduced and full model.

TABLE 1 | Hyperparameters of the classification algorithms, with tested values (range and options) and best choice (providing the largest accuracy, and used in the study)
reported underlined.

Hyperparameters

SVM box constraint: 1–100 (10); kernel-function: linear, Gaussian, polynomial (2–4 order), sigmoid (with gamma: 0.0001–10, and
c: 0.1–100)

PDA discriminant type: linear, quadratic; gamma: 0–1 (0.6)
BAY numerical predictors distribution: normal, kernel; kernel options: normal, box, epanechnikov, triangle
DET max number of splits: 1–10 (4); split criterion: Gini’s diversity index, twoing, deviance; prune: on, off
KNN distance metric: euclidean, cityblock, chebychev, minkowski; distance weight: equal, inverse, squaredinverse; nearest

neighbours: 1–10 (7)
ENS method: subspace, adaBoostM1, logitBoost, gentleBoost, RUSBoost, bag; ensemble learning cycles: 10–100 (30); weak

learner: discriminant, KNN, tree
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progressive cases). The training-set was used to identify the
models parameters (same set for each best-fitting approach
and predictors set). The test-set was exploited to compute the
performance of the trained models in correctly identifying the
progressive and stable subjects (i.e., sensitivity and specificity of
the prediction, respectively). The procedure was iterated
100 times and the average (or median) value between the
reduced and full model was compared for each approach. As
regards the importance of the individual predictors in
determining correct classification, it is worth noting that the
considered approaches are not based on modelling a direct
relationship between the predictors and the binary outcome,
but on finding an optimal solution by mixing information
from the whole set of predictors. In general, it is thus not
possible to use the estimated coefficients of the models to
analyze the importance of the predictors. However, an
exception is represented by DET approach. In this case, the
importance of each predictor can be estimated by summing
changes in the mean squared error due to splits on every
predictor and dividing the sum by the number of branch
nodes (Breiman, 2001). The estimation provides a positive
score, which is equal to zero in case of no impact, and
exhibits larger value for larger importance of the predictor.

Statistical Analysis
As regards the anthropometrical, geometrical, and biomechanical
parameters, the significance of the difference between stable and
progressive cases was compared by unpaired t-test (or Wilcoxon
rank sum test in case of non-normal distribution) if comparing
numerical values, and chi-squared test (or Fisher exact test where
necessary) in case of proportions. As regards the classification
performance, in the majority of cases the distribution of the
accuracy values (evaluated in the pre-selection phase), and those
of sensitivity and specificity (comparison phase) was found to be
non-normal. According to that, the difference in the median
value of accuracy among the classification algorithms was tested
by Kruskal-Wallis test (separately for reduced and full model)
followed by post-hoc pairwise comparisons with Tukey-Kramer
approach in case of overall significance (Bassani and Galbusera,
2020). In the comparison phase, the difference in the median
value of sensitivity and specificity, between the reduced and full
model, was tested according to Wilcoxon rank sum test for each
considered algorithm. The strength of the relation between the
geometrical and biomechanical parameters was evaluated by
Pearson correlation coefficient or Spearman rank in case of
non-normal distribution. The significance of the coefficients in
being statistically different from zero was tested according to two-
tailed t test or permutation distribution test, respectively. All the
tests assumed 0.05 as significance level.

RESULTS

Subjects Parameters From Step i) and ii)
Overall, the comparison of the average values between
progressive and stable subjects pointed out slight or rather
moderate differences (Table2). Age was significantly lower in

the progressive cases compared to stable ones (11.5 and 13.2,
p < 0.001), as well as Risser sign (0.2 and 1.1, p < 0.001). No
significant differences were exhibited for sex and the other
geometrical parameters, except for the curve sagittal angle (16.4
and 22.1, p � 0.04). As regards the biomechanical parameters, Flat
was found significantly lower in the progressive cases at curve apex
(14.2 and 26.4, p < 0.01), and at upper end (35.0 and 57.8, p < 0.01)
and lower end (46.3 and 37.9, p � 0.048) levels, whereas no
significant differences were recognized for nES and nMF muscle
activity, which exhibited slightly positive values overall (ranging
from 0.02 to 0.14). An example of the distribution of the
intersegmental load F, and of nES, nMF, and Flat, computed for
a stable subject along the whole spine, is reported (Figure 4).

