
Cycloisomerization

Iron-Catalyzed Cycloisomerization and C� C Bond Activation to
Access Non-canonical Tricyclic Cyclobutanes

Frederik Kramm, Franziska Ullwer, Benedict Klinnert, Min Zheng, and Bernd Plietker*

In memory of Professor Klaus Hafner

Abstract: Cycloisomerizations are powerful skeletal
rearrangements that allow the construction of complex
molecular architectures in an atom-economic way. We
present here an unusual type of cyclopropyl enyne
cycloisomerization that couples the process of a cyclo-
isomerization with the activation of a C� C bond in
cyclopropanes. A set of substituted non-canonical
tricyclic cyclobutanes were synthesized under mild
conditions using [(Ph3P)2Fe(CO)(NO)]BF4 as catalyst in
good to excellent yields with high levels of stereo-
control.

Cycloisomerizations allow the construction of complex
annelated ring systems from readily available simple starting
materials. The significance of the research activities is
reflected in the number of reports on this particular type of
skeletal rearrangements.[1] While Rh-[2] and Ir-complexes[3]

clearly dominated this field of chemistry, the advent of
defined AuI-complexes as π-Lewis acid catalyst opened up a
totally new direction in this field.[4] Recently, we reported
that the cationic 16-electron Fe0-complex [(Ph3P)2Fe(CO)-
(NO)]BF4 2 acts as a π-Lewis acid catalyst redox-neutral
cycloisomerizations of enyne acetates or aryl allenyl ketones
[Eq. (1), Scheme 1].[5] Cycloisomerizations of cyclopropyl-
substituted enynes such as 5 were pioneered through a
couple of landmark reports by Wender[6a–c] or Shintani/
Hayashi[6d] using Rh-complexes to provide products of a
formal [5+2]-cycloaddition [Eq. (2), Scheme 1]. The fact
that AuI-complexes act as π-Lewis-acid was used by
Echavarren in a remarkable study on cycloisomerizations of

cyclopropyl-substituted enynes such as 7 [Eq. (3),
Scheme 1].[7] In sharp contrast to the Rh-catalysis the cyclo-
isomerization does not deliver the [5+2]-cycloaddition
product but rather the product of a cycloisomerization-
Prins-cyclization to give fused 5,5,4-tricyclic product 8
[Eq. (3), Scheme 1].

We envisioned a comparative study on cyclopropyl-
substituted enynes to be a perfect litmus test to verify or
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Scheme 1. Transition metal catalysed cyclizations of enynes and cyclo-
propyl-substituted enynes.
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falsify our understanding of the catalytic activity of
[(Ph3P)2Fe(CO)(NO)]BF4 toward enynes. Herein, we report
that the cationic Fe-complex [(Ph3P)2Fe(NO)(CO)]BF4 cata-
lyzes the cycloisomerization-C� C-bond activation of cyclo-
propyl-substituted enynes to complex tricyclic n,5,4-scaffolds
that are present in natural products like sulcatine G or
kelsoene [Eq. (3), Scheme 1].

Based on our previous work, we initiated this study by
treating cyclopropyl enyne 12 with the Fe-complex under
the conditions that proved successful in our previous studies

(Table 1). While initial attempts to employ simple unac-
tivated cyclopropanes (R4=H, Me) or alkoxide-substituted
cyclopropanes (R4=OTBS) did not show any conversion,
aryl-substituted cyclopropanes like 12 showed good reactiv-
ity already under mild conditions in dichloromethane at
50 °C leading to a mixture of allylic acetate 14 or diene 13
(entry 1, Table 1).

Diene 13 was isolated in good yields as the only product.
Upon decreasing the catalyst loadings down to 3 mol-%
good conversions even at a temperature of 30 °C were
possible, however, diene 13 was formed as a by-product
alongside with allylic acetate 14 [entries 3 and 4, Table 1,
Eq. (2), Scheme 3].[8] Control experiments showed that the
reaction is indeed Fe-catalyzed (entries 5 and 6, Table 1).

The cycloisomerization-elimination proved to be broadly
applicable (Scheme 2). A variety of different cyclopropyl-
substituted enynes were transformed into the corresponding
fused tricyclic cyclobutanes in good to high yields. While in
all reported cases the yields based on recovered starting
materials are exceeding 90%, in some cases the formation
of the allylic alcohol due to hydrolysis of the allylic ester
moiety was observed to a minor amount. Importantly,
halides, ethers, and amides are tolerated. Propargyl- but also
homopropargylamides can be employed and thus allow for
variation of the ring sizes, or upon use of higher substituted
homopropargylic amides the formation of even tetracyclic
structures like 29 in good yields. The nature of the p-
substituent Y has a significant impact on the yield (products
13–19 vs. products 20–24, Scheme 2). Whereas +M-substitu-
ents increase the yield of products 13–19, which is indicative
for the need to stabilize partial positive charge during the
activation of the propargylic acetate, the opposite is true for
the p-substitution of the aryl-group at the cyclopropane
moiety (products 20–24, Scheme 2). This points into the
direction of a catalyst-controlled C� C-bond activation of the
cyclopropane rather than a carbocationic (Wagner–Meer-
wein-type) ring-opening reaction.

