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Faces carry key personal information about individuals, including cues to their identity,
social traits, and emotional state. Much research to date has employed static images
of faces taken under tightly controlled conditions yet faces in the real world are
dynamic and experienced under ambient conditions. A common approach to studying
key dimensions of facial variation is the use of facial caricatures. However, such
techniques have again typically relied on static images, and the few examples of dynamic
caricatures have relied on animating graphical head models. Here, we present a principal
component analysis (PCA)-based active appearance model for capturing patterns of
spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate
how this technique can be applied to generate dynamic anti-caricatures of biological
motion patterns in facial behaviours. This technique could be extended to caricaturing
other facial dimensions, or to more general analyses of spatiotemporal variations in
dynamic faces.

Keywords: dynamic faces, facial caricaturing, ambient faces, computational neuroscience, face perception

INTRODUCTION

Faces provide a wealth of information about people including their identity (Ellis, 1975),
social traits (Oosterhof and Todorov, 2008), and emotional state (Bruce and Young, 1986;
Calder and Young, 2005). Faces encountered in the real world are often dynamic and
highly variable. Despite this, much research to date has employed static images of faces
taken under tightly controlled conditions. Such images risk controlling away potentially
important sources of variation, such as within-person variability (Jenkins et al., 2011).
Furthermore, both behavioural (Lander and Butcher, 2015) and neurological (O’Toole et al.,
2002; O’Toole and Roark, 2010; Bernstein and Yovel, 2015) evidence supports a processing
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advantage for dynamic over static faces, indicating that dynamic
faces convey information that static faces do not.

Facial caricatures present a common method for studying key
dimensions of facial variation (Benson and Perrett, 1991b), by
either increasing (caricaturing) or decreasing (anti-caricaturing)
differences in facial features between an exemplar and reference
face, where the reference is typically a neutral or average
face. Such methods have been applied to static images to
study facial features underlying the perception of identity
(Benson and Perrett, 1991a; Blanz et al., 2000; Leopold et al.,
2001; Jiang et al., 2006), age (Burt and Perrett, 1995), and
emotional expressions (Calder et al., 1997, 2000; Juricevic and
Webster, 2012). Caricaturing dynamic faces poses a further
challenge as the process must account for both spatial and
temporal patterns of variation. Previous approaches have
manipulated the magnitude of motion in facial landmarks
during simple facial behaviours, using the resulting motion
vectors to drive virtual head models (Hill et al., 2005; Furl
et al., 2020, 2022). However, such artificial head models lack
many of the features present in real faces. A method for
dynamically caricaturing facial behaviours in natural videos is
therefore still lacking.

In a recent study (Watson et al., 2020), we developed a
paradigm for eliciting dynamic and natural facial behaviours by
video recording subjects while they delivered short sentences
conveying either good or bad news. Speech patterns such
as these provide a key source of non-rigid motion in the
face. Using a principal component analysis (PCA)-based
active appearance model, along with machine learning,
we were able to reconstruct a behaviourally interpretable
dimension of emotional valance from the facial behaviours.
This technique considered motion information in the sense
that it included changes in shape and texture over time.
However, it did not consider the temporal structure of this
information as each frame was simply represented as an
independent sample within the model, and the order of
the frames was ignored. It thus remains unclear whether
such a model is able to capture more nuanced patterns of
temporal variation.

Here we present an alternative application of our previous
methods (Watson et al., 2020) that aims to model patterns
of both spatial and temporal variation within natural facial
behaviours. We demonstrate how this technique can be used
to create dynamic anti-caricatures of biological motion patterns
by morphing between an exemplar and an average timeseries of
facial behaviours evoked during speech movements. As before,
we initially use a PCA-based active appearance model to capture
modes of spatial variation in the face over time. We then use an
established dynamic time warping algorithm to align the PCA
timeseries over clips. Finally, we present a novel method for
capturing patterns of temporal variation by submitting the PCA
timeseries to a further second-order PCA. This second-order
PCA space represents deviations between exemplar clips and the
average first-order PCA timeseries. Weighting and then back-
projecting samples from this space yields anti-caricatured videos
that vary in terms of their spatial and temporal deviations from
the average timeseries.

METHODS

The datasets and some of the methods presented here have
previously been described in Watson et al. (2020).

Recordings
Three subjects (two females, one male, and age range 26–42) were
video recorded. The study was approved by the Ethics Committee
of the School of Psychology at the University of Nottingham
(Ethics approval number: 717) and conducted in accordance
with the guidelines and regulations of this Committee and the
Declaration of Helsinki. All subjects provided informed written
consent to take part in the study and for their likeness to be
used in publication.

Subjects were recorded against a uniform visual background
in an anechoic chamber. Recordings were made with a Sony
HXR-NX5U NXCAM camera connected to an Atomos Ninja-
2 recorder that recorded videos in Apple ProRes RAW format.
Videos were acquired at a resolution of 1,920 × 1,080 pixels and
at 25 fps with a 6.67 ms exposure. Audio was recorded at a 48 kHz
sampling rate. Videos were then encoded using MPEG-4 lossless
compression prior to further processing.

