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Abstract: Exosomes are a subset of nano-sized extracellular vesicles originating from endosomes.
Exosomes mediate cell-to-cell communication with their cargos, which includes mRNAs, miRNAs,
lncRNAs, and circRNAs. Exosomal RNAs have cell specificity and reflect the conditions of their
donor cells. Notably, their detection in biofluids can be used as a diagnostic marker for various
diseases. Exosomal RNAs are ideal biomarkers because their surrounding membranes confer stability
and they are detectable in almost all biofluids, which helps to reduce trauma and avoid invasive
examinations. However, knowledge of exosomal biomarkers remains scarce. The present review
summarizes the biogenesis, secretion, and uptake of exosomes, the current researches exploring
exosomal mRNAs, miRNAs, lncRNAs, and circRNAs as potential biomarkers for the diagnosis of
human diseases, as well as recent techniques of exosome isolation.

Keywords: exosome; biomarker; human disease; mRNA; miRNA; lncRNA; circRNA; isola-
tion techniques

1. Introduction

Disease diagnosis is a key step in clinical practice. The detection of soluble biomarkers
from biofluids became a critical method in the early diagnosis of diseases. Exosomes
received increased attention due to their wide distribution in body fluids and their ability
to reflect physiological and pathological conditions.

Exosomes are a type of lipid membrane-bound extracellular vesicle with an average
size of 100 nm (ranging from ~40 to 160 nm) [1]. Most cell types, including mesenchymal
stem cells, endothelial cells, myoblasts, and adipocytes, can release exosomes of different
sizes, compositions, and functions. More importantly, exosomes are widely present in
almost all biofluids, including cell supernatant, blood, plasma, saliva, urine, serum, and
breast milk [2–6]. Exosomal contents, including RNAs, DNAs, proteins, and lipids, can
participate in physiological processes such as intercellular communication and material
transport [7]. There is particularly strong evidence of exosomal RNAs regulating gene
expression and function in recipient cells. Exosomal RNAs can affect normal physiological
metabolic activities and participate in the development of various diseases, including tumor
growth, neurodegenerative disease, and metabolic syndrome [7–10]. Exosomal RNAs are a
promising source of diagnostic biomarkers for human diseases [11,12]. In this review, we
focus on recent studies exploring exosomal mRNAs and ncRNAs (miRNAs, lncRNAs, and
circRNAs) as biomarkers for human diseases.
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2. Biogenesis of Exosomes

Exosomes are extracellular vesicles of endosomal origin. First, the plasma membrane
invaginates to form an early endosome. This endocytosis process can encapsulate ex-
tracellular soluble proteins, and the early endosome membrane can contain cell-surface
proteins [13]. Then, the early endosomes give rise to late endosomes, invaginate, and form
intraluminal vesicles (ILVs) [13]. Here, the late-stage endosomal structures containing
dozens of ILVs are typically known as multivesicular bodies (MVBs), which are partly
delivered to lysosomes for degradation or fusion with the plasma membrane to release
the contained ILVs as exosomes (Figure 1). Specifically, the formation of the endosomal
sorting complexes required for transport (ESCRT) is essential for both the synthesis and
secretion of exosomes. The ESCRTs consist of four complexes (ESCRT-0, I, II, and III) and
related proteins (VPS4, TSG101, and ALIX) [14,15]. ESCRT-0 classifies ubiquitin cargo
proteins into lipid domains, whereas ESCRT-I and ESCRT-II are responsible for deforming
the membrane to format a stable membrane neck [14]. ESCRT-III participates in membrane
deformation and fission, such as promoting ILV budding [16,17]. The recruitment of the
VPS4 complex into ESCRT-III results in vesicle neck dissection and the dissociation and
recycling of the ESCRT-III complex [18]. TSG101 is connected to the release of exosomes,
and the activation of ALIX protein could recruit ESCRT-III proteins to endosomes [16,19].
Additionally, numerous studies showed that exosome synthesis and cargo loading involve
an ESCRT-independent pathway using lipids and associated proteins [20–22] (Figure 1).Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 23 
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RNA loading into exosomes appears to be lipid-mediated and depends on specific
self-organizing lipids and cargo domains. Specific nucleotide sequences have enhanced
affinity for the phospholipid bilayer, including lipid rafts, hydrophobic modifications,
or sphingosine [23]. Lipid rafts are highly enriched in cholesterol, sphingolipids, and
glycosylphosphatidylinositol-anchored proteins, and their binding to proteins or other
molecules might promote their secretion through exosomes [24]. Additionally, the presence
of ceramide, lysophosphatidic, and glycosphingolipid molecules on the limiting membrane
causes a spontaneous budding process that results in the formation of ILVs [25]. Meanwhile,
ceramide may be transformed to sphingosine and sphingosine-1-phosphate (S1P) by the
enzymes ceramide kinase and ceramidase, while the subsequent activation of S1P receptors
on the limiting membrane facilitates the mediation of tetraspanin sorting into ILVs [26,27].
The tetraspanin superfamily consists of cell surface-associated membrane proteins charac-
terized by transmembrane domains and organizes the membrane microdomains known as
tetraspanin-enriched microdomains, which contain abundant transmembrane and cyto-
plasmic signal proteins [28]. Notably, although it was reported that the absence of ESCRT
machinery did not prevent the production of MVBs in mammalian cells, it may bring about
the sorting of cargo into ILVs and variation in the quantity and size of ILVs. This indicates
that exosome biogenesis may be a coordinated process involving both ESCRT-dependent
and -independent pathways [29].