Classification Performance From Step iii)
In the pre-selection phase, the median accuracy of the reduced
model was found significantly larger for PDA, BAY and ENS
(0.76, 0.78 and 0.76, respectively) compared to SVM (0.68), DET
(0.72), and KNN (0.70) (Figure 5A and Table3). Similar findings
were observed with the full model: median accuracy of PDA, BAY
and ENS equal to 0.72, 0.80, and 70.6, respectively, and lower
values for SVM (0.64), DET (0.68), and KNN (0.64) (Figure 5A
and Table3). Overall, the interquartile range (i.e., the difference
between 75th and 25th percentiles) was similar among the
considered conditions, with values ranging from 0.08 to 0.14.
An example illustrating the ability in classifying true and false
progressive cases, depicted by means of ROC curve, is reported
for the reduced and full model (Figures 5B,C). The curves,
obtained by processing a single selection of training- and test-
set within a 4-folds split, pointed out larger values of the area
under curve for PDA, BAY and ENS (ranging from 0.85 to 0.93)
compared to SVM, DET, and KNN (ranging from 0.55 to 0.82).
According to that, PDA, BAY and ENS algorithms were chosen as
the best fitting approaches. In the comparison phase, no
differences were found for sensitivity and specificity between
the reduced and full model in each selected approach (Figure 6).
As regards sensitivity, the same median value (0.75) was pointed
out by PDA, BAY, and ENS, with larger interquartile range for
ENS (0.25) compared to PDA and BAY (0.13). As regards
specificity, the median value was significantly larger for ENS
compared to PDA and BAY (0.83 and 0.75, p < 0.05), with similar
interquartile range (0.16). The correlation coefficient between
geometrical and biomechanical parameters was weak overall
(lower than 0.3, Table4), and strong relationship (larger than
0.5) was found only between Cobb angle and Flat at upper and
lower end levels. As regards the importance of the predictors, that
of chronological age, Risser sign, curve sagittal angle and Flat at
upper and lower end levels was larger compared to the other
parameters (Figure 7).

DISCUSSION

The present study evaluated subjects with mild scoliosis at first
examination and recognized as stable or progressive after at least
6-months follow-up period. Anthropometrical, geometrical and
biomechanical parameters at first examination were extracted,
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and the effect of accounting for the biomechanical measures on
the prediction of the scoliosis progression was assessed.

As regard the subjects’ parameters, chronological age and
skeletal maturation (Risser sign) were significantly lower in the
progressive cases (Table2), confirming to be relevant risk factors
of curve progression (Lonstein and Carlson, 1984; Sanders et al.,
2008; Noshchenko et al., 2015) and indicating that the earlier is
the onset of scoliosis the higher is the probability that the
deformity will increase. According to that, these factors are

evaluated by clinicians as essential indicators for the choice of
conservative treatment by bracing (Negrini et al., 2018).
Differently, the number of curves and the type of scoliosis
(Lenke type) were found as not indicative of the risk of
progression, as well as the three-dimensional shape of the
primary scoliotic curve. In this regard, Cobb angle, curve
sagittal angle, and largest axial rotation were similar overall,
although the progressive cases exhibited slightly lower values,
indicating a more flat spine in the scoliotic segment. However, the

TABLE 2 | values of anthropometrical and geometrical parameters, and of biomechanical parameters, expressed as mean (SD) or number of cases, for stable and
progressive subjects.

