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Abstract

COVID-19 is a global pandemic threatening the lives and livelihood of millions of people

across the world. Due to its novelty and quick spread, scientists have had difficulty in creat-

ing accurate forecasts for this disease. In part, this is due to variation in human behavior and

environmental factors that impact disease propagation. This is especially true for regionally

specific predictive models due to either limited case histories or other unique factors charac-

terizing the region. This paper employs both supervised and unsupervised methods to iden-

tify the critical county-level demographic, mobility, weather, medical capacity, and health

related county-level factors for studying COVID-19 propagation prior to the widespread

availability of a vaccine. We use this feature subspace to aggregate counties into meaning-

ful clusters to support more refined disease analysis efforts.

Introduction

The emergence of COVID-19 has evolved into a widespread pandemic in a very short time

and drastically affected the United States and the world. Many forecasts are being made

regarding the potential number of cases and fatalities associated with the virus. Much of the

available data skew towards large urban areas. According to data available from John Hopkins

University [1], as of September 6, 2020, there were 6,163,496 cases and 186,125 deaths in the

US. Of those, 2,481,887 cases (40%) and 72,202 deaths (39%) were from the four most popu-

lous states (California, Texas, Florida, and New York). In contrast, a smaller state like Okla-

homa had only 63,556 cases and 853 deaths. At the county level, the imbalance is even more

explicit: 12 counties, less than 0.5% of all counties in the US, represent over 20% of total

COVID-19 cases, and only 8 counties account for 20% of the reported deaths.

All projections of the spread of COVID-19 are subject to the limitations of the data upon

which they are based. At the national level, projections are dominated by the volume of cases

from large regions (states or counties). Projections for less populous areas become more diffi-

cult due to limited case histories and each location’s heterogeneity. These less populous areas

also tend to be the least prepared for an onslaught of COVID-19 cases [2–4]. Hospitals and

medical funding in these counties rely on forecasting to determine how to concentrate their
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efforts to prepare for a potential outbreak without depleting precious resources that can be

used for other needs such as education. Given the skew of data towards urban areas, many

forecasts for rural, semi-rural, and small populations result in over or under forecasting out-

breaks. With limited economic resources, relying on inaccurate forecasting can result in

unnecessary spending or, in the case of under forecasting, the loss of human lives.

Many traditional tools for disease analyses leverage only limited data to distinguish one

area from another, i.e., age distribution and the number of current COVID-19 cases. While

this may be sufficient to forecast disease spread for large regions, it is insufficient at a more

refined level [5, 6]. For example, on April 10, 2020 using a Susceptible- Exposed-Infectious-

Recovered (SEIR) model, the Oklahoma State Department of Health forecast that daily

COVID-19 infections would peak in the state on April 21, and, by May 1, Oklahoma would

have 9,300 total cases and 469 deaths [7]. In actuality, there were only 3,748 cases and 230

deaths by May 1, and the disease was nowhere near peaking.

Forecasting is complicated by the fact that critical variables can differ significantly geo-

graphically and demographically. That is, disease transmissibility is not only a characteristic of

the biological pathogen, but also a function of human behavior and environmental factors [8,

9]. By not accounting for these differences, there is a risk of biasing the predictions towards

large, urban areas and missing important unique traits among subgroups. The effect of this

variation diminishes when considering large populations. However, there is a need for region-

specific analyses and projections.

Additionally, while sufficient data quantity and quality might be available at higher levels of

aggregation (e.g., state or country) or populous regions (e.g., New York City), this is not as

likely at smaller scales and local levels. This study offers an approach to cluster small geogra-

phies based upon features found to be relevant to COVID-19 propagation. These clusters have

greater amounts of data available for further modeling. To accomplish this, a large array of

county-level data is collected for the 48 conterminous United States (US). Multiple machine

learning approaches are used to analyze the data to discover the important and inherent

county-level characteristics that potentially drive COVID-19 outcomes. The critical features

are used to create clusters of counties with similar inherent traits. These clusters and their

characteristics are anaylzed in detail. Ultimately, we propose that this approach provides a

valid and beneficial compromise between the highly aggregated national or state level data and

the more granular and limited local-level data.

Related work

Multiple researchers and institutions have developed models for the spread of COVID-19,

including publicly available tools from Stanford [10] and the US Center for Disease Control

and Prevention [11]. A wide variety of propagation and forecasting models are being created

alongside these since accurate prediction is proving to be a daunting task. The prediction mod-

els for the transmission dynamics of the COVID-19 pandemic can be categorized into two dis-

tinct classes: epidemiological methods and data-driven methods.

Epidemiological models

The most common epidemiological models are compartmental models, which were first

described in a series of three papers by Kermak and McKendrick in the 1920s and 1930s [12–

14]. In these models, individuals in a population exist in and move between compartments:

infected (I), susceptible (S), and recovered (R) individuals. The Susceptible-Infected-Recov-

ered (SIR) [12] and Susceptible-Exposed-Infected-Recovered (SEIR) [15] models are among

the most popular techniques for outbreak prediction since the onset of the pandemic [16–18].
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Researchers continue to investigate enhancements for SIR and SEIR-based models. Sun et al.