3. Secretion and Uptake of Exosomes

The release of exosomes into the extracellular space depends on the transport of secre-
tory MVBs and the fusion of the cell membrane after the inward budding of ILVs, which
requires several key factors including the cytoskeleton (microtubules and microfilaments),
molecular movements (mediated by kinetin and kinesin), molecular switches (small GT-
Pase), and membrane fusion devices (soluble NSF attachment protein receptor [SNARE]
complexes) [30]. During secretory MVB transport, the MVB moves along the microtubule
cytoskeleton—a process that requires molecular motors for directed transport [31,32]. Mi-
crotubules and their associated molecular motors showed obvious polarity distribution
in cells and were combined with the MVB. The MVB and plasma membrane were fused
by Rab and its effector. Rab GTPase is an important factor, with more than 70 subtypes on
the membrane surface involved in the regulation of vesicular functions such as budding,
movement, and fusion [33]. Although the details of the fusion process remain elusive, the
SNARE protein family was widely accepted as the core machinery for membrane fusion.
This protein family includes vesicle SNARE (v-SNARE), which forms a complex with the
homologous target SNARE (t-SNARE). Notably, this complex drives the fusion of two
membranes in a zipped manner [34,35]. Through this process, MVBs fuse with the plasma
membrane and release the exosomes into the extracellular space.

Signals from exosomes are generally transmitted to receptor cells through three dif-
ferent mechanisms: endocytosis, direct membrane fusion, or receptor–ligand interaction.
Endocytosis is the primary method of exosome uptake and can be mediated by grid pro-
teins, caveolae, or lipid rafts depending on the specific receptor cell type [36]. During
endocytosis, exosomes may subsequently merge into endosomes or be transferred to lyso-
somes for degradation [37]. Additionally, the exosomal membrane can fuse directly with
the plasma membrane of the receptor cell and release its contents, or bind to homologous
receptors on the receptor cell membrane to subsequently trigger a cascade of intracellular
signal transduction reactions [38].

4. Exosomal RNAs
4.1. Exosomal mRNAs

Exosomal mRNAs are important regulators of cellular biological processes. Exosomal
mRNAs were first identified in mouse MC/9 and human HMC-1 cell lines using microarray
analysis. Interestingly, exosomal mRNAs from mouse mast cells could be transferred into
human mast cell lines, indicating that exosomes are effective vessels for the delivery of
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mRNA to other cells. It was further discovered that mRNAs were selectively taken up into
exosomes because 270 transcripts were only detected in exosomes other than the donor
cells (MC/9). Additionally, exosomal mRNAs were translated into functional proteins in
the recipient cells, suggesting that exosomal mRNAs retain their function in recipient cells.
These results demonstrate that exosomal mRNAs are critical mediators of intercellular
communications [2].

Exosomal mRNAs also have advantages as biomarkers. First, exosomal mRNA can
reflect the conditions of donor cells and are easy to detect since some exosomes (e.g., blood
exosomes) circulate throughout the entire body [39]. In addition, the membrane of the
exosome can protect exosomal mRNA from digestion by RNases [40]. For example, urinary
exosomal mRNAs can remain stable for as long as two weeks at 4 ◦C [41]. Finally, exosomal
mRNAs can affect the function of recipient cells more directly than exosomal ncRNAs since
they can be translated into proteins in recipient cells.

Exosomal mRNAs are considered as a critical indicator of cancers. Previous studies
reported that tumor cells can express tumor-specific mRNAs or change the expression
levels of normal exosomal mRNAs. For example, in glioblastoma, epidermal growth factor
receptor (EGFR) is expressed by the tumor-specific mRNA EGFRvIII, which was recom-
mended as a diagnostic biomarker for glioblastoma [42]. As another example, telomerase
is considered a hallmark of cancer [43]. Human telomerase reverse transcriptase (hTERT)
is generally not expressed in healthy humans. However, hTERT is detectable in multiple
cancers, such as acute myelocytic leukemia, Burkitt lymphoma, and chronic lymphocytic
leukemia, indicating that serum exosomal hTERT mRNA may be a potential pan-cancer
biomarker [44]. Additionally, serum exosomal heterogeneous nuclear ribonucleoprotein
H1 (hnRNPH1) mRNA levels in hepatocellular carcinoma (HCC) patients were significantly
higher than those in control groups. Thus, exosomal hnRNPH1 was suggested as a potential
biomarker for HCC diagnosis [45].

Exosomal mRNAs were also suggested as biomarkers for diagnosing other diseases,
such as those related to the human central nervous system and urinary system. A study
including 20 older healthy adult subjects (≥65 years) and 20 younger healthy adult sub-
jects (21–45 years) indicated that amyloid-β1-42 peptide (Aβ)–the main component of the
amyloid plaques found in the brains of patients with Alzheimer’s disease [46] stimulated
the release of exosomal cytokine mRNAs via macrophages and CD4 memory T-cells, in-
dicating that exosomal cytokine mRNAs could potentially act as diagnostic biomarkers
for Alzheimer’s disease [47]. Furthermore, Lv et al. suggested the urinary exosomal
mRNA CD2 associated protein (CD2AP) as a biomarker for the diagnosis of kidney disease
since a decrease in its expression level reflects the severity of tubulointerstitial fibrosis and
glomerulosclerosis [48].

Exosomal mRNAs can also be used as biomarkers for the evaluation of drug resis-
tance., which is currently one of the major challenges in cancer therapy. Shao et al. analyzed
the exosomal mRNAs in the serum of 32 individuals (17 glioblastoma multiforme pa-
tients and 15 healthy individuals) and found that the exosomal O-6-methylguanine-DNA
methyltransferase (MGMT) and N-methylpurine DNA glycosylase (APNG) mRNA levels
were correlated with the levels of temozolomide resistance and the treatment efficacy in
glioblastoma multiforme patients [49].