Each subject delivered multiple repeats of 20 unique phrases,
each conveying either good or bad news (10 unique phrases
within each type). A list of the phrases is provided in
Supplementary Table 1. Subjects 1 and 2 performed 15 repeats
of each phrase (300 total), and Subject 3 performed 16 repeats
(320 total). Subjects were not told to pose any specific expressions
or behaviours; instead, they were instructed to simply deliver
the phrases in whatever manner felt most natural to them.
While delivering the phrases, subjects viewed silent videos of
putative recipients presented on a teleprompter directly in
front of the camera. Recipient videos showed video-conference
style calls obtained from YouTube and helped give subjects
the impression of having a person listen to them while they
delivered their phrases.

Video Pre-processing
Each phrase repeat was then clipped to just the common prefix
portion of each phrase (“Good news . . .” or “I’m sorry to say
. . .”), excluding the later variable suffix portions (e.g., “. . . the
operation went well!” or “. . . we’re going to have to let you
go”). The Google Cloud Speech-to-Text algorithm1 was used to
generate timestamps for each word in each phrase, which were
then used to define onsets and offsets for each prefix portion.
Onsets were adjusted 200 ms before the first word onset so as to
include facial movements commencing immediately prior to the
vocalisation. Manual corrections were applied where necessary.
Clips varied in duration because the length of each vocalisation
could differ over repeats.

Each clip was then cropped to a square region around the
face. A Haar cascade face-detection algorithm implemented in
OpenCV2 extracted the position of the face within the scene on
each frame. A square bounding box was then defined around the

1https://cloud.google.com/speech-to-text
2https://opencv.org/
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average face position, allowing for a small border around the face.
This ensured the face was placed approximately centrally within
the scene. Each clip was then down-sampled to a resolution of
128 × 128 pixels via an anti-aliasing filter.

Multi-Channel Gradient Model and
First-Order Principal Component
Analysis
An overview of the remaining processing pipeline is illustrated
in Figure 1. We employed a two-frame version of the Multi-
channel Gradient Model (McGM; Johnston et al., 1992, 1999;
Cowe, 2003) to capture shape and texture changes in the face
over frames. This model has previously been shown to capture
key dimensions of facial variation including gender (Griffin et al.,
2011), speech movements (Scholes et al., 2020), and emotional
valence (Watson et al., 2020), and can identify critical facial
features for image reconstruction (Berisha et al., 2010). For
each frame within the cropped and down-sampled clips, a warp
vector field was calculated to register the frame to a standard
reference image. The reference image was initially defined by
an individual frame extracted from one of the recordings but
was then replaced with the average of all textures after warping.
This process was iterated three times, recalculating the warps
and replacing the reference image with the average warped
textures each time: this provided a more standardised final
reference image. For each frame, the McGM yields a 5-channel
image comprising the x- and y-direction warp components
needed to warp the original image to the final average reference
image, plus a “shape-free” version of the RGB textures after
warping to the reference. These images were then vectorised
and stacked over frames and clips, such that each frame in each
clip is represented as an independent sample within an 81,920-
dimensional (128 × 128 × 5) feature space defined by the pixels
of the McGM images. Each clip is therefore represented by a high-
dimensional multivariate timeseries within the McGM space.
Note that the use of the McGM here for image registration (Cowe,
2003) differs from some previous applications that instead used
the same model to measure local image velocities (Johnston et al.,
1992, 1999).

Samples within the McGM space were then split between
the phrase-types (“Good news” and “I’m sorry to say”), and
each phrase-type was processed separately thereafter. The
dimensionality of the McGM space was reduced via principal
component analysis (PCA). All available components were
retained (one fewer than the total number of frames over all
clips within the given phrase-type). Because the number of
samples is less than the number of McGM features, this allows
a lossless PCA where 100% of variance remains explained while
still reducing the dimensionality. Whereas a lossy PCA can
reduce the dimensionality further, the lossless PCA was chosen
to best preserve the fidelity of individual clips. This produced
the first-order PCA (PCA1) space, in which samples are given
by the frames over all the clips (within the given phrase-
type), and dimensions are given by the first-order principal
components. Each clip is thus represented by a multivariate
timeseries within the PCA1 space. The first-order principal

components encode modes of common spatial variation amongst
the McGM image pixels, but do not consider the temporal order
of this information.

Temporal Alignment
Next, we temporally aligned the PCA1 timeseries over the clips
within each phrase-type independently. Although all clips were
cut to the initial prefix portion of each phrase, the onset of each
vocalisation won’t necessarily occur at the same time point within
each clip, and the duration of each vocalisation may vary over
repeats. We based the temporal alignment on the audio streams
as they provide a precise measure of the temporal evolution of
each vocalisation and show a good correspondence over repeats.

Audio streams were averaged over stereophonic channels
to produce a single monophonic audio signal for each clip.
As we are primarily interested in aligning modulations in
the audio amplitudes, we applied a Hilbert transform to
extract the amplitude envelopes from the audio signals. The
original cuttings of each clip include a brief period prior to
the onset of the first word to capture any facial movements
commencing immediately prior to the start of the vocalisation.
However, these periods are largely silent and so lack any
consistent amplitude modulations on which to base a temporal
alignment. We therefore re-cut the onset of each audio stream
to lie closer to the onset of the actual vocalisation. This was
done by identifying the timepoint of the initial rise in audio
amplitude in the amplitude envelope. This timepoint was then
adjusted to 80 ms (two video frames) prior to this to allow
a small margin of error prior to the audio onset, and then
rounded to the timepoint of the nearest video frame onset
(i.e., to the nearest 40 ms). Manual corrections were applied
where necessary.