[19] proposed a novel SIR model with varying coefficients to track the reproductivity of the

COVID-19 epidemic in China. Syage [20] considered a statistical and dynamical model for

forecasting COVID-19 deaths based on a hybrid asymmetric gaussian and SEIR construct.

Compartmental models are useful for modeling the mechanisms of disease transfer, but

they require the assumption of full-mixing within compartments and ignore many other fac-

tors such as geography, population heterogeneity, individual contact vectors, social dynamics,

governmental decisions (e.g., lockdown measures), and other complexities of human behavior.

Data-driven models

Data-driven models can provide more accurate forecasts at the expense of explicit modeling of

propagation mechanisms. Methods such as agent-based simulation (ABS) [21] and machine

learning (ML) methods have been employed for infectious disease outbreak analysis and dis-

ease prediction.

Agent-based simulation is a computer simulation approach consisting of agents (e.g., indi-

viduals) interacting with each other in a virtual environment. The advantage of ABS is that it

can take into account a wide array of human-level dynamics while tracking disease spread.

ABS has been applied for COVID-19 transmission modeling and prediction recently in [22–

26]. While a powerful and flexible modeling paradigm, drawbacks of ABS include potential

computational complexity, intricate modeling design assumptions, and the lack of closed-

form “insight” on the observed system behavior.

The use of ML methods for COVID-19 forecasting is in its infancy. Yang et al. [27] devel-

oped the Long Short-Term Memory Networks (LSTM) to predict the COVID-19 epidemic

using the 2003 SARS data as a training set. The COVID-19 epidemiological parameters, such

as the probability of transmission, incubation rate, the probability of recovery or death and

contact number, were used in the model. [28] proposed the use of 7 ML models and a new

hybrid forecasting method based on nearest neighbors and k-means clustering to forecast

COVID-19 growth rates. They employed LSTM, multiple linear regression, ridge regression,

decision trees, random forest, neural network, and support vector machines on country level

data (from the USA, India, UK, Germany, and Singapore). Other existing works have used the

combination of epidemiological and machine learning models to predict pandemic propaga-

tion. [29] employed the SEIR model to obtain the value of R0 and then they predicted the num-

ber of COVID-19 confirmed cases in India for the next 21 days using regression.

County-level COVID-19 propagation modeling has proven to be challenging for multiple

reasons. Disease transmission is influenced by “numerous biological, sociobehavioral, and

environmental factors that govern pathogen transmission.” [8]. For instance [30], found that

rural populations in China had a less positive attitude towards COVID-19 preventive behav-

iors and were less likely to adhere to policies such as social distancing and using masks. Some

very recent work has begun to recognize the urgency of creating refined propagation models.

Wang et al. [31] and Zhou et al. [5] are two examples that both address county-level spatiotem-

poral modeling to predict COVID-19 related outcomes.

Research contribution

This study contributes to the growing body of knowledge and methods for county-level infec-

tious disease analysis in multiple ways. The primary objective is to discover the most important

county-level characteristics relating to COVID-19 propagation and aggregate individual coun-

ties into clusters based on the important county-level characteristics. Ideally, this will help bal-

ance the issues associated with high-level aggregation (which hide regional diversity but have
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sufficient data for evaluating trends and creating forecasts) with the granular data at the local

level (which has significant diversity but may have limited populations, cases, etc. for in-depth

analysis). To achieve the overall objective, we complete four important subtasks, detailed

below and depicted in Fig 1, that each contributes to literature.

First, we produce a unified county-level database for the US that includes demographics,

mobility, weather, medical capacity, and health related county-level data relating to COVID-

19 propagation. The data is available at http://oklahomaanalytics.com/software-research-data.

Second, we extract essential information from the high dimensional weather and mobility data

by projecting these features to a lower dimensional space to support meaningful clustering.

Third, the resulting feature set is analyzed via supervised learning to discover the most impor-

tant county-level characteristics relating to COVID-19 propagation. It is important to note

Fig 1. Machine learning to enhance county-level COVID-19 analyses.

https://doi.org/10.1371/journal.pone.0267558.g001
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that we are not performing time series forecasting or month-to-month predictions, but rather

identifying the underlying traits, i.e., the aforementioned “sociobehavioral” and “environmen-

tal factors”, affecting COVID-19 outcomes. To the best of our knowledge, this level of in-depth

and advanced empirical analysis of the critical county-level factors for COVID-19 is a novel

contribution. Finally, balancing statistical properties and practical considerations, we aggre-

gate individual counties into clusters based on the important county-level characteristics. This

increases the amount of data available for epidemiological models yet the aggregation retains

regional-level diversity on the critical features. Each cluster is profiled and analyzed to demon-

strate the validity of the approach and to set the stage for future work. We believe that our ana-

lytical approach, list of important variables related to COVID-19 outcomes, and novel

clustering results will provide important practical guidance for health policy makers and stake-

holders to implement future intervention and resource allocation plans for COVID-19 and

other infectious diseases.