Based on studies of intracellular mRNAs, two successful commercial kits use urinary
exosomal mRNAs (SAM pointed domain-containing ETS transcription factor (SPDEF) and
ETS transcription factor (ERG)) and plasma exosomal mRNA (echinoderm microtubule-
associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion transcripts) to
detect prostate cancer and nonsmall-cell lung cancer, respectively [50–52], which demon-
strates the functionality of exosomal mRNAs as biomarkers.

Some examples of exosomal mRNAs with the potential to be used as biomarkers for
disease diagnosis are summarized in Table 1.
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Table 1. Summary of exosomal mRNAs as potential disease biomarkers.

Exosome Sources Diseases Potential Biomarkers (mRNA) References

Serum & glioblastoma CCM Glioblastoma EGFRvIII [42]

Urine Tubulointerstitial fibrosis &
glomerular sclerosis CD2AP [48]

Serum & GBM CCM Temozolomide resistance in GBM MGMT & APNG [49]
Urine Prostate cancer ERG, and SPDEF [50]

U87 & A172 CCM Temozolomide chemoresistance
in glioblastoma PTPRZ1-MET [53]

Serum Hepatocellular carcinoma hnRNPH1 [45]
Serum Docetaxel resistance in prostate cancer CD44v8-10 [54]

HFF CCM Toxoplasma-infected HFFs RAB-13, EEF1A1, TMSB4X & LLPH [55]
Serum Colorectal cancer KRAS mutation & BRAF mutation [56]
Serum Gastric cancer MT1-MMP [57]

Plasma Resistance to hormonal therapy in
prostate cancer AR-V7 [58]

Serum Pancreatic ductal adenocarcinoma WASF2, ARF6, SNORA74A & SNORA25 [59]
Serum & CCM Acute lymphoblastic leukemia DNMT1 [60]

CCM: cell culture media; GBM: human glioblastoma multiforme; HFF: human foreskin fibroblasts; EGFRvIII:
epidermal growth factor receptor variant III, CD2AP: CD2 associated protein; MGMT: O-6-methylguanine-DNA
methyltransferase; APNG: N-methylpurine DNA glycosylase; ERG: ETS transcription factor; SPDEF: SAM
pointed domain containing ETS transcription factor, PTPRZ1: protein tyrosine phosphatase receptor type Z1;
MET: MET proto-oncogene, receptor tyrosine kinase; hnRNPH1: heterogeneous nuclear ribonucleoprotein H1;
CD44v8-10: isoform of cluster of differentiation 44 variant, and contains the variant exons 13–15 (v8–v10);
RAB-13: RAB13, member RAS oncogene family; EEF1A1: eukaryotic translation elongation factor 1 alpha 1,
TMSB4X: thymosin beta 4 X-linked; LLPH: LLP homolog, long-term synaptic facilitation factor, KRAS: KRAS
proto-oncogene, GTPase; BRAF: B-raf proto-oncogene, serine/threonine kinase; MT1-MMP: mmbrane type-1
matrix metalloproteinase; AR-V7: androgen receptor variant 7; WASF2: WASP family member 2; ARF6: ADP
ribosylation factor 6; SNORA74A: small nucleolar RNA, H/ACA box 74A; SNORA25: small nucleolar RNA,
H/ACA box 25; DNMT1: DNA-methyltransferase 1.

4.2. Exosomal miRNAs

MiRNAs, a class of small noncoding RNAs with a length of ~22 nt, play a principal role
in the regulation of gene expression at the post-transcriptional level [61]. MiRNAs mainly
function by binding to the 3′untranslated region (3′-UTR) of target mRNAs and inducing
cleavage or reducing translation [62]. Both cellular miRNAs and exosomal miRNAs are
involved in various biological activities, including cancer progression, immune responses,
and cell cycle progression [61].

Exosomal miRNAs were proposed as potential biomarkers for diagnosing and predict-
ing diseases. This primarily relies on their ability to reflect the internal conditions of cells,
including physiological and pathological conditions [63]. In addition, miRNAs are the
most abundant RNA molecules in exosomes, which makes their detection easier than that
of other types of exosomal RNA [64]. Lastly, exosomal miRNAs show improved stability
due to the protection afforded by their encapsulating membranes. It was observed that
exosomal miRNAs can remain stable for five years when stored at −20 ◦C or for 14 days
at 4 ◦C, with this stability being unaffected by repeated freezing and thawing [65]. These
characteristics help increase the sensitivity of exosomal miRNA-based biomarkers. This is
critical as limited sensitivity results in low detectability.

Recent studies identified some exosomal miRNAs with great potential for diagnosing
cancers. Exosomes derived from cancer cells might affect the function of normal cells via
miRNAs and could be an essential factor driving cancer metastasis. In a study on brain
cancer, human and mouse tumor cells were observed to stop expressing phosphatase and
tensin homolog (PTEN)—an important tumor suppressor—after dissemination to the brain
due to inhibition mediated by exosomal miR-19 that was secreted by astrocytes, which
indicates that exosomal miR-19 might be a suitable biomarker for diagnosing brain cancer
metastasis [66]. Another study showed that colorectal cancer cells promoted the M2 pole of
macrophages by transferring a set of miRNAs (miR-25-3p, miR-130b-3p, and miR-425-5p)
through exosomes in response to stromal cell-derived factor 1/C-X-C chemokine receptor
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type 4 (CXCL12/CXCR4) activation through the PTEN/PI3K/Akt pathway, which enhanced
the liver metastasis of colorectal cancer in vitro and in vivo [67].