Anthropometrical and geometrical parameters Biomechanical parameters

Stable Progressive Stable Progressive

age [years] 13.2 (1.1) 11.5 (1.3)a Flat upper [N] 57.8 (41.2) 35.0 (21.4) a

sex [number of F/M subjects] 36/24 31/9 Flat apex [N] 26.4 (22.2) 14.2 (11.6) a

Risser sign 1.1 (0.9) 0.2 (0.5)a Flat lower [N] 46.3 (23.4) 37.9 (20.2) a

TK [°] 44.0 (13.4) 41.4 (11.5) nES upper 0.11 (0.22) 0.09 (0.19)
LL [°] 59.2 (9.8) 58.5 (9.9) nES apex 0.12 (0.21) 0.1 (0.2)
SS [°] 39.6 (7.3) 39.6 (5.4) nES lower 0.06 (0.19) 0.06 (0.18)
PI [°] 47.8 (7.8) 46.9 (7.5) nMF upper 0 (0.19) 0.02 (0.11)
number of scoliotic curves 1.7 (0.6) 1.6 (0.5) nMF apex 0.2 (0.29) 0.14 (0.22)
Cobb angle [°] 18.9 (6.1) 15.9 (5.1) nMF lower 0.04 (0.25) −0.03 (0.25)
curve sagittal angle [°] 22.1 (14.7) 16.4 (11.7)a nES curve 0.11 (0.2) 0.08 (0.19)
largest axial rotation [°] 9.9 (5.6) 8.3 (5.0) nMF curve 0.11 (0.22) 0.07 (0.18)
Lenke type [cases of type 1/2/3/4/5/6] 11/2/10/4/14/19 13/0/9/0/5/13 — — —

aIndicates significant difference between stable and progressive group.

FIGURE 4 | Example of the biomechanical outcomes computed by inverse static analysis for the subject depicted in Figure 2. Intersegmental force vector, F (A,B);
normalized activity ratio of multifidus and erector spinae (nMF and nES) muscle (C); absolute value of the lateral shear, Flat (D).
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sagittal and the spinopelvic alignment (TK, LL, SS, and PI) were
very similar between the groups, confirming that the risk of curve
progression cannot be associated a priori with changes in the
geometrical parameters at the onset. As regards the
biomechanical parameters, the lateral component of the
intervertebral load (Flat) was generally lower in the progressive
group at each considered level of the scoliotic curve (apex, and
upper and lower end). This finding is in relation with the lower

Cobb angle found for the progressive subjects compared to the
stable ones (nearly significant difference, p � 0.06), and is in
agreement with that recently observed by our group in a previous
study (Barba et al., 2021). That study exploited the same
musculoskeletal model to evaluate mild, moderate and severe
subjects, and revealed Flat as strongly correlated with scoliosis
severity. In particular, the intervertebral force vector tends to be
vertically oriented in the coronal plane despite the presence of
deformity (see Figure 4A), whereas it is orthogonal to the
vertebral upper endplate in the sagittal plane (Figure 4B).
Larger deformity provides larger vertebral rotation in the
coronal plane at upper and lower end levels of the scoliotic
curve (Figure 2E), which results into larger contribution of
the transferred load relatively to the lateral axis in the
vertebral reference system (Figure 2E, upper right corner). As
concerns the activation of MF and ES muscle, the slightly positive
values (similar between groups) of the normalized activity ratio
indicate a larger activation in the convex side of the scoliotic
curve, in agreement with our previous findings (Barba et al., 2021)
and with other numerical and experimental studies (Schmid et al.,
2020; Cheung et al., 2005; Kwok et al., 2015). Overall, the
biomechanical parameters did not provide a priori information
about the risk of curve progression.