Data and methods

Data

The data for this study is collected from multiple sources and includes demographic, health,

mobility, and weather features for counties and county-equivalents across the US. The demo-

graphic data is gathered from a public data repository created by a group of faculty and stu-

dents at John Hopkins University [32] that extracts and cleans data from various sources

including the United States Census Bureau. The data reflects demographics as of 2017 or 2018

depending on the feature [33]. The relevant census data features include population, popula-

tion by race and sex, population changes due to migration, number of births, number of

deaths, and other descriptive demographic statistics. Population by race/ethnic data is aggre-

gated to reflect the following categories: Hispanic alone, or non-Hispanic White, Black, Asian,

Native Hawaiian or Pacific Islander, or Native American alone. Additionally, the multiple cen-

sus categories regarding two or more races (whether Hispanic or not) is aggregated into a sin-

gle category.

The health care variables concerning the number of beds, hospitals, admissions, and full-

time employees are collected from the COVID Severity Forecast data set, which pulls said fea-

tures from Kaiser Health News, Amma Resonance Healing Foundation Health [34], and the

Behavioral Risk Factor Surveillance System. The mobility features are gathered from Google

Mobility [35] and reflect monthly averages of daily metrics that describe how mobility changes

against the counties’ baseline scores. Monthly averages are defined to help account for missing

daily data for smaller counties. Weather features are sourced from the National Oceanic and

Atmospheric Administration and accessed via the Google BigQuery Platform [36]. These fea-

tures reflect monthly averages of high temperature, low temperature, average temperature,

high humidity percentage, low humidity percentage, and average humidity percentage. Lastly,

the COVID-19 case data is collected from USA Facts [37] and includes the number of con-

firmed cases and number of deaths by county starting in January 2020. This information is

updated daily and this study uses data through October 10, 2020.

The data was merged from the various source based on the unique Federal Information

Processing Standard code that uniquely identifies counties and county equivalents. All features

are continuous numeric features. The values are standardized to represent Demographic,

health-related, and COVID-19 case data are expressed per 1000 capita or as rates within the

county population. The data set consists of 3,106 counties or county-equivalents (e.g., parishes

and independent cities) across the conterminous US (two counties had missing data and the

District of Columbia was not included). Each county is represented by 160 numerical features.
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Principal component analysis

Principal component analysis is a statistical technique used to project high dimensional data to

lower dimensions in a way that preserves the original variance in the data [38]. The approach

is commonly used in many fields to simplify data for human consumption or visualization,

reduce inherent correlation in data sets, or to mitigate the so-called ‘curse of dimensionality’

associated with machine learning [39].

Supervised learning and variable importance

Supervised learning is a class of machine learning algorithms that use a set of data points and

known outcomes to determine a predictive model to map input space to outcomes. Many of

these algorithms allow for complex, non-linear relationships between the input and outcome

variables. While the resulting models may be difficult to interpret, the most important vari-

ables for predictive modeling can be identified, e.g., [40, 41]. The techniques selected each

have rigorous, algorithm-specific mechanisms for quantifying the most important predictors.

For instance, while support vector machines and neural networks are known to produce highly

accurate models, neither have high quality methods to evaluate which predictors are the most

important. Random forests, on the other hand, quantify individual variable importance natu-

rally throughout the model building process. The methods, their hyperparameters, and the

associated measure for determining variable importance are briefly described.

Elastic net regression. Elastic Net Regression (ENET) [42] is a penalized linear regression

method that combines the l1-norm and l2-norm regularization elements of the least absolute

shrinkage and selection operator method and ridge regression, respectively, to perform auto-

matic feature selection and to reduce overfitting. The hyperparameters to be tuned include the

penalty weight and the mixing parameter associated with balancing the l1 and l2 elements in

the cost function (λ1 and λ2) in Eq (1). The absolute values of the t-values associated with the

coefficients b̂ENET are used to rank the variables in terms of importance.

b̂ENET ¼ 1þ
l2

n

� �

fargmin
b

k y �
Xm

j¼1

xjbj k
2 þ l1kbk1 þ l2 kbk

2

2
g ð1Þ

where x1, . . ., xm are m predictors and y = (y1, . . ., yn)T is the response variable for n
observations.

Multivariate adaptive regression splines. Multivariate Adaptive Regression Splines

(MARS), proposed by Friedman (1991) [43], construct a piecewise linear regression model by

creating new features that isolate ranges of values from the original input data through the use

of so-called hinge functions. Variables, their hinged-versions, and interactions between vari-

ables are sequentially added to a linear regression model. Once complete, MARS employs a

backwards stepwise elimination procedure to reduce the number of features and optimize the

generalized cross-validation (GCV) performance statistic. The hyperparameters relate to the

allowed degree of variable interaction and the maximum size of predictors allowable after this

second step. Variable importance is determined during the backwards elimination procedure

and based on the effect that the presence of a given variable has on the GCV value.