The re-cut audio streams were then temporally aligned
using a dynamic time warping (DTW) algorithm implemented
using the dtw-python package (Giorgino, 2009; Tormene et al.,
2009)3. For purposes of computational tractability, the audio
amplitude envelopes were down-sampled by a factor of 10
(yielding an effective sampling rate of 4.8 kHz) using scipy’s
decimate function. The down-sampled envelopes for each
clip were then aligned to a common reference envelope
(Figure 2A). The reference was initially selected as the
individual clip closest matching the median duration over
all clips. However, to provide a more standardised reference,
the reference envelope was then replaced with the average
envelope over all clips after temporal alignment, and the
DTW was recomputed for the new reference. This process
was iterated three times, updating the average reference
envelope each time, to allow the reference to stabilise. To
minimise extraneous effects of global amplitude differences
irrelevant to the temporal alignment, all envelopes (including
the reference) were rescaled to have an L2-norm equal to
one on every iteration. The DTW was computed using an
asymmetric step pattern and allowed open beginnings and
ends so that neither the first nor last sample need be
matched exactly.

3https://dynamictimewarping.github.io/
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FIGURE 1 | Schematic illustration of processing pipeline. (A) Multi-channel Gradient Model (McGM) registration process. Each input frame is warped to an average
reference image, producing a 5-channel image comprising the x- and y-warp components plus the RGB warped textures. (B) Principal Component Analysis (PCA)
pipeline. McGM outputs are vectorised such that each frame is represented as a sample in a high dimensional space. This space is reduced via lossless PCA,
yielding the PCA1 space. Clips are temporally aligned by interpolating PCA1 scores between frames based on dynamic time warping (DTW) of the audio streams.
Aligned PCA1 scores are vectorised within each clip and combined with the dynamic time warping gradients, such that each clip is represented as a sample in a
new high dimensional space. This space is then reduced by a second lossless PCA, yielding the PCA2 space. The pipeline is fully reversible, such that samples at
any stage can be back-projected to the image space.

The resulting warping curves can be used to align the audio
streams. To align the video frames, the audio warping curves
were down-sampled to the resolution of the video sampling rate
(25 fps) via linear interpolation (Figure 2B). The audio alignment
excludes the period before the vocalisation onset; however, some
facial movements may still occur during this period. We therefore
extended the video warping curves at a 45◦ angle (i.e., matching
clip and reference frames one-for-one) for a further four video
frames (160 ms) prior to the vocalisation onset. Although this
may only achieve a moderately accurate temporal alignment, it
is nevertheless preferable to include the visual information from
this initial period than to exclude it. The final video warping
curves were then used to apply a linear interpolation between
frames of the PCA1 timeseries for each clip. Following this, each

clip is still represented by a multivariate timeseries in the PCA1
space, however, all timeseries will now be the same length and
should be aligned in time (within each phrase-type).

Second-Order Principal Component
Analysis and Caricaturing
The temporally aligned PCA1 scores were vectorised within
each clip. In addition, the gradients of the video time warping
curve were appended to the end of each vector: this allows
incorporating information about the temporal scale of the
behaviours and permits the DTW curve to be reconstructed
from the second-order PCA space. This generated a new high-
dimensional feature space in which each clip is represented as
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FIGURE 2 | Illustration of temporal alignment procedure for an example “Good news” clip. (A) Audio amplitude envelopes for each clip are aligned to an average
reference envelope via dynamic time warping. (B) The resulting warping curve is down-sampled to the video sampling rate such that it can be applied to the PCA1

timeseries. The interpolated curve is extended at a 45◦ angle for 4 video frames prior to the audio onset (dotted line) so that facial movements commencing shortly
before the vocalisation are also included.

an independent sample, and where the dimensions comprise the
concatenation of first-order principal components over video
frames plus the DTW gradients. The dimensionality of this
space was then reduced by a further lossless PCA. As before, all
available components were retained (one fewer than the number
of clips), such that 100% of variance remained explained after
the dimensionality reduction. This produced the second-order
PCA (PCA2) space, in which each clip is a sample and the
dimensions are given by the second-order principal components.
Components within this space can reflect interactions between
first-order principal components and timepoints and can
therefore encode both spatial and temporal modes of facial
variation. Whereas points within the PCA1 space represent
individual images, points within the PCA2 space represent full
temporal sequences. The origin of the PCA2 space represents the
PCA1 timeseries averaged over clips, and individual samples are
represented in terms of their spatiotemporal deviations from this
average timeseries.