Exosomal miRNAs can serve as biomarkers for diagnosing diseases other than cancer.
Macrophages are critical for the maintenance of metabolic homeostasis, and their exosomal
miRNAs are closely related to various metabolic-related diseases, such as diabetes and
obesity [68]. For instance, exosomal miR-690 binds to the 3′-UTR of the NAD kinase
(NADK) mRNA, which is responsible for regulating insulin signaling and macrophage
inflammation, to enhance insulin sensitivity [69]. Exosomal miRNAs could also reflect the
viral infection of cells. One well-known example is the Epstein–Barr virus (EBV), the first
human virus that was found to encode miRNAs [70]. B cells infected with EBV secrete
exosomes containing EBV-miRNAs, which affect gene expression in the recipient cells [71].

Other recent examples of exosomal miRNAs with the potential to be used as biomark-
ers for disease diagnosis are summarized in Table 2.

4.3. Exosomal lncRNAs

Long noncoding RNAs (lncRNAs) are a type of noncoding RNA longer than 200
nt [99]. LncRNAs are involved in the regulation of gene expression in diverse manners at
multiple levels, such as gene transcription control, chromatin structure modulation, RNA
splicing regulation, miRNA sponging, and RNA-binding protein interaction [100].

Typically, exosomal lncRNAs display strong tissue specificity and poor conservation,
and the expression levels of exosomal lncRNAs can indicate the health conditions affecting
tissues and cells, making them suitable for use as biomarkers [101,102]. Additionally, the
large number of tissue- and cell-specific lncRNAs provides many options for diagnostic
biomarkers.

Exosomal lncRNAs were suggested as biomarkers to diagnose diseases. For example,
lncRNA prostate cancer antigen 3 (lncPCA3)—found in urinary exosomes—was approved
as a biomarker to diagnose human prostate cancer by the US Food and Drug Administration.
Exosomal lncPCA3 shows a much higher expression level in prostate cancer cells than in
inflamed or normal prostate tissue (up to 70- to 100-fold), making lncPCA3 an efficient
biomarker for diagnosing prostate cancer [103–105]. Another example is H19, a well-known
oncogenic lncRNA found in serum exosomes that was significantly upregulated in bladder
cancer patients when compared to that of healthy individuals, which highlights its potential
use as a biomarker for bladder cancer [106,107].

Compared to exosomal miRNA, the study of exosomal lncRNA is in its infancy. Ac-
cording to GENCODE, there are more than 16,000 lncRNA genes in the human genome,
which are estimated to produce more than 10,000 lncRNA transcripts, indicating a consid-
erable candidate pool of potential diagnostic biomarkers [108,109].

Recent examples of exosomal lncRNAs that are potential diagnostic biomarkers are
summarized in Table 3.
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Table 2. Summary of exosomal miRNAs as potential disease biomarkers.

Exosome Sources Potential Biomarkers Diseases Target Genes/Pathways Effects References

Serum miR-193b AD APP Inhibits AD development [72]

Glioblastoma stem CCM miR-9 Antiangiogenic therapy
for glioblastoma RGS5, SOX7 & ABCB1 Promotes angiogenesis [73]

Plasma miR-146a Heart failure IRAK-1, TRAF6, NOX-4
SMAD4 & TGF-β

Promotes the proliferation and inhibit the
apoptosis of cardiomyocytes [74]

Plasma miR-21 & miR-181a-5p Thyroid cancer N/A Distinguishes between follicular and papillary
thyroid cancer [75]

HCT116 CCM & serum miR-25, miR-130b, and
miR-425 Colorectal cancer PTEN/PI3K/AKT pathway Promotes the liver metastasis of

colorectal cancer [67]

CCM & serum miR-1247-3p Liver cancer B4GALT3 Promotes the lung metastasis of liver cancer [76]

A2780 CCM miR-223 Epithelial ovarian cancer PTEN/PI3K/AKT pathway Promotes chemoresistance [77]

Multiple sources miR-21 Various cancers Multiple targets Promotes cancer development [78–82]

Microglia culture media miRNA-137 Ischemic brain injury NOTCH1 Promotes neuroprotection [83]

Plasma miR-125a-5p/miR-141-5p Prostate cancer N/A N/A [84]

Serum miR-7977 Lung adenocarcinoma N/A Promotes proliferation and invasion, and
inhibits apoptosis of A549 cells [85]

Pan02 CCM miR-155-5p & miR-221-5p PDAC E2F2 Promotes PDAC progression [86]

Cardiac telocyte CCM miR-21-5p Myocardial infarction CDIP1 Promotes angiogenesis [87]

HT-29/SW480 CCM miR-375-3p Colon cancer N/A Regulates EMT of colon cancer cells [88]

MSC CCM miR-542-3p Cerebral infarction TLR4 Inhibits inflammation and cerebral infarction [89]

CCa CCM & serum miR-1468-5p Cervical cancer HMBOX1 & JAK2/STAT3
pathway Promotes tumor immune escape [90]

MSC CCM miR-21-5p Breast cancer S100A6 Promotes chemoresistance [91]

Plasma miR-1-3p Sepsis SERP1 Induces endothelial cell dysfunction [92]

Plasma miR-451a & miR-21-5p AD N/A N/A [93]

hUCMSC CCM & serum miR-139-5p Bladder cancer PRC1 Inhibits tumorigenesis [94]

OSCC CCM & blood miR-340-5p OSCC KLF10 Promotes radioresistance [95]
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Table 2. Cont.