The MARS-based model can be formulated as shown in Eq (2):

y ¼ d0 þ
XP

p¼1

dphpðXÞ ð2Þ

where hp(X) are spline functions, P is the number of spline functions, X is the predictor set, y is

the response variable, δ0 represents the constant coefficient, and δ are coefficients that are
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computed from the sum of squared errors minimization problem. MARS is a popular variable

selection method since it does not consider any assumption about the data distributions and

nonlinear associations between the variables [44], which makes it effective in modeling com-

plex nonlinear relationships such as COVID-19 occurrence and death.

Random forests, conditional inference forests, and gradient boosted trees. Random

forests (RF) [45], conditional inference forests (CF) [46], and gradient boosted trees (GBT)

[47] each leverage an ensemble of weak learners (i.e., decision trees) to create highly predictive

regression and classification models. RF and CF create many independently constructed deci-

sion trees and use a majority rule to determine outcome values. To reduce inter-tree correla-

tion, at each step during the tree building process, only a random subset of predictors are

evaluated to create node splits. RF uses an impurity metric to determine the split values

whereas CF employs statistical tests. The number of variables considered at each split is tuned

to reduce overfitting.

GBT constructs a sequence of simple decision trees in which each tree is built based on the

results of the previous tree predictive error. Hyperparameter values include the number of

trees to fit, the maximum depth of each tree, the learning rate, and the minimum number of

observations in the terminal nodes of the trees. For both RF and CF, the mean-squared error

(MSE) on the out-of-bag data is recorded for each tree and each variable. Variables that most

improve the MSE have higher importance scores assigned. For GBT, variable importance is

related to how often a feature is selected in the construction of underlying trees.

Clustering

Clustering is an unsupervised machine learning approach to identify clusters of observations

within data such that the intra-cluster similarity is high and the inter-cluster similarity is low.

Suppose that a data set is represented by a set D ¼ fðxiÞg
n
i¼1

where xi 2 R
m, such that there are

n observations and each xi is a observation with m features. Assume a set of k clusters C = {Cj;

j = 1, . . ., k} in which k is a predefined parameter. In this study, we use three clustering algo-

rithms, namely: k-means [48, 49], partitioning around medoids (PAM) [50, 51], and hierarchi-

cal clustering (HC) [52, 53]. These three methods rely on distance measures between objects in

a data set. We use Euclidean distance on mean-centered and scaled variables (scaled with

respect to each feature’s observed standard deviation). All three methods require user input

with respect to the number clusters to be identified.

k-means. k-means is a popular clustering algorithm proposed by [54]. The goal of k-

means is to obtain a partition that minimizes the squared error between the mean of a cluster

and the observations within that cluster. For a cluster Cj, the squared error between the mean

of the cluster, mCj
, and all the observations in the cluster is given by Eq (3):

JðCjÞ ¼
X

xi2Cj

k xi � mCj
k2:

ð3Þ

Then, the partition is identified from the solution of the following unconstrained minimiza-

tion problem over all k clusters:

JðCÞ ¼
Xk

j¼1

X

xi2Cj

k xi � mCj
k2: ð4Þ

Partitioning around medoids. The partitioning around medoids (PAM) algorithm is the

most widely known implementation of k-medoid clustering [55]. The advantage of the PAM
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method compared to other clustering methods is its robustness towards outliers [56] and flexi-

bility to allow the use of various types of variables such as categorical and numeric variables

[57]. It aims to find a good partition using k representative observations mj (j = 1, 2, . . ., k)

called medoids. The medoid of a set Cj is defined as the observation with the smallest sum of

dissimilarities/distances to all other observations in the set according to (5):

mj ¼ argmin
xi2Cj

X

xj2Cj

k xi � xj k
2:

ð5Þ

Then, the k-medoid generates k clusters in an iterative algorithm such that the total dis-

tances from each observation to its cluster’s medoid over all k clusters is minimized as follows:

JðCÞ ¼
Xk

j¼1

X

xi2Cj

k xi � mj k
2

ð6Þ

PAM selects the medoids for each cluster using two phases called build and swap. The build

phase finds an initial clustering through the consecutive selection of k medoids. The swap

phase improves the selected set of medoids and then finds the clustering in an iterative process

until the objective function value shown in Eq (6) no longer decreases or there is no further

update in the set of medoids between two subsequent iterations.

Hierarchical clustering. Hierarchical clustering techniques iteratively find nested clusters

by constructing a tree structure either in agglomerative (bottom up) or divisive (top down)

manner. Agglomerative clustering begins with each observation in its own cluster and subse-

quently combines the least dissimilar pair of clusters into a single cluster, thus producing a

hierarchy. In this study, we use agglomerative clustering because it is the most popular and

practical approach. There are different measures to obtain the distance between clusters such

as single linkage, complete linkage, and Ward’s method [58]. We choose the latter for this

study as it is based on minimizing the within sum of squares error from Eq (3) at iteration

when combining clusters.