As the formation of dienes 13–29 follows a two-step
mechanism of cycloisomerization and subsequent elimina-
tion [Eq. (2), Scheme 3][8] we were wondering whether a
variation of the ester moiety in the starting material might
allow to slow down the elimination process and hence would
provide an access to the corresponding allylic acetate
(Scheme 3). Consequently, various propargylic esters 30–37
were prepared and subjected to the reaction conditions.
Gratifyingly, in all cases the starting material was converted
indicating that apart from pivalate these ester groups are
compatible with the cycloisomerization conditions, however,
in all cases a fast elimination to diene 13 or 17 was observed
[Eq. (1), Scheme 3]. At this point we were wondering
whether the Fe-complex actually catalyzes the fast elimina-
tion. Indeed, subjecting allylic acetate 14 to the reaction
conditions in the presence or absence of catalyst 2 led to
either quantitative elimination to 13 or to no reaction,
respectively [Eq. (2), Scheme 3]. Consequently, trisubsti-
tuted olefin 35 which is not prone toward elimination
undergoes the cycloisomerization in 75% yield to diaster-
eomerically pure acetate 36 [Eq. (3), Scheme 3].

Table 1: Catalyst optimization.[a]

Entry Catalyst [mol-%] Solvent/T [°C] 13[b]/14[b]

1 2 (10) CH2Cl2/50 80%/–
2 2 (2) CH2Cl2/50 40%/35%
3 2 (3) CH2Cl2/50 43%/33%
4 2 (3) CH2Cl2/30 60%/34%
5 – CH2Cl2/50 –
6 HBF4 (2) CH2Cl2/50 decomp.

[a] Reaction conditions: All reactions were performed on a 0.2 mmol
scale in dry solvent (1 mL) under a N2-atmosphere for 22 h. [b] Yields
determined by 19F NMR using 4,4’-difluorobenzophenone as internal
standard.

Scheme 2. Scope of the Fe-catalyzed cycloisomerization-elimination.[9]
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In transition metal catalyzed Tsuji–Trost-type allylations
allylic alkylcarbonates are highly reactive. In contrast to the
use of allylic acetates, the leaving group can undergo a fast
decarboxylation to give the corresponding alkoxide which
acts as a base or nucleophile. Gratifyingly, the use of
propargylic alkylcarbonates as starting materials slowed
down the elimination process. Employing propargylic
carbonate 37 we were able to isolate ether 38 in 52% yield
as a single diastereomer along with diene 17 as by-product
[Eq. (1), Scheme 4]. The use of trisubstituted olefin 39 led to
the formation of the respective allylic ether 40 in 82% yield
and with exclusive diastereoselectivity [Eq. (2), Scheme 4].

Although a detailed description of mechanistic scenarios
at the current state of research is not possible and needs
further investigations, we performed additional experiments
to gain some further information on potential pathways
(Scheme 5). Different catalysts were tested [Eq. (1),
Scheme 5]. While (Rh(CO)2Cl)2 did not work, we were
surprised to find Echavarren’s AuI-complex to be inactive,
too [Eq. (1), Scheme 5]. The use of AgBF4 did provide
access to product 13 in moderate yields.[10] The use of AuCl3
led to conversion of starting material, however, allene 44
and cyclopropane 43, in which the cyclopropyl-moiety

remained unaffected, were isolated in moderate yields
[Eq. (2), Scheme 5]. As we considered both products to be
potential intermediates in this transformation, we subjected
them to the reaction conditions but did not find any
conversion [Eq. (3) and (4), Scheme 5]. Based on these
findings, our previous experimental results in related
cycloisomerizations[5a,c] and the fact that +M-substituents at

Scheme 3. Fe-catalyzed cycloisomerization-elimination—influence of
the ester and olefinic moiety. [a] Partial hydrolysis of the ester to the
corresponding tertiary alcohol 40 was observed. Combined yield after
acetylation of the crude product.[9]

Scheme 4. Fe-catalyzed decarboxylative cycloisomerization.[9]

Scheme 5. Control experiments.
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the propargylic aromatic unit promote the reaction whereas
+M-substituents in the arylcyclopropane moiety decrease
the conversion (Scheme 2) we propose the following mecha-
nistic scenario as a working hypothesis (Figure 1).

The cationic Fe-complex coordinates to the alkyne
moiety leading to the cyclopropyl-substituted metallcyclobu-
tane intermediate II. The fact that +M-substituents in the
arylcyclopropane moiety decrease the conversion does not
support the hypothetical formation of a free carbocationic
intermediate, hence, it seems as if the cationic Fe-center
fosters II to undergo a metal-centered C� C-bond activation
ring expansion process with release of ring-strain to give
ferracyclobutane III. 1,3-Metallotropic shift within the
exocyclic vinylacetate unit provides access to the ferracyclo-
heptane IV that upon 1,2-acetoxy migration and deferration
leads to the observed product VI and recycled catalyst 2.

We report here a cycloisomerization-C� C-bond activa-
tion of enyneacetates featuring a vinylcyclopropane moiety.
Catalytic amounts of the readily accessible cationic Fe-
complex [(Ph3P)2Fe(CO)(NO)]BF4 mediate this transforma-
tion under mild conditions to give fused tricyclic cyclo-
butanes in good to high yields. Depending on the substitu-
tion pattern either 1,3-dienes or allylic acetates were
observed. Interestingly, amongst the different noble metal
type catalysts tested only AgBF4 showed a similar reactivity
albeit at significantly lower yields.
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