To produce dynamic anti-caricatures, we weighted the loading
of a given sample/clip within the PCA2 space. A weighting of zero
will reduce the representation to the origin, thereby reproducing
the average PCA1 timeseries. A weighting of one will return a
representation of the original clip. Intermediate weightings will
yield varying levels of anti-caricature, weightings greater than
one will yield caricatures, and negative weightings will yield anti-
faces. For a given weighting, the resulting PCA2 sample was
back-projected to the reshaped PCA1 space. This produced a
reconstruction of the vectorised PCA1 scores plus the DTW
gradients. The reconstructed vectorised PCA1 scores were then
“un-vectorised” to return the sample to the temporally aligned
PCA1 space (with frames as samples and first-order principal
components as dimensions). Meanwhile, the reconstructed DTW
gradients were used to generate a time warping curve, which
was in turn then used to apply a linear interpolation to the
“un-vectorised” reconstructed PCA1 scores that returned them
to the original timescale. From here, the reconstructed PCA1
scores were back-transformed to the McGM space. Finally,

the reconstructed McGM warp components were inverted to
spatially unwarp the reconstructed textures back to the image
space. To aid visualisation, the visual contrast of the images was
enhanced via unsharp masking. The complete back-projection of
a given point from within the PCA2 space therefore yields a full
video animation within the image space.

Perceptual Ratings
We conducted a behavioural experiment to quantify the effect of
the caricaturing on human perception of biological motion in the
videos. Ten participants took part in the experiment (three male,
seven female, and age range 23–36). The study was approved
by the Ethics Committee of the School of Psychology at the
University of Nottingham (Ethics approval number: F1249) and
conducted in accordance with the guidelines and regulations of
this Committee and the Declaration of Helsinki. Participants
provided informed consent via an electronic form prior to
participation. The experiment was run online using PsychoPy
and Pavlovia (Peirce et al., 2019)4. To avoid confusion, for the
analysis of the behavioural data we refer to the participants in this
experiment as “raters” and the participants in the original video
recordings as “recording subjects.”

Raters were shown video clips across 5 levels of anti-
caricaturing (0, 0.25, 0.5, 0.75, and 1) for the “I’m sorry to say”
phrases. We avoided using weightings outside the zero to one
range (caricatures and anti-faces) as these are more prone to
image distortions that could confound the task. We also omitted
the “Good news” phrases as these typically have relatively short
durations which would make the task unduly challenging. Each
rater was shown a 10% subset of clips across all three recording
subjects (15 unique clips for S1 and S2, 16 unique clips for
S3), such that ratings were provided for all clips across the
10 raters. Across the 5 caricaturing levels, each rater therefore
completed 230 trials. The trials were split into three blocks
with each recording subject presented continuously throughout

4https://pavlovia.org/
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a block; this was done to aid raters in generating an internal
standard of each recording subject’s range of facial behaviours.
The order of blocks was randomised for each rater. An additional
shorter practice block was included at the start of the experiment,
comprising the 5 anti-caricaturing levels for an example clip
from each recording subject (15 trials total). To avoid priming
responses, practice clips were selected from a different subset of
clips to the main trials.

Raters were informed that they would view a series of silent
videos showing people saying a short phrase, and that the people
might appear livelier and more dynamic in some videos, and
less so in others. A more precise definition of dynamicity was
deliberately omitted so as to encourage raters to form their own
interpretation. On each trial, raters viewed the video clip and
were then asked to rate it for how “dynamic” the person appeared
to be. Raters made their responses on a 5-point Likert-scale
with the labels: “Not at all,” “Not much,” “A bit,” “Fairly,” and
“Very.” The responses were entered into a mixed effects ordinal
logistic regression implemented using the ordinal package in R
(Christensen, 2019)5. The caricaturing level (0, 0.25, 0.5, 0.75, and
1) was entered as the predictor variable, while the dummy coded
ratings (1–5) were entered as the outcome variable. Variable
intercepts were allowed over raters (R1–R10) and recording
subjects (S1–S3); a more complicated model allowing variable
slopes failed to converge. The slope parameter (β1) represents
the log odds of giving a higher versus lower dynamicity rating
given a one unit increase in the caricaturing level. If the slope is
significantly greater than zero, this would indicate that increasing
the caricature level leads to a significant increase in the likelihood
of raters providing a higher rather than lower dynamicity
rating. We applied an alpha criterion of 0.05 for determining
statistical significance.

RESULTS

Three subjects were video recorded while delivering a series
of phrases conveying either positive (“Good news”) or negative
(“I’m sorry to say”) news, eliciting dynamic and natural facial
behaviours in the form of speech patterns. A two-frame version
of the Multi-channel Gradient Model (McGM; Johnston et al.,
1992, 1999; Cowe, 2003) was used to register the facial textures
in each frame to a common average reference frame (Figure 1A).
Each frame is then represented by a 5-channel image comprising
the x- and y-direction warp components plus a “shape-free”
version of the RGB textures. The remaining processing pipeline
is illustrated in Figure 1B. This pipeline is applied within each
phrase-type (“Good news” and “I’m sorry to say”) and for each
subject independently. First, the McGM outputs were vectorised
such that each frame is represented as a sample within a high-
dimensional feature space. We then reduced the dimensionality
of this space using a lossless Principal Components Analysis
(PCA), retaining all available components so that 100% of
the variance remains explained. The resulting feature space
is hereafter referred to as the first-order PCA (PCA1) space.