As regards the prediction of the scoliosis progression, the
cross-validation analysis pointed out higher accuracy levels
provided by PDA, BAY and ENS algorithm in the
classification of stable and progressive cases (Figure 5), with
median value ranging from 0.72 to 0.8 (Table3). This result was
confirmed both in case of reduced predictors set (accounting for
anthropometrical and geometrical parameters) and full set
(accounting in addition for the biomechanical ones), revealing
that neglecting or accounting for the biomechanical measure
guaranteed very similar accuracy levels. This finding was
statistically confirmed by comparing the level of sensitivity

FIGURE 5 | Results from the pre-selection phase of step iii). Box and whiskers plot reporting the distribution of the accuracy values obtained by the evaluated
classification algorithm (A); and example of ROC curves calculated by exploiting one selection of training- and test-set of the 4-folds iteration, for reduced and full
model (B,C).

TABLE 3 | Accuracy (median and interquartile range), and statistical significance
(p-value) of the post-hoc comparisons, among the classification algorithms
(pre-selection phase, fig.5) for reduced and full model.

REDUCED MODEL

Accuracy Post-hoc comparisons

PDA BAY DET KNN ENS

SVM 0.68 (0.12) <0.01 <0.001 n.s. <0.01 <0.01
PDA 0.76 (0.08) — n.s. <0.01 <0.001 n.s.
BAY 0.78 (0.10) — — <0.001 <0.001 n.s.
DET 0.72 (0.10) — — — <0.01 <0.001
KNN 0.60 (0.14) — — — — <0.001
ENS 0.76 (0.10) — — — — —

FULL MODEL

Accuracy post-hoc comparisons

PDA BAY DET KNN ENS

SVM 0.64 (0.10) <0.001 <0.001 n.s. n.s. <0.001
PDA 0.72 (0.14) — n.s. <0.05 <0.001 n.s.
BAY 0.80 (0.10) — — <0.001 <0.001 n.s.
DET 0.68 (0.12) — — — n.s. <0.001
KNN 0.64 (0.08) — — — — <0.001
ENS 0.76 (0.08) — — — — —

n.s. indicates not significant p-value.
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and specificity between reduced and full model (Figure 6). The
median values of sensitivity (0.75 for each algorithm) and
specificity (0.75 for PDA and BAY, and 0.83 for ENS) were
equal for the two models. According to that, the results
demonstrated that accounting for the biomechanical
measures was not sufficient for enhancing the prediction of
the scoliosis progression. Such unexpected outcome could be
explained by hypothesizing that in the evaluated conditions
(mild scoliosis and replication of static standing posture), the
information obtained from the musculoskeletal simulation may
reflect those provided by the geometrical reconstruction,
without representing an additional advantageous
contribution. As well as the geometrical parameters, the
biomechanical ones provide indeed information related to
the three anatomical planes, since Flat is calculated in the
local vertebral reference system (Figure 2), and nES and
nMF are computed by summing the activation of the
individual muscle fascicles, the orientation of which depends
on the 3D spinal alignment and the presence of deformity.
However, the weak correlation found in general between the
parameters (Table4), with strong relationship only between

Cobb angle and Flat and depending on the orientation of the
intervertebral force vector as explained above, does not support
the hypothesis of redundancy between geometrical and
biomechanical parameters. As regards the importance of the
individual predictors in correctly classifying the scoliosis
progression, chronological age and Risser confirmed to be
determining (Figure 7). The curve sagittal angle also
demonstrated to have an impact and this is not unexpected,
since it is well recognized that a deformity in the coronal plane
implicates the flattening of the corresponding spine region in
the sagittal plane (Kubat and Ovadia, 2020). The lateral shear at
upper and lower end levels was found important as well, and
can be explained as in relation with the differences in Cobb
angle discussed above. However, the Cobb angle showed lower
importance, suggesting that such analysis should be taken with
caution overall, and that larger datasets should be considered to
better consolidate the results.

In comparison to other studies, the classification performance
was moderately lower: Skalli et al. reported 0.84 and 0.89 for
sensitivity and specificity (Skalli et al., 2017), and Nault at al. 0.75
and 0.94, respectively, (Nault et al., 2020). However, it is

FIGURE 6 | Results of classification performance, from the comparison phase of step iii). Box and whiskers plot reporting the distribution of the sensitivity and
specificity values (A,B) obtained by the best fitting algorithms.