Exosome Sources Potential Biomarkers Diseases Target Genes/Pathways Effects References

Saliva miR-24-3p OSCC PER1 Maintains the proliferation of OSCC cells [96]

Saliva miR-134 & miR-200a OSCC N/A N/A [97]

Serum miR-1226 PDAC N/A N/A [98]

APP: amyloid precursor protein; RGS5: regulator of G protein signaling 5; SOX7: SRY-box transcription factor 7; ABCB1: ATP binding cassette subfamily B member 1; SMAD4: SMAD
family member 4; TGF-β: transforming growth factor beta 1; B4GALT3: beta-1;4-galactosyltransferase 3; PTEN: phosphatase and tensin homolog; NOTCH1: Notch Receptor 1; E2F2: E2F
transcription factor 2; CDIP1: cell death inducing P53 target 1; TLR4: toll-like receptor 4; HMBOX1: homeobox containing 1; JAK2: janus kinase 2; STAT3L: signal transducer and
activator of transcription; 3S100A6: S100 calcium binding protein A6; CCM: cell culture media; SERP1: stress associated endoplasmic reticulum protein 1; EBV: epstein-barr virus;
AD: alzheimer’s disease; PRC1: polycomb repressor complex 1; KLF10: kruppel like factor 10; PER1: period circadian regulator 1; HCT116: human colorectal carcinoma reporter gene
cell lines; A2780: human epithelial ovarian cancer cell line A2780; hUCMSCs: human umbilical cord mesenchymal stem cells; A549: human LUAD cell line; PDAC: pancreatic ductal
adenocarcinoma; EMT: epithelial–mesenchymal transition; MSC: mesenchymal stem cell; CCa: cholangiocarcinoma; OSCC: esophageal squamous cell carcinoma.

Table 3. Summary of exosomal lncRNAs as potential disease biomarkers.

Exosome Sources Potential Biomarkers Diseases Effects Mechanistic Approaches References

Plasma Linc-POU3F3 PD N/A N/A [110]

Plasma lnc-MKRN2-42:1 PD Affects the occurrence and
development of PD N/A [111]

Various PC CCM & serum lncRNA-UCA1 PC Promotes angiogenesis miR-96-5p/AMOTL2 axis [112]

Plasma BACE1-AS AD N/A N/A [113]

Serum HOXD-AS1 Prostate cancer Promotes metastasis miR-361-5p/FOXM1 axis [114]

Serum SNHG16 Breast cancer Inhibits immunity miR-16–5p/SMAD5 axis [115]

Serum lncUFC1 NSCLC Promotes proliferation, migration,
and invasion

Inhibits PTEN expression via
EZH2-mediated epigenetic silencing [116]

Urine lncBCYRN1 Bladder cancer Promotes lymphatic metastasis Activates WNT5A/VEGF-C/VEGFR3
feedforward loop [117]

Urine lncLNMAT2 Bladder cancer Promotes lymphatic metastasis N/A [118]

Primary MSCs CCM LINC01559 GC Promotes progression Multiple approaches [119]

GC CCM & serum lncRNA-GC1 GC N/A N/A [120]

GC CCM lncPCGEM1 GC Promotes invasion and metastasis Maintains the stability of SNAI1 [121]
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Table 3. Cont.

Exosome Sources Potential Biomarkers Diseases Effects Mechanistic Approaches References

Urine TERC BLCA N/A N/A [122]

M1/M2 macrophage CCM lncAFAP1-AS1 Esophageal cancer Promotes migration and metastasis miR-26a/ATF2 axis [123]

MSCs CCM MALAT1 DICS Promotes mitochondrial metabolism
and rejuvenation miR-92a-3p/ATG4a axis [124]

Serum H19 Breast cancer Reduce DOX resistance N/A [125]

PD: Parkinson’s disease; CCM: cell culture media; PC: pancreatic cancer; AD: alzheimer’s disease; NSCLC: non-small-cell lung cancer; GC: gastric cancer; AMOTL2: angiomotin
like 2; FOXM1: forkhead box M1; SMAD5: SMAD family member 5; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; WNT5A: wnt family member 5A; VEGF-
C: vascular endothelial growth factor C; VEGFR3: vascular endothelial growth factor receptor 3; SNAI1: snail family transcriptional repressor 1; BLCA: Bladder urothelial car-cinoma,
ATF2: activating transcription factor 2; TERC: telomerase RNA component; MALAT1: metastasis associated lung adenocarcinoma transcript 1; DICS: doxorubicin-induced cardiac
senescence; ATG4a: autophagy related 4A cysteine peptidase; DOX: doxorubicin.



Int. J. Mol. Sci. 2022, 23, 2461 10 of 23

4.4. Exosomal circRNAs

Circular RNAs (circRNAs) are a subset of noncoding RNAs that lack 5′ caps and 3′

poly(A) tails and instead have a closed-loop structure [126]. As a class of endogenous RNAs,
circRNAs are involved in various biological processes, including alternative splicing, tran-
scription regulation, miRNA sponging, protein scaffolding, interacting with RNA-binding
protein (RBP), and pseudogene creation [127–131]. Due to their multiple functions, circR-
NAs were closely linked to many diseases, such as cancers, neurodegeneration, diabetes,
cerebrovascular diseases, and cardiovascular diseases. Thus, the expression of circRNAs
could reflect the presence of these diseases [132–135]. Additionally, the closed-loop struc-
ture provides circRNAs with resistance to exoribonucleases and a long half-life [136–138].
These characteristics make exosomal circRNAs ideal biomarkers for disease diagnosis.