5https://github.com/runehaubo/ordinal

Components within this space encode principal modes of spatial
variation in facial shape and texture over frames (Turk and
Pentland, 1991), but do not consider the temporal order of
such changes. Visualisations of the features encoded by the
early principal components are shown for an example dataset
in Figure 3, and animations for all datasets are shown in
Supplementary Video 1. The first principal component typically
encodes global changes over clips such as seating position or a
change in clothing; exaggerations of this component often induce
distortions in the image. Later components encode more salient
modes of facial variation, including both rigid changes in the head
position and non-rigid changes in the internal facial features such
as in the shape of the mouth or opening of the eyes.

At this point, each clip is represented by a multivariate
timeseries within the PCA1 space. However, these timeseries
are not temporally aligned over clips and may be different
durations. To capture common patterns of temporal variation,
it is therefore necessary to temporally align the PCA1 timeseries.
We based the alignment on the audio streams within each clip
as these provide a precise index for the temporal evolution of
each vocalisation. We used a dynamic time warping (DTW)
algorithm to temporally align the audio envelopes, then down-
sampled the resulting warping curves to the video sampling
rate and used these to interpolate the PCA1 timeseries between
frames in each clip (Figure 2). Following time warping, all PCA1
timeseries are identical in duration and temporally aligned over
clips. Figure 4 illustrates cross-sections through the first ten
aligned PCA1 timeseries averaged over clips. Clear modulations
are present in each component timeseries, indicating both that
common patterns of temporal variation are present in the PCA1
scores and that the time warping procedure was successful in
aligning these. This can be further illustrated by back-projecting
the average PCA1 timeseries to the image space. The resulting
animations (Supplementary Video 2) maintain clear depictions
of the phrases (“Good news” or “I’m sorry to say”) being spoken.

We next extracted common patterns of temporal variation
from the PCA1 timeseries. The temporally aligned PCA1 scores
were vectorised within each clip independently and concatenated
together with the DTW gradients for each clip. Including
the DTW gradients allows incorporating information about
the temporal scale of the behaviours and ensures that back-
projections through this space include the necessary information
to “unwarp” the corresponding PCA1 timeseries back to their
original timescale. This produces a new high-dimensional feature
space, in which each clip is represented as a sample, and where the
dimensions are defined by the combination of PCA1 components
and timepoints plus the DTW gradients. This space was then
reduced via a further lossless PCA, again retaining all available
components such that 100% of variance remains explained: this
yields the second-order PCA (PCA2) space. Components in the
PCA1 space capture principal modes of spatial variation in the
faces, but without regard to the temporal order of those changes.
By contrast, components in the PCA2 space capture patterns of
temporal variation amongst the first-order principal components.
Whereas each point within the PCA1 space represents an
individual image, each point within the PCA2 space represents
a full temporal trajectory and can be visualised as a video if
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FIGURE 3 | Visualisations of the first five components from the PCA1 space
for an example dataset (S3, “Good news”). Samples were selected at
positions between ± 3 standard deviations along a given principal component
axis and back-projected to the image space.

back-projected to the image space. The origin point of the PCA2
space represents the average PCA1 timeseries (Figure 4 and
Supplementary Video 2), and individual clips are represented

within the PCA2 space in terms of their spatiotemporal deviations
from this average timeseries.

To visualise this more clearly, we back-projected samples at
varying positions along the first five components of the PCA2
space. Still images from the final frame in each sequence for
an example dataset (Subject 3, “I’m sorry to say”) are shown
in Figure 5, and animations of the full sequences are shown in
Supplementary Videos 3–8. Similar to the PCA1 space, early
components encode global shape changes and exaggerating them
often causes distortions in the image. Patterns of facial variation
encoded in later components tend to be more subtle than those
observed in the PCA1 space (cf. Figure 3) but are still evident. For
example, in Subject 3’s “I’m sorry to say” dataset, PCs 1 through
4 include differences in the head tilt, while PC 5 modulates the
vertical head and jaw position.

Dynamic anti-caricatures and caricatures (Leopold et al.,
2001) of individual clips can be produced by multiplying a given
clip’s loadings within the PCA2 space and back-projecting to
the image space. A weighting of zero will reduce to the origin
of the PCA2 space and hence reproduce the average PCA1
timeseries. A weighting of one will reproduce the timeseries of
the original clip. Intermediate weightings will produce varying
levels of anti-caricature between the individual and average
timeseries. Weightings greater than one will produce caricatures
that exaggerate the deviations between the individual and
average timeseries (Benson and Perrett, 1991b), while negative
weightings will produce anti-faces that invert the deviations
(Leopold et al., 2001). Back-projecting a weighted sample to
the image space produces a dynamic (anti-)caricatured video.
Figure 6 shows still images from anti-caricatured and caricatured
sequences for an example clip from Subject 3’s “I’m sorry to

FIGURE 4 | PCA1 timeseries averaged over clips following temporal alignment. Plots illustrate cross-sections through the first ten principal components for each
subject and phrase-type (GN, “Good news”; ISTS, “I’m sorry to say”).
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FIGURE 5 | Visualisations of the final frame in the sequence for the first five
components from the PCA2 space for an example dataset (S3, “I’m sorry to
say”). Samples were selected at positions between ± 3 standard deviations
along a given principal component axis and back-projected to the image
space.