TABLE 4 | Correlation coefficient between geometrical and biomechanical parameters.

Flat nES nMF nES along
curve

nMF along
curveUpper Apex Lower Upper Apex Lower Upper Apex Lower

TK −0.07 0.06 0.07 −0.01 −0.15 −0.03 0.05 −0.25a −0.26a −0.1 −0.2a

LL −0.05 −0.01 0.1 0.01 -0.03 0.1 0.03 −0.24a −0.4a 0.01 −0.22a

SS 0.01 0 0.09 0.15 0.12 0.12 0.01 −0.06 −0.17 0.13 −0.03
PI 0.05 0.02 0.06 0.08 0.13 0.18 0 −0.1 −0.24a 0.13 −0.1
Cobb angle 0.63a 0.29a 0.67a −.01 0.01 0.02 0.12 0.36a 0.11 0.02 0.3a

curve sagittal angle −0.29a −0.05 −0.12 −0.05 −0.09 −0.07 −0.12 −0.12 −0.03 −0.07 −0.1
largest axial rotation 0.27a 0.12 0.53a −0.08 −0.12 −0.04 0.2 0.34a 0.03 −0.12 0.32a

asignificantly different from zero.
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important to note that the results were obtained with different
conditions of modelling strategy, number of evaluated subjects,
and range of the reported results. Specifically, Skalli et al.
exploited an approach based on PDA algorithm, which took
into account six geometrical parameters of the primary scoliotic
curve. The predictive model was trained by two control groups:
non-scoliotic ones (53, stable), and cases with moderate and
severe scoliosis (45, progressive). Another dataset of 65 subjects
with mild scoliosis at first examination was processed by the
model to determine the probability of being classified as stable or
progressive, and then compared with the clinical evaluation in the
follow-up. Nault at al. accounted for geometrical descriptors
(more than twenty) of the global spine and scoliotic curve
(Nault et al., 2014) in a dataset of 172 AIS subjects with mild
and moderate scoliosis at first examination (Cobb angle ranging
from 10 to 40). Their work was specifically devised to identify
determinant predictors of the Cobb angle at final skeletal
maturity. Descriptors found as not satisfactorily correlated
with the measurement of the final Cobb angle were excluded,
and an approach based on generalized linear model with
backward selection was applied to find best predictors and
interactions. The provided values of sensitivity and specificity
were obtained as an example, by predicting those cases with final
Cobb angle larger than 35. Differently from these studies, we
calculated the classification performance in 100 random subsets
of 20 subjects each (as described in Step iii section), and we
compared the median value of sensitivity and specificity, the
extent of which was found ranging from to 0.58 to 0.9 (median ±
interquartile range, Table 3). As regards the evaluated predictors,
we aimed to account for a list of descriptors expected as
potentially related to the progression of scoliosis, avoiding
similar additional parameters providing redundant
information. For example, differently from that performed by
Skalli et al. (2017) and Nault et al. (2020) the torsion index (the

mean of the sum of the intervertebral axial rotations from lower
end to apex and from apex to upper end of the scoliotic curve) was
neglected in the present study. As expected, this index was found
indeed significantly correlated with the largest axial rotation (0.6,
p < 0.001), and the inclusion in the predictors set was verified as
not improving the classification performance. In this respect, the
index exhibited similar values in the stable and progressive group:
7.2 (4.2) and 7.1 (3.7), respectively.