Exosomal circRNAs were studied as biomarkers for cancer diagnosis. RNA-seq anal-
ysis demonstrated that exosomal circRNAs enter circulation and are enriched at least
two-fold in exosomes when compared to their levels in donor cells [139]. A study of
exosomal circRNAs in colorectal cancer patients and healthy individuals revealed 67 ab-
sent circRNAs and 257 new circRNAs in patient serum exosomes, indicating the potential
of exosomal circRNAs to act as biomarkers for the diagnosis of colorectal cancers [139].
Another study using microarray sequencing found a significant decrease in plasma exoso-
mal circ-0051443 in patients with hepatocellular carcinoma (HCC), and it was shown that
circ-00551443 releaseed BCL2 antagonist/killer 1 (BAK1), which initiated cell apoptosis to
prevent HCC via sponging miR-331-3p [140]. As a result, circ-0051443 was considered a
tumor suppressor and a novel potential biomarker for HCC diagnosis [140]. As another
example, plasma exosomal circ-133 can be used as a biomarker to monitor colorectal tumor
progression, as exosomal circ-133 expression induced by hypoxia was able to sponge miR-
133a to activate the GEF-H1/RhoA axis in normoxic colorectal cancer cells, leading to the
migration of colorectal cancer cells [141].

Exosomal circRNAs can also act as diagnostic biomarkers for nervous system dis-
eases, ischemic diseases, and cardiovascular diseases. In cerebrospinal fluid, 26 exosomal
circRNAs were shown to have significantly different expression levels in patients with
immune-mediated demyelinating disease (IMDD) when compared to that of healthy con-
trols, while the upregulations of hsa_circ_0087862 and hsa_circ_0012077 were recommended
as potential diagnostic biomarkers for IMDD [138]. After ischemia, vascular smooth muscle
cells secrete exosomal circRNA cZFP609, which is delivered into endothelial cells, result-
ing in reduced vascular endothelial growth factor A (VEGFA) expression and disrupted
endothelial angiogenic function via the interaction with and sequestration of hypoxia-
inducible factor 1 subunit alpha (HIF1α) [142]. In this case, cZFP609 may act as a suitable
biomarker to assess the clinical outcome and prognosis of ischemic diseases [142].

As a more recently discovered type of exosomal ncRNA, the study of exosomal
circRNAs is in an early phase. Although research on exosomal circRNAs is mainly focused
on cancer, it was reported that circRNAs are involved in nearly all aspects of biological
activities. More exosomal circRNAs will likely be used in the future as biomarkers for the
diagnosis of diseases or physiological/pathological processes.

Some examples of exosomal circRNAs with the potential to be used as disease biomark-
ers are summarized in Table 4.
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Table 4. Summary of exosomal circRNAs as potential disease biomarkers.

Exosome Sources Potential
Biomarkers Diseases Effects Mechanistic

Approaches References

Serum circ-G042080 Myeloma-related
myocardial damage

Promotes
autophagy miR-4268/TLR4 axis [143]

Serum circGlis3 Type 2 diabetes Regulates islet
EC function

Regulates GMEB1
degradation & HSP27

phosphorylation
[144]

Plasma circ-RanGAP1 Gastric cancer
Promotes

metastasis and
development

miR-877–3p [145]

HCC CCM circRNA-100338 HCC
Promotes

angiogenesis and
invasion

N/A [146]

Plasma circRNA_0056616
Lymph node

metastasis in lung
adenocarcinoma

N/A N/A [147]

Serum circ_0006156 Thyroid cancer Promotes
tumorigenesis miR-1178/TLR4 axis [148]

Serum
circ_0075828,

circ_0003828 &
circ_0002976

HGA N/A N/A [149]

Serum circRNA_104484 &
circRNA_104670 Sepsis N/A N/A [150]

Serum circ-ATP10A Multiple myeloma Promotes
angiogenesis Multiple axises [151]

K562 & K562/G01
CCM circ_0058493 CML Drug resistance miR-548b-3p [152]

GBM CCM circNEIL3 Glioma Promotes
progression Stabilizing IGF2BP3 [153]

CCM: cell culture media; islet EC: islet endothelial cells; HCC: hepatocellular carcinoma; HGA: high-grade
astrocytoma; PC: pancreatic cancer; AD: Alzheimer’s disease; GC: gastric cancer; BMSCs: bone marrow-derived
mesenchymal stromal cells; CML: chronic myeloid leukemia; TLR4: toll like receptor 4; GMEB1: glucocorticoid
modulatory element-binding protein 1; HSP27: heat shock protein 27; GBM: glioblastoma multiforme; NEIL3: nei
like DNA glycosylase 3; IGF2BP3: insulin-like growth factor 2 mRNA binding protein 3.

5. Exosome Isolation Techniques

Critical steps in the functional investigation of exosomes include their enrichment and
isolation, which are necessary due to the small size and low density of exosomes as well as
the heterogeneity of the bodily fluids in which they are found. To date, six main strategies ex-
ist to isolate exosomes from a diverse range of cellular detritus and interfering components,
including ultra-speed centrifugation (differential ultracentrifugation and density-gradient
ultracentrifugation), immunoaffinity capture, ultrafiltration, size-exclusion chromatogra-
phy, polymer precipitation, and microfluidics-based techniques [154].

5.1. Ultra-Speed Centrifugation
5.1.1. Differential Ultracentrifugation

Differential ultracentrifugation is the most common method used to isolate exosomes.
The principle of differential centrifugation is that various extracellular components with
different densities, sizes, and shapes have different sedimentation rates under centrifugal
force. Samples are typically centrifuged at a low speed (e.g., 300× g) to eliminate dead
cells and debris [155,156]. Then, the supernatant is centrifuged at 2000× g, 10,000× g,
and 100,000× g to pellet cell debris, apoptotic bodies, and protein aggregates, respec-
tively [154]. Differential ultracentrifugation can isolate a large amount of material at a low
cost. Due to this advantage, centrifugation was widely used to isolate exosomes from vari-
ous biofluids, including cell culture medium, plasma, serum, saliva, and urine [157–159].
However, differential ultracentrifugation requires expensive equipment and a large amount
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of time. Additionally, this method may result in the coprecipitation of exosomes with other
particles [160].