say” data. Animations for example clips from other datasets
are shown in Supplementary Videos 9–14, including anti-
faces, anti-caricatures, and caricatures. The caricaturing process
can modulate the intensity of multiple idiosyncratic behaviours
within each clip, such as the head orientation, head movements,
blinks, and mouth movements. Because the original behaviours
all occurred across relatively similar timescales, the caricaturing
effects here are most salient for spatial features. Nevertheless,
modulations of temporal features are also evident; for instance,
the caricaturing also alters the duration of sequences that are
shorter or longer than the average sequence. Weightings outside
of the zero to one range (caricatures and anti-faces) are prone
to introducing distortions into the image, especially in the case
of the anti-faces. This is because the McGM features represent
the facial motion in terms of changes in shape and texture over
time; modulating these features outside the normal range will
therefore exaggerate shape as well as temporal deviations, leading
to shape distortions. Consequently, this technique may be best
suited to producing anti-caricatures, using weightings within the
zero to one range.

To quantify the relationship between the caricaturing process
and the extent of biological motion, we conducted two further
analyses. First, we obtained an objective measure of the degree
of motion in each video sequence by calculating the magnitude
of the vectors in the x- and y-warp components of the McGM
feature space. These represent the magnitude of deviation
between each frame and the original reference image (Figure 1A),
such that larger values indicate a greater degree of movement

over frames. Distributions of motion magnitudes over frames are
illustrated in Figure 7A for varying anti-caricature and caricature
levels. As the level of caricaturing increases the distributions
become increasingly broad and biased toward larger values,
indicating greater magnitudes of motion in the clips. Secondly,
we obtained perceptual ratings from 10 naive observers for the
dynamicity of each clip across anti-caricature levels of the “I’m
sorry to say” phrases. Summaries of the ratings are illustrated
in Figure 7B: as the level of caricaturing increased so too did
the dynamicity ratings. This was confirmed with a mixed-effects
ordinal logistic regression, which revealed that increasing the
caricature level significantly increased the likelihood of providing
a higher dynamicity rating [β1 = 3.62, exp(β1) = 37.20, z = 27.09,
p < 0.001]. Thus, both objective and perceptual measures
indicated that the caricaturing process successfully modulated the
degree of biological motion.

DISCUSSION

In this study, we present a novel method for capturing
spatiotemporal patterns of biological motion in dynamic facial
behaviours and demonstrate how this can be used to create
dynamic anti-caricatures of those behaviours. This technique
extends existing spatial caricaturing methods by allowing
manipulation of both spatial and temporal features. A PCA-
based active appearance model is first used to capture dimensions
of spatial variation. Following temporal alignment of the PCA
timeseries, the scores are then submitted to a second-order
PCA that further encodes spatiotemporal variations amongst
facial behaviours. Each of these PCA spaces embodied all
gestured behaviours, including both rigid and non-rigid modes
of facial variation. Weighting a given sample within the second-
order PCA space yields dynamic (anti-)caricatures of that
sequence relative to the average first-order PCA timeseries.
Both objective and behavioural measurements confirmed this
technique modulated the degree of biological motion in the
facial behaviours.

Facial caricatures offer an important tool for studying face
perception by allowing parametric manipulation of key facial
dimensions that would be difficult or impossible for a person to
pose naturally. Caricaturing manipulations predict behavioural
ratings of corresponding facial features (Benson and Perrett,
1991a; Burt and Perrett, 1995; Calder et al., 1997, 2000; Blanz
et al., 2000; Furl et al., 2022), produce perceptual adaptation
effects (Leopold et al., 2001; Jiang et al., 2006; Juricevic and
Webster, 2012), and predict neural responses in face-selective
regions (Furl et al., 2020). Our approach extends existing spatial
caricaturing techniques by providing a method for generating
dynamic anti-caricatures from natural facial behaviours, thereby
allowing investigation of both spatial and temporal features
underlying face perception. The dimensions manipulated by the
caricaturing will depend on the choice of reference, determined
by the average of the clips in the first-order PCA space. In our
demonstration, this was an average of all clips within a given
phrase type (“Good news” or “I’m sorry to say”), and thus the
caricaturing manipulated idiosyncratic behaviours and biological
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FIGURE 6 | Still frames from dynamic anti-caricatures and caricatures of an example clip (S3, “I’m sorry to say”). Weighting by zero yields the average video
sequence, and weighting by one reconstructs the original clip. Intermediate weightings yield varying levels of anti-caricature, while weightings greater than one yield
caricatures. The bottom row illustrates frames from the original clip matched to approximately the same timepoints.

motion patterns in each clip relative to this average. We derived
dynamic facial behaviours from speech patterns: these provide
a good target case as they represent a key source of non-rigid
motion in the face, and also provide a degree of regularity that
is helpful for forming a temporal average. Nevertheless, the
technique could be applied to any pattern of facial movements
provided that some temporal average (or other reference) can
be formed for such movements. Such behaviours could, for
instance, include poses of emotional expressions or head turns.
Dynamic caricatures of facial behaviours could be applied to
study recognition of those behaviours (Furl et al., 2020, 2022),
similar to how static caricatures have been used to characterise
recognition of facial identity (Leopold et al., 2001). Indeed, our
own behavioural results confirmed that observers’ perception of
facial dynamicity increased with increasing levels of caricaturing.
Furthermore, this technique could be extended to manipulating
and characterising other facial characteristics in dynamic videos,
such as emotion (Calder et al., 1997), identity (Benson and
Perrett, 1991a), or age (Burt and Perrett, 1995).