Let Ci and Cj denote two mutually exclusive clusters consisting of ni and nj points, respec-

tively. Let d(Ci, Cj) denote the dissimilarity between Ci and Cj. Ward’s method computes dis-

similarity as the increase in the sum of squares if Ci and Cj are merged. Mathematically, this is

equivalent to

dWardðCi;CjÞ ¼
ninj

ni þ nj
k mCi

� mCj
k2; ð7Þ

where mCi
and mCj

are the means of clusters Ci and Cj, respectively.

Computational tools

All statistical analysis, supervised learning, and clustering is performed using the R software

environment [59] and the following R packages: elastic net models are developed using glmnet
[60], the random forests are developed using randomForest [61], the conditional inference for-

ests are developed using partykit [62], the gradient boosted trees are developed using gbm [63],

and the MARS models are developed using earth [64]. Cross-validation is conducted using the

caret package [65]. Finally, the mapping is performed using the package usmap [66].
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Results

Dimension reduction

For each county and each month, the average, minimum, and maximum temperatures and rel-

ative humidities are reported, producing 72 dimensions of data. For the mobility data, the

changes are reported with respect to grocery, park, retail, residential, transits, and workplace

values for February 2020 through September 2020, generating 48 dimensions. The weather

variables exhibit high correlation with each other, as do the mobility variables. Both the

weather and mobility data can be projected onto considerably lower dimensions while main-

taining the majority of their informational value. Indeed, this finding is important for the suc-

cess of the research effort. Ideally, we desire all of the input variables for the clustering

procedure to represent inherent traits associated with each county. For example, we prefer

general county-level weather characteristics (e.g., colder than the average US county) over a

historical month’s specific values (e.g., the high temperature in May 2020). The former is easy

to generalize, but the latter is not. We would like to project mobility data in a similar way—i.e.,

compacting the month-to-month specific data into something that relates to an overall behav-

ioral pattern. Fortunately, the high correlation of variables indicates that this is feasible with

principal component analysis.

Using PCA, the weather data is first mean-centered and scaled with respect to feature stan-

dard deviation. Next, the data is projected from 72 dimensions to 2 principal components

while retaining approximately 80% of the original variation. The first principal component

(PC1) explains 47% of the variance and is dominated by the monthly temperature related vari-

ables. The second principal component (PC2) explains 33% of the variance and is dominated

by the monthly humidity related variables. The 2D projection is depicted in Fig 2. The counties

associated with extreme values for each axis are labeled. The mean-centered and scaled 48

dimensional mobility change data is successfully projected onto 8 dimensions while retaining

nearly 80% of the original variance.

COVID-19 supervised learning and variable importance

Each of the supervised learning approaches described beforehand is trained to predict four dis-

tinct county-level outcomes: total per 1000 capita positive COVID-19 cases as of October 10,

2020 (cases), total per 1000 capita COVID-19 deaths as of October 10, 2020 (deaths), the

growth rate for positive cases over the most recent 30 days (September 11, 2020 to October 10,

2020) (case rate), and the growth rate for COVID-19 deaths over the same 30 days (death rate).

The goal of the training is to identify which county-level variables are the most important driv-

ing factors associated with COVID-19 outcomes. Table 1 summarizes the four target variables.

The models are trained on the county-level aggregated data set and tuned using 5-fold

cross-validation with five repeats. The minimal cross-validated (CV) root mean squared error

(RMSE) is used to determine the associated hyperparameter values and to evaluate the general-

izable error of each model. Table 2 reports the predictive performance for each model. For

each outcome variable and supervised learning method, the average CV RMSE and average

CV R2 metrics are listed. The RMSE values provide an effective method for comparing models

for a given outcome and are listed first; the R2 values facilitate comparisons between models of

different outcomes and are listed below the RMSE values. For each outcome predicted, the per-

formance values associated with the model having the lowest CV RMSE values are in bold.

ENET and MARS generally underperform on all outcomes with respect to the RF, CF, and

GBT algorithms. This implies that the fundamental relationships between the county charac-

teristics and COVID-19 outcomes are both complex and non-linear. For predicting cases,
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deaths, and case rate, the random forest model performs the best. The conditional inference

forest outperforms the competing techniques when predicting death rate. Each of the four for-

est methods are built with 500 trees. The tuned hyperparameter values for the four best models

define the number of variables considered at each split of the underlying trees. For all four

models, this value is tuned using cross-validation and found to range from 10-20.

In terms of overall predictability, the highest CV R2 is 0.5704 using a random forest model

to predict cases. It is important to note that this model uses only non-pathogen characteristics

Table 1. COVID-19 outcomes per county.