5.1.2. Density-Gradient Ultracentrifugation

Density-gradient centrifugation separates contents based on their buoyant density in
different solutions, such as sucrose and iodixanol [161,162]. A commonly used protocol for
density-gradient centrifugation begins with loading 4 mL of tris/sucrose/D2O solution into
the bottom of an SW 28 tube, carefully adding 25 mL of PBS containing partially isolated
exosomes to the top of the sucrose cushion, and then centrifuging for 75 min at 100,000× g
at 4 ◦C [163]. Thereafter, approximately 3.5 mL of the Tris/sucrose/D2O cushion is removed
from the centrifuge tube and transferred to a fresh centrifuge tube [163]. Then, the mixture
is diluted with 60 mL of PBS and centrifuged for 70 min at 100,000× g at 4 ◦C [163]. The
pellet obtained as a result of this procedure includes the separated exosomes, which should
be resuspended in 50–100 mL of PBS [163].

The advantages of this method are the high purity of the resulting products and the
ability to separate subpopulations of exosomes. However, density-gradient centrifugation
requires expensive ultracentrifugation equipment, which also causes sample loss during
isolation. Additionally, density-gradient centrifugation could take as long as two days to
isolate different products, which is not time-efficient in comparison to that of other isolation
methods [164,165].

5.2. Immunoaffinity Capture

Immunoaffinity capture is based on the binding specificity between proteins and their
corresponding antibodies. Typically, exosome marker proteins, especially transmembrane
proteins, including CD9, CD8, CD63, and Rab5, are used to isolate exosomes [166,167].
In one protocol, the exosome pellet is passed through a column containing beads coated
with antibodies against CD63, CD9, and CD8 [168]. Then, the antibody beads are washed
to separate different exosomal populations. This approach is mostly employed for the
further separation of exosomes after they were isolated using a centrifugation process. This
approach allows the separation of distinct exosomal populations based on the presence or
absence of certain protein markers. On the other hand, this method may lead to the loss of
exosomes that lack specific protein markers. Additionally, the number of antibody-coated
beads required for exosome separation by immunoprecipitation is proportional to the
sample volume employed, which may be expensive.

5.3. Ultrafiltration

Ultrafiltration is a technique that employs porous membranes to capture molecules or
particles of a given size, where smaller molecules and particles are allowed to pass through a
membranous filter, while larger molecules and particles are trapped [169]. In one approach
for exosome isolation, larger particles were initially removed by employing filters with pore
widths of 0.8 and 0.45 microns, resulting in a filtrate with a high concentration of exosomes.
Thereafter, smaller vesicles were removed from the filtrate by passing it through membranes
with holes that were smaller than the desired exosomes (0.22 and 0.1 µm), and the eluate was
discarded as waste. The size range of the exosomes acquired from the various pore filtration
steps was characterized by the maximum and minimum sizes of the exosomes [170].
This approach can be employed as a supplement to ultracentrifugation to separate large
microvesicles and exosomes; however, it can also be utilized as a standalone method.

Exosome isolation may also be accomplished using cross-flow filtration (also known
as tangential-flow filtration [171]), which is a technique based on consecutive filtrations and
the use of nano-ultrafiltration. This process begins with a dead-end filtration of the cells
and their detritus, followed by the filtration of large vesicles with a diameter of 1000 nm.
Tangential flow-based filtering is used to eliminate impurities (mainly proteins) with a
diameter smaller than the size cutoff, which are then disposed of in a trash chamber. The
filtrate, which contains exosomes, is then passed through the exclusion filter many times,
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resulting in a concentrated input solution. Finally, exosomes are further separated using
a track-etched membrane with a diameter ranging from 50 to 250 nm and a defined and
uniform pore size track [170].

Ultrafiltration can isolate samples with high efficiency beyond the volume limitation,
which makes this method a useful substitute for ultracentrifugation [172]. Compared to
that of ultracentrifugation, ultrafiltration requires significantly less time. However, there
is a risk of filter clogging occurring during analysis, which reduces the lifetime of the
membranes [173]. Additionally, the shear forces involved in the process could disrupt the
integrity of exosomal membranes, leading to exosome lysis and particle deformation [174].

5.4. Size-Exclusion Chromatography

Size-exclusion chromatography is used to separate exosomes from other extracellular
vesicles according to their size, and it is conducted using the same method employed for
protein separation [175]. The column used for size-exclusion chromatography is filled
with a porous stationary phase through which tiny particles may pass. This penetration is
responsible for the slower flow of the smaller particles down the tube, which causes them
to elute later in the gradient and after the larger particles [176,177].

Size-exclusion chromatography can be used to purify exosomes while preserving the
vesicle structure, integrity, and biological activity. The isolated exosomes also maintain
their proper vesicle characteristics due to gravity manipulation, which avoids the damage
caused by shear forces. Although this increased quality comes at the expense of the overall
yield of exosomes, size-exclusion chromatography procedures can be scaled up to obtain
higher yields. A substantial amount of initial biofluid is necessary to compensate for
the lower yield if the recovery rate is only moderate [178]. In addition, size-exclusion
chromatography could reduce the production of exosomal mRNA and exosomal protein.