A key component of this process is that the first-order PCA
timeseries should be temporally aligned before conducting the

second-order PCA. We used a dynamic time warping process
based on the audio streams as this offered a precise measure of
the vocalisation timings, but similar methods could be applied
to other time-varying metrics such as the position of key facial
landmarks (Hill et al., 2005; Furl et al., 2020). We included the
time warping gradients along with the vectorised PCA1 timeseries
as inputs to the second-order PCA - this served a theoretical
purpose by including information about the temporal scale of
the original facial behaviours, as well as a practical purpose
by ensuring that back-projections from the PCA2 space would
reconstruct the gradients needed to “unwarp” the corresponding
reconstructed PCA1 timeseries back to its original timescale. It is
important to note that a poor temporal alignment amongst clips
will likely cause modulations in the first-order PCA timeseries
to cancel and average out over clips, resulting in a reference
timeseries that corresponds to a largely static face. Dynamic
caricatures generated relative to a static reference may include
undesirable properties, such as a modulation of global motion
rather than of idiosyncratic facial behaviours. For instance, Hill
et al. (2005) note that caricaturing a dynamic negative expression
relative to a static neutral reference would have the effect of
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FIGURE 7 | Objective and perceptual measures of caricaturing. (A) Magnitudes of visual motion across varying levels of caricature and anti-caricature. Weighted
samples are back-projected from the PCA2 to the McGM space, and the magnitudes of the x- and y-warp components are extracted. Kernel density estimates
illustrate distributions of magnitudes over all frames in all clips. GN, “Good news”; ISTS, “I’m sorry to say.” (B) Perceptual ratings of dynamicity across varying levels
of anti-caricature for the “I’m sorry to say” phrases. Boxplots illustrate medians, upper and lower quartiles, and data ranges excluding outliers.

increasing the overall dynamicity of the expression, yet we might
expect an expression would actually become less dynamic with
increasingly negative valence.

Here, we obtained recordings from a relatively small number
of subjects, but with each subject performing many repeats
of each phrase. This design allowed us to build PCA-based
active appearance models that optimally characterised facial
behaviours within each subject individually. Future applications
of these techniques might additionally explore spatiotemporal
variation between subjects or between different facial behaviours.
For instance, PCA-based spatial caricaturing techniques have
previously been used to morph between individuals varying
in features such as gender (Griffin et al., 2011) and perceived
political affiliation (Roberts et al., 2011). A more variable stimulus
set comprising a wider variety of individuals or facial behaviours
may prove more beneficial for such investigations.

Previous facial caricaturing methods have typically relied on
manipulating the difference between an exemplar and reference
face in terms of pre-defined facial landmarks. By contrast,
the McGM employed here captures dynamic changes in shape
and texture at the pixel-level (Johnston et al., 1992, 1999;
Cowe, 2003). This allows our approach to advance on previous
dynamic caricaturing methods by permitting manipulation of
the original video textures instead of driving a virtual avatar.
Consequently, our technique can represent finer and more
nuanced changes in the faces, which would potentially be lost
if only sampling sparse facial landmarks. Furthermore, our
approach can capture changes in the texture and shape from
shading that can be challenging to represent accurately in a
virtual avatar. Nevertheless, our technique can be more prone
to image distortions, especially outside the anti-caricature range
(i.e., generating caricatures or anti-faces), which are less prevalent
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in virtual avatars. Manipulating the video textures may also
modulate other incidental image properties; for instance, visual
contrast was generally reduced for lower anti-caricaturing levels
due to the averaging process. Visual contrast can influence
the perception of various facial features including attractiveness
(Pallak, 1983), age (Porcheron et al., 2017), emotional expression
(Webb et al., 2020), and first impressions (Sato et al., 2008).
The facial dynamicity ratings provided in our own behavioural
experiment may potentially have been influenced by changes in
visual contrast over varying levels of anti-caricature, although
these changes would not be expected to influence facial motion
directly, and subjective accounts of varying dynamicity are
consistent with our objective measurements of visual motion
magnitudes. Future applications of this technique may therefore
consider whether further control or normalisation of such
image features would be beneficial. Thus, the advantages and
disadvantages of each approach may be best considered relative
to the use case. Other methods based on temporal filtering have
also been proposed for exaggerating motion in dynamic scenes
(Wu et al., 2012), however, these produce a general increase of
all motion within the scene, while our approach more specifically
targets dynamic facial behaviours.