Target variable Description

cases total positive COVID-19 cases per 1,000 capita

deaths total COVID-19 deaths per 1,000 capita

case rate 30-day average of new COVID-19 cases per day per 1,000 capita

death rate 30-day average of new COVID-19 deaths per day per 1,000 capita

https://doi.org/10.1371/journal.pone.0267558.t001

Fig 2. County-level weather data projected to 2 dimensions with PCA.

https://doi.org/10.1371/journal.pone.0267558.g002
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and no historical case load information, yet it captures over 57% of the variation in COVID-19

cases. The best predictive performances correspond to predicting the per capita cases by

county. The next best set of predictive models are associated with deaths. The models predict-

ing case rate are next with R2 values in the range of 0.2659 to 0.3521. Finally, every technique

applied has difficulty predicting the increase in COVID-19 deaths for the most recent 30 days.

This may be due to an inherent lack of predictability (e.g., due to noise in the data) or indica-

tive that there are important features missing from the collected data.

To identify the critical county-level factors, the top 10 variables, ranked in terms of variable

importance, for each of the best predictive models in Table 2 are extracted. Since multiple vari-

ables are important in different models, this set is comprised of 20 distinct variables. These 20

critical features are listed, categorized, and described in Table 3. Four race/ethnicity variables

are important: non-Hispanic Whites, Blacks, and American Indian (alone) and the per capita

Table 2. Model performance.

Outcome Metric Supervised learning method

ENET RF CF GBT MARS

cases RMSE 11.2616 9.9849 10.2133 10.0319 10.9266

R2 0.4428 0.5704 0.5510 0.5584 0.4808

deaths RMSE 0.4279 0.4160 0.4164 0.4173 0.4338

R2 0.4070 0.4586 0.4389 0.4356 0.3897

case rate RMSE 0.1482 0.1421 0.1436 0.1425 0.1505

R2 0.2852 0.3521 0.3423 0.3395 0.2659

death rate RMSE 0.0054 0.0054 0.0053 0.0054 0.0055

R2 0.1096 0.1060 0.1259 0.1193 0.0919

https://doi.org/10.1371/journal.pone.0267558.t002

Table 3. Important variables for county-level COVID-19 modeling.

Variable category Name Description

Race/ethnicity NHWA not Hispanic, White alone

NHBA not Hispanic, Black alone

NHIA not Hispanic, American Indian alone

TOM two or more races

Medical capacity SNF-sites specialized nursing facilities per capita

health-insurance ratio of insured to uninsured (for ages 40-64)

Health pct-FairPoorHealth percent reporting fair or poor health

days-UnhealthyMental self-reported mentally unhealthy days

pct-Smokers percent who smoke

Economics median-income median household income

unemployment-rate percent of labor force that is unemployed

Weather PC1-wx PC1 for weather data

PC2-wx PC2 for weather data

Education pct-woHSdiploma percent adults without HS diploma

pct-4yr-degree+ percent adults with 4 yr degree or higher

Age under18 population under 18 years of age

over65 population over 65 years of age

Gender gender-ratio ratio of males to females

Density pop-density population density (per square mile)

Politics dem-rep-ratio ratio of Democrats to Republicans

https://doi.org/10.1371/journal.pone.0267558.t003
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number of individuals belonging to two or more races (regardless of Hispanic classification).

In terms of medical capacity, the number of specialized nursing facilities (including nursing

homes) and the ratio of insured to uninsured individuals is critical. Three health related factors

are identified as critical: percent of individuals who self-report as being in fair or poor health,

the number of self-reported mentally unhealthy days, and the percent of the county that are

smokers. The county-level median income and unemployment rate are two important eco-

nomic factors. The first two principal components derived from the weather data are top pre-

dictors. Education level, age brackets, and population density each make the list as well as the

ratio of Democrats to Republicans in each county.

Fig 3 depicts a Spearman’s ρ rank correlation plot for the 20 variables reported in Table 3.

The correlation strengths are represented by ellipses in each cell. Strong correlations are indi-

cated by dark, thin ellipse angled to the right (positive correlation) or to the left (negative cor-

relation). Statistical tests for the correlation values are conducted at a significance level of 0.05.

If a correlation is not statistically significant at this level, the corresponding cell is left blank.

Multiple variables demonstrate levels of moderate to strong correlation (or anti-correla-

tion). The unemployment rate, percent of county without a high school degree, percent of

county that are smokers, self-reported unhealthy mental days and self-reported fair/poor

health status form a group of positively rank correlated variables. These same variables are neg-

atively rank correlated to the set of factors including median income, percent of county with a

4-year degree and to some extent, with the ratio of health insurance, the first principal compo-

nent for weather data, and the population of non-Hispanic Whites. The non-Hispanic Black

population is negatively rank correlated with the first principal component for weather data

and the population of non-Hispanic Whites, but positively rank correlated with the Democrat

to Republican ratio and population density.