The study has the following limitations. Only the relaxed upright
posture was replicated, neglecting the simulation of more demanding
tasks and motion activities. The development of such simulations
implicates to deal with two major issues: how distributing the spine
motion along the vertebral levels (i.e., the lumbar rhythm); how
imposing the stiffness-related contribution of the passive elements
during movements (joint moments). In this regard, reference data
obtained in vivo or by experimental tests inAIS subjects are lacking in
the literature. At this stage, we thus preferred to limit the simulation
to the upright posture, although expected to provide lower spinal
loads and muscle activities compared to the motion tasks (Dreischarf
et al., 2016). According to that performed in previous similar works
(Schmid et al., 2020; Barba et al., 2021), the evaluation of muscle
activation as predictor of the scoliosis progression was limited to ES
and MF. In this regard, additional groups such as quadratus
lumborum, internal obliques, and latissimus dorsi could be
considered as potential predictors in future developments
simulating the motion of the trunk. No information about
physical therapy or the prescription of bracing treatment in the
period between the first examination and follow-up were available
from the PACS search. The presence of that condition could
represent a relevant factor since it is expected to counteract the
progression of scoliosis, and neglecting such information could
potentially bias the attribution of the subjects to stable or
progressive group. In this regard, Skalli et al. accounted for the
decision of bracing treatment in the clinical follow-up evaluation as a

FIGURE 7 | Predictor importance (expressed in dimensionless units) of the anthropometrical, geometrical and biomechanical parameters, computed for 100
iterations of model training by DET approach. Each iteration accounted for 80 samples randomly chosen in the original dataset.
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criterion for identifying subject as progressive (Skalli et al., 2017).
Conversely, the information was neglected by Nault et al. (2020),
although in a preceding study, which accounted for subjects with
Cobb angle ranging from 10 to 40 at first examination, they found
that bracing treatment was more present in progressive cases
compared to stable ones (58 and 45% of subjects, respectively, p �
0.13) (Nault et al., 2014). However, bracing is usually prescribed if
either of the following two conditions are met: Cobb angle >25 and
significant growth left until skeletal maturity; Cobb angle <25 but
rapidly progressed at the 4–6-months follow-up appointment
(Negrini et al., 2018). The first condition was not met in our
dataset (Cobb angle <25 at first examination as inclusion criteria).
Moreover, the follow-up time (minimum 6-months as inclusion
criteria) was statistically similar between the stable and progressive
group (27 (13) and 25 (12) months, respectively, as mean (SD), p �
0.44), thus reducing the probability of a potential bias. The exploited
dataset accounted for a moderate number of subjects, and larger sets
should be evaluated to refine the classificationmodels and consolidate
the results. As regards the reliability of the biomechanical measures,
structural peculiarities and strengths and limitations of using
musculoskeletal modelling approach for the characterization of the
human spine have been extensively reviewed and discussed
previously (Dreischarf et al., 2016; Dao, 2016; Bassani and
Galbusera, 2018). In the context of the present study, the
exploited body model has been previously validated for the
replication of the spinal alignment in mild scoliosis (Cobb angle
<30) (Barba et al., 2021). A potential limitation is represented by the
scaling of the bodymodel by exploiting predicted values of height and
weight, due to the lack of real data. In this regard, a sensitivity analysis
of model outcomes based on height and weight variation was not
performed. However, the predicted values are expected to be well
representative of the real ones, since low prediction errors were
pointed out by the corresponding predictive models (see Appendix
section). Indeed, the root-mean-square error, quantifying the
goodness-of-fit between real and predicted data, was found to be
equal to 3.9 kg and 4.3 cm for weight and height, respectively. In
conclusion, accounting for biomechanical measures obtained with
musculoskeletal modelling approach, replicating the static standing
posture in subjects with mild scoliosis at first examination did not
enhance the prediction of the scoliosis progression. The classification
performance was found very similar by including or neglecting the
biomechanical parameters, although no redundancy was observed

overall between the geometrical and biomechanical measures.
Therefore, a potential clinical application for the early detection of
the progression of the deformity is not supported at this stage. Future
developments will be aimed to consolidate the results by exploiting
larger datasets of subjects, to obtain relevant information from the
simulation of motion tasks, and to extend the classification
perspective by exploiting multinomial approaches accounting for
additional conditions such as non-scoliotic subjects and severe cases.
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APPENDIX