Weighting a sample in the second-order PCA space between
zero and one allows generating varying levels of anti-caricature.
Multiplication by values greater than one can create active
caricatures, in which dynamic behaviours are exaggerated beyond
the level present in the exemplar clip. Equally, multiplication
by negative values can generate “anti-face” (anti-)caricatures, in
which the encoded facial behaviours are inverted (Blanz et al.,
2000; Leopold et al., 2001; Jiang et al., 2006; Juricevic and
Webster, 2012; Furl et al., 2020, 2022). In our approach, however,
multiplication outside the zero to one range (Supplementary
Videos 9–14) tended to produce distortions in the image,
particularly in the case of the anti-faces. The McGM features
represent the motion of the face in terms of changes in shape
and texture over frames. Modulation of these features outside the
normal range will therefore exaggerate shape as well as temporal
deviations, leading to shape distortions. At present, our technique
may be best suited for generating dynamic anti-caricatures.
Existing caricaturing techniques, such as those driving virtual
avatars, may be more appropriate for generating more extreme
caricatures or anti-faces depending on the use case.

Here we demonstrate the utility of our method for deriving
dynamic anti-caricatures, however, it could be extended for
many other purposes. First-order PCA face spaces have been
used to classify and extract features underpinning emotional
expressions (Calder et al., 2000; Watson et al., 2020) and facial
identity (Kramer et al., 2017). They have also been used to
generate predictive models of behavioural (Hancock et al., 1996,
1998) and neural (Chang and Tsao, 2017) representations of
faces. The second-order PCA approach described here offers
the opportunity to extend such investigations to include both
spatial and temporal modes of facial variation. While the
second-order PCA aims to identify variation along orthogonal
linear components, other decomposition techniques may also
be able to utilise alternative projections to extract other modes
of spatiotemporal facial variation. For instance, independent

components analysis would allow removing the orthogonality
constraint, while manifold-learning techniques could derive a
non-linear embedding. Such techniques could be used either
alongside or instead of PCA.

CONCLUSION

We propose a novel PCA-based active appearance model for
capturing dimensions of spatial and temporal variation in
dynamic facial behaviours. A first-order PCA is used to encode
modes of spatial variation in the faces. Representations within
this space are then temporally aligned before being submitted
to a second-order PCA. Dimensions of this space encode modes
of spatiotemporal facial variation. We demonstrate how this
technique can be used to produce dynamic anti-caricatures of
biological motion patterns in faces, though the general method
could be extended to numerous further avenues of research.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: Open Science
Framework (https://osf.io/t6crn/).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the School of Psychology
at the University of Nottingham (Ethics approval numbers:
717, F1249). The patients/participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication of
any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

DW performed the analysis under the supervision of AJ.
Both authors conceived and developed the study, contributed
to the writing of the manuscript, and approved the final
version for submission.

FUNDING

This research was funded by the NIHR Nottingham Biomedical
Research Centre and supported by the NIHR Nottingham
Clinical Research Facility.

ACKNOWLEDGMENTS

We would like to thank Ben B. Brown for performing the original
data collection.

Frontiers in Psychology | www.frontiersin.org 11 May 2022 | Volume 13 | Article 880548

https://osf.io/t6crn/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-880548 May 21, 2022 Time: 15:15 # 12

Watson and Johnston Characterising Dynamic Facial Behaviours

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2022.880548/full#supplementary-material

Supplementary Video 1 | Visualisations of the first five components from the
PCA1 space for all datasets. Animations illustrate projections between ± 3
standard deviations along each given principal component axis. GN, “Good
news”; ISTS, “I’m sorry to say.”

Supplementary Video 2 | Back-projection of PCA1 timeseries averaged over
clips following temporal alignment. To aid visualisation, videos are played at half
speed. GN, “Good news”; ISTS, “I’m sorry to say.”

Supplementary Video 3 | Visualisations of the first five components from the
PCA2 space for S1 – “Good news” dataset. Samples were selected at positions
between ± 3 standard deviations along a given principal component axis and
back-projected to the image space. To aid visualisation, videos are
played at half speed.

Supplementary Video 4 | As per Supplementary Video 3, for S1 – “I’m sorry
to say” dataset.

Supplementary Video 5 | As per Supplementary Video 3, for S2 –
“Good news” dataset.

Supplementary Video 6 | As per Supplementary Video 3, for S2 – “I’m sorry
to say” dataset.

Supplementary Video 7 | As per Supplementary Video 3, for S3 –
“Good news” dataset.

Supplementary Video 8 | As per Supplementary Video 3, for S3 – “I’m sorry
to say” dataset.

Supplementary Video 9 | Dynamic caricatures for an example S1 - “Good news”
clip. Multiplication by zero yields the average video sequence, and multiplication
by one reproduces the original clip. Intermediate values yield varying levels of
anti-caricature, values greater than one yield caricatures, and negative values yield
anti-face (anti-)caricatures. To aid visualisation, videos are played at half speed.

Supplementary Video 10 | As per Supplementary Video 9, for an example S1 –
“I’m sorry to say” clip.

Supplementary Video 11 | As per Supplementary Video 9, for an example S2 –
“Good news” clip.

Supplementary Video 12 | As per Supplementary Video 9, for an example S2 –
“I’m sorry to say” clip.

Supplementary Video 13 | As per Supplementary Video 9, for an example S3 –
“Good news” clip.

Supplementary Video 14 | As per Supplementary Video 9, for an example S3 –
“I’m sorry to say” clip.
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