Table 4 lists the top ten variables, in order of importance, for each of the top performing

models used in the prediction of the four distinct outcomes. The individual variable impor-

tance scores, scaled between 0 and 100 and rounded to the nearest integer, are reported in

parentheses. The weather factor is a prominent predictor in all four models and the most

important in all but the case rate model. This may reflect geographic diversity across the US

and/or a more typical influenza-like propagation behavior associated how individuals spend

more time indoors during inclement weather. Racial factors also play an important role in all

four models. The deaths model uses all four race/ethnicity indicators. The case rate and death
rate models only consider one race variable each, non-Hispanic American Indians and non-

Hispanic Blacks, respectively. It is of note that self-reported mentally unhealthy days is the

most important variable for the case rate model. This feature correlates (positively or nega-

tively) with other socioeconomic factors such as percent reporting fair or poor health, median

income values, health insurance coverage, and education. It may be that self-reported

unhealthy days is an indication of other unhealthy behaviors or conditions that could lead to

increases in COVID-19 cases. It is interesting that the death rate model has median income as

its second most important variable and together with the case rate model are the only two

models that identify the number of SNF sites and health insurance status as important

predictors.

County-level clustering

The 20 features identified as critical intentionally do not include any direct COVID-19 out-

comes. The objective is to identify county-level characteristics that are fundamental factors

impacting how COVID-19 spreads within a community. If successful, identifying clusters of
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counties within this 20 dimensional subspace may enhance future analysis methods and allow

researchers to distinguish important trends.

Number of clusters. To create the subgroups, k-means, PAM, and agglomerative hierar-

chical clustering (HC) results are extensively evaluated on the mean-centered and scaled data.

Simulation studies have shown there is no best clustering algorithm that works for all scenarios

[67–69]. The appropriateness of a particular algorithm is dependent on the nature of the data

and on the information sought. For example, k-means and PAM tend to produce “spherically”

Fig 3. Correlation plot for critical COVID-19 county-level variables.

https://doi.org/10.1371/journal.pone.0267558.g003
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shaped clusters, whereas hierarchical clustering does not have a similar limitation. When a pri-
ori knowledge about the data is not available or insufficient, it is common to explore different

algorithms to obtain meaningful clustering results through comparisons. The final choice

should be a balance between statistical properties and practical interpretation.

The choice of the number of clusters is also somewhat subjective. There are many quantita-

tive index methods used in the literature to identify the appropriate number of clusters. Unfor-

tunately, these indicators do not typically agree with one another and there is no single

“correct” method for determining the right cluster quantity. This discrepancy is clear from the

excerpt of indices shown in Table 5 for k-means, PAM, and HC with the county-level data. A

missing value in the table denotes that the index does not apply or is not commonly used for

the associated clustering method.

The Gap statistic is a modern numeric approach leveraging Monte Carlo simulation to help

determine the optimal number of clusters and is applicable to k-means, PAM, and HC. Simu-

lation studies shows that the gap statistic outperforms other early methods [75]. The results

indicate that 2, 6, or values from 6 to 11, are good settings for k, respectively, for the three algo-

rithms. Fig 4 depicts a plot of the gap statistic means and standard errors using 500 boot-

strapped samples for k = 1, . . ., 18 for the hierarchical cluster values. The lower value of k = 6 is

determined based on the guidance from [75], which considers the observed standard errors.

The higher value of k = 11 is determined from the location of the first local maximum in the

Gap statistic graph. Given the inconsistency from the index methods, we take the recom-

mended value from the more modern Gap statistic to produce clusters for analysis. After visual

inspection and evaluation of the characteristics of many sets of identified clusters, we choose

the HC clusters with k = 9 as a good balance to support the objectives of this study, i.e., to iden-

tify clusters of reasonable size and similarity that also reflect a level of regionally specific diver-

sity that can be leveraged to support public health decision-making.

Table 4. Important variables by model.

cases deaths case rate death rate

PC1-wx (100) PC1-wx (100) days-UnhealthyMental (100) PC1-wx (100)

NHWA (65) NHBA (93) unemployment-rate (47) median-income (84)

pct-woHSdiploma (46) NHWA (89) NHIA (46) days-UnhealthyMental (70)

pct-FairPoorHealth (34) TOM (37) SNF-sites (42) NHBA (52)

gender-ratio (31) pct-woHSdiploma (35) PC1-wx (36) SNF-sites (45)

NHBA (31) pct-FairPoorHealth (31) pct-Smokers (35) pct-FairPoorHealth (44)

days-UnhealthyMental (30) NHIA (28) under18 (21) health-insurance (39)

under18 (30) gender-ratio (26) dem-rep-ratio (21) pct-4yr-degree+ (33)

pct-Smokers (24) median-income (22) PC2-wx (20) pct-Smokers (29)

over65 (24) pop-density (18) health-insurance (19) pct-woHSdiploma (23)

https://doi.org/10.1371/journal.pone.0267558.t004

Table 5. Recommended number of clusters.