A procedure for predicting the subject’s weight and height from
anthropometrical data and geometrical parameters measured on
the radiographic images was devised, based on that proposed by
O’Neill et al. (O’Neill et al., 2018), who calculated the body mass
index from the cross-sectional imaging of the abdomen. A dataset
of 85 AIS subjects with known weight and height, underwent
radiographic examination by EOS system and evaluated by our
group in a previous study was exploited (Bassani et al., 2019). The
subjects were checked to be characterized by the same age range
and scoliosis severity (Cobb angle <25) of those evaluated in the
present study (100 AIS subjects, TableA1). The procedure
accounted for the identification of six landmarks (P1-P6,
Figure A1), which were handpicked in sequence on the
radiographic images to provide measurements expected as
strongly related to the subject’s weight and height. The points
from P1 to P4 identified the maximum skin-to-skin
anteroposterior and lateral diameter (DAP and DLAT, Figure
A1) in correspondence of the upper endplate center of the L4
vertebra. The effective diameter, DE, interpreting the diameter of
the cross-sectional area at the considered level, was calculated as
the square root of the product of DAP and DLAT. Points P5 and P6
identified the center of L5S1 and C7T1 intervertebral disc,
respectively, and were exploited to calculate the vertical
distance between the two discs. Two independent predictive
models, based on multiple linear regression, were arranged to
estimate weight and height. In each model, the following set of
six predictive parameters was accounted for: age, sex (converted
into dummy variable), TK and LL (Figure 2B), DE, and discs
vertical distance. The coefficients of the models were estimated
by least mean squares approach (TableA2). The root-mean-
square error (RMSE), quantifying the goodness-of-fit between
real and predicted values, was found to be equal to 3.9 kg and
4.3 cm for weight and height, respectively. The estimated
coefficients were exploited to process the six parameters as
measured in the dataset of 100 AIS subjects, and to predict the
corresponding values of weight and height. The distribution of
the accounted parameters, as well as that of weight and height
(real and predicted values, for the dataset of 85 and 100 AIS

subjects, respectively), was verified to be comparable between
the two datasets. In this regard, no significant differences were
recognized (compared by t-test or Wilcoxon rank sum test)
although the proportion between females and males was
statistically lower in the present study (chi-square test)
(Table A1). Data and image processing, and statistical
analysis, were performed by custom routines written in
MATLAB.

TABLE A1 | values of the parameters, expressed as mean (SD) or number of
cases, for the subjects evaluated in the present study and for the dataset with
known weight and height values.

Present
study (N = 100)

Bassani et al. (2019)
(N = 85)

age [years] 12.5 (1.5) 13.3 (1.2)
sex [F/M] 67/33 72/13>a
Cobb angle [°] 17.4 (5.9) 15.8 (11.4)
TK [°] 43.0 (12.7) 38.0 (12.3)
LL [°] 58.9 (9.8) 60.0 (11.0)
DE [cm] 19.9 (1.9) 20.4 (2.0)
discs vertical distance [cm] 38.5 (3.2) 39.1 (3.3)
weight [kg] 44.5 (8.0) predicted 46.6 (9.0)
height [cm] 159.1 (10.3) predicted 159.3 (10.6)

aindicates significant difference (p < 0.05) between the two study groups.

FIGURE A1 | Reference points (P1-P6) handpicked on the radiographic
images in the coronal (A) and sagittal (B) plane for the prediction of subject’s
weight and height. Anteroposterior diameter (DAP) calculated as the distance
between P1 and P2, lateral diameter (DLAT) as that between P3 and P4,
and vertical distance between L5S1 and C7T1 disc center (P5 and P6,
respectively).

TABLE A2 | Estimated coefficients of the linear regression models for the
prediction of weight and height.

Predictor variable Coefficient

Weight model Height model

age [years] 0.8132 0.8038
sex [F/M] −55.9553/−54.2006 45.5567/51.3015
TK [°] 0.0099 0.1886
LL [°] 0.0261 −0.0117
DE [cm] 2.4337 0.5688
discs vertical distance [cm] 1.0201 2.1515
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