5.5. Polymer Precipitation

The presence of highly hydrophilic polymers can create a hydrophobic micro-environ-
ment through their interaction with the water molecules surrounding exosomes, leading
to exosome precipitation [179]. Polyethylene glycol (PEG) with weights ranging from
6000 to 20,000 Da is widely used for the polymer-based exosome precipitation method. In
this method, large contaminant particles, including debris and apoptotic bodies, are first
removed during a pretreatment step [180]. The samples are then incubated with a PEG
solution at 4 ◦C overnight to induce exosome precipitation [180]. Low-speed centrifugation
(1500× g) is then used to collect the precipitated exosomes [180].

Lectin precipitation is an alternative to PEG precipitation. Lectins bind the carbohy-
drate moieties of other particles with extreme specificity. Lectins are thus able to attach to
carbohydrates on the surface of exosomes and affect their solubility, making the exosomes
insoluble and causing them to precipitate out of solution [181].

Precipitation using highly hydrophilic polymers is rapid, simple, low-cost, and does
not require complicated equipment. However, the final exosome pellet becomes contami-
nated, which prevents further omics-based analysis for exosomes. Although this makes the
precipitation method ineffective in clinical research settings, it is effective in other situations.

5.6. Microfluidics-Based Techniques

Tremendous recent developments in microfabrication technology enabled the cre-
ation of lab-on-a-chip-type microfluidic devices for effective exosome separation [182–184].
These small microfluidic machines enable exosome separation from fingertip amounts of
bodily fluids and exosome characterization for in situ diagnoses. Microfluidic technology
is revolutionizing exosome-based diagnostics by combining what is usually a two-step
approach involving exosome separation and characterization into one step [184]. The
immuno-microfluidic approach is a widely used microfluidics-based method that is com-
parable to the immunoaffinity capture isolation method. Exosomes are isolated via the
specific binding between protein markers and the microfluidic devices. For example, the
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ExoChip is a popular microfluidic device that was employed in conjunction with CD63
antibodies [185].

The benefits of microfluidic technology include efficient and rapid processing and the
high purity of resulting exosomes. More importantly, microfluidic techniques can isolate
exosomes based on their physical and biochemical properties simultaneously. Apart from
the requirement for specialized equipment, this method suffers from many of the same
disadvantages as the aforementioned immunoaffinity capture method described previously.
Although microfluidics-based techniques were not accepted as a standardized exosome
isolation method, they have great potential for use in the future.

Here, the advantages and disadvantages of above exosome isolation techniques are
summarized in Table 5.

Table 5. Summary of advantages and disadvantages of exosome isolation techniques.

Isolation Techniques Advantages Disadvantages

• Differential
ultracentrifugation

• Low cost
• Requires expensive equipment

• Coprecipitation with other particles

• Suitable to isolate a large amount
of material • Potential mechanical damage

• Low risk of reagent pollution; • Not appropriate for small volume diagnosis

• Density-gradient
ultracentrifugation

• High purity of resulting products • Heavy workload, low recovery.

• Separating subpopulations of exosomes

• Complicated steps

• Time-consuming

• Low recovery

• Immunoaffinity
capture

• High specificity
• Low extraction efficiency

• High cost of antibodies

• Simple operation
• Potential pollution of pH and salt concentration

• Isolation for antibody-bound exosomes only

• No chemical pollution • Low processing volume

• Ultrafiltration
• Fast

• Moderate exosome yield and purity

• Potential shear stress induced deterioration

• Cheap equipment cost • Possible exosome loss because of membrane
trapping and clogging

• Size-exclusion
chromatography

• High purity of resulting products
• Moderate exosome yield

• High cost

• Fast

• Time-consuming

• Require high-quality chromatographic column

• Require extra exosome enrichment step

• Polymer
precipitation

• Easy to use
• Low exosome purity• No special equipment requirement

• Multiple sample processing • Limiting further omics-based analysis

• Low cost
• Require extra complicated clean-up steps• Low risk of exosome damage

• Microfluidics-based
techniques

• Sample volume requirement

• Low sample capacity
• Fast

• Relative low cost

• High detection sensitivity

• Multifunctional operations integration
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6. Conclusions

Exosomal mRNAs, miRNAs, lncRNAs, and circRNAs are important mediators of
intercellular communication, and they will absolutely provide essential clues and huge
opportunities in disease diagnosis in the near future. The investigation of exosomal
biomarkers highlighted their great value in diagnosis and prognosis since they avoid the
limitations of conventional solid biopsy, especially by reducing the trauma associated
with surgery.

However, the exploration of exosomal biomarkers is still in the early phase, and a
ubiquitous clinical application is greatly limited.

Although the convenience of exosomal biomarkers is undisputed, challenges still
remain with biomarker selection, and no biomarker can achieve 100% accuracy. Future
efforts should focus on identifying the most significant changed biomarkers to improve the
accuracy of disease diagnosis. Therefore, detailed mechanisms of exosomal RNAs require
further investigation.

To analyze clinical samples on a large scale in the feature, it is necessary to extract
exosomes more rapidly, accurately, and completely, thereby implementing the use of
exosomes as new biomarkers into clinical practice. To date, there is no uniform standard
for the isolation, purification, or quality assessment of exosomes, which also restricts the
progress of research on exosomal diagnostic technology. Therefore, further study is required
to develop new methods to enhance the exosome isolation and purity, which would greatly
benefit the research on the clinical applications of exosomes as disease biomarkers. Despite
the insights highlighted in this review, a more comprehensive view of exosomal biomarkers
requires further investigation.

Challenges still remain in the field of exosomal RNAs as biomarkers. However,
exosomal RNAs will definitely provide exciting new insights and outline promising fields
for the development of novel therapeutic strategies.
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