Index name k-means PAM HC

Beale [70] 2 . 11

DB [71] 15 . 12

Silhouette [72] 2 2 2

Marriot [73] 7 . 6

Point-biserial [74] 4 . 7

Gap statistic [75] 6 2 6 to 11

https://doi.org/10.1371/journal.pone.0267558.t005
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Cluster geographic description. Fig 5 depicts the geographical locations of the nine clus-

ters. For clarity, the figure is shown in three maps, the first depicts clusters 1, 2, 3; the second

depicts clusters 4, 5 and 6; and the third depicts clusters 7, 8, and 9. While each cluster is often

formed by sets of contiguous counties, this is entirely the result of inherent regional similarities

along the 20-dimensional critical subspace.

Cluster 1 is primarily spread throughout the Southern US census region; cluster 2 is widely

dispersed and includes counties from the northwestern US, central Texas, western Oklahoma,

Florida, and parts of the Northeastern US; cluster 3 forms a relatively tight grouping of coun-

ties primarily dispersed across parts of Arkansas, Missouri, Tennessee, and Kentucky. Cluster

4 is focused in mostly in the south part of the Western US region, cluster 5 is located across the

US but especially grouped in certain areas (e.g., around the San Francisco area, Denver, and in

the Northeastern states), whereas cluster 6 which is composed of only 24 counties, is located in

small pockets of large area counties. Cluster 7 is another small cluster of mostly individual

counties across the nation. Cluster 8 pinpoints specific, high population density counties such

as San Francisco County, CA, and Bronx, NY. Cluster 9 is primarily located in the Midwestern

US census region.

Cluster profile. The nine clusters are fully profiled in Table 6. For each cluster, the num-

ber of associated counties is reported along the average of the mean-centered and scaled values

for each of the 20 critical dimensions. Additionally, the table reports the cluster average for the

scaled COVID-19 outcomes, i.e., cases, deaths, case growth rate, and death growth rate. The

average scaled absolute values that exceed 1 are highlighted in bold. These values indicate that

Fig 4. Gap statistic for the hierarchical clustering.

https://doi.org/10.1371/journal.pone.0267558.g004
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Fig 5. Conterminous US with county-level cluster assignments.

https://doi.org/10.1371/journal.pone.0267558.g005
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the average value within the associated cluster are greater than 1 standard deviation above/

below the average for counties across the US. A brief description highlighting some discrimi-

nating attributes of each cluster follows.

• Cluster 1 has a larger Black population than the average and below average population for

other races, especially White. This cluster also has a below average PC1-wx score indicating

that it is associated with warmer regions. It has an above average score for the per capita

COVID-19 cases and deaths and while its more recent case growth rate is about average, it

has the highest value in the recent growth of COVID-19 deaths.

• Cluster 2 is the largest subset of counties from all the groups, and none of its scores are far

from the overall national average.

• Cluster 3 has high scores for all three unhealthy metrics. This cluster has the highest score

for the population of Whites and has one of the lowest median income values and a relatively

low education level. This group has below average COVID-19 cases and deaths and is only

slightly above average with respect to recent increases in either outcome.

• Cluster 4 has more population identifying with two or more races, is younger, and in colder

region of the US than the average.

Table 6. Cluster profile.

Cluster 1 2 3 4 5 6 7 8 9

Number of counties 570 791 350 319 411 24 70 21 550

Scaled feature averages

NHWA -1.03 0.48 0.73 -0.97 0.08 -2.48 -0.67 -2.19 0.69

NHBA 1.53 -0.35 -0.40 -0.41 -0.16 -0.53 0.34 2.03 -0.56

NHIA -0.18 -0.11 -0.19 0.52 -0.20 9.50 -0.09 -0.23 -0.08

TOM -0.31 -0.02 -0.39 1.12 0.34 1.02 -0.22 0.63 -0.35

SNF-sites -0.21 -0.07 -0.05 -0.35 -0.53 -0.53 0.18 -0.66 0.98

health-insurance -0.70 0.21 -0.18 -0.69 0.99 -1.10 -0.64 0.10 0.33

pct-FairPoorHealth 0.90 -0.26 0.93 0.47 -0.89 1.68 0.59 0.20 -0.92

days-UnhealthyMental 0.56 0.14 1.30 0.10 -0.63 1.13 -0.04 -0.15 -1.24

pct-Smokers 0.49 -0.01 1.24 -0.32 -0.83 3.17 0.40 -0.20 -0.66

median-income -0.60 -0.07 -0.81 -0.06 1.60 -1.08 -0.66 0.62 0.20

unemployment-rate 0.45 0.18 0.56 0.15 -0.56 1.46 -0.10 0.14 -0.79

PC1-wx -1.14 0.13 -0.41 0.25 0.32 1.24 -0.68 -0.29 0.92

PC2-wx 0.02 -0.36 -0.37 1.64 -0.17 0.66 0.66 0.13 -0.20

pct-woHsdiploma 0.77 -0.27 0.74 0.68 -0.88 0.45 1.05 0.20 -0.77

pct-4yr-degree+ -0.42 -0.12 -0.76 -0.22 1.67 -0.57 -0.87 1.78 0.04

under18 0.13 -0.40 -0.27 1.03 -0.18 3.00 -1.11 -0.50 0.17

over65 -0.30 0.40 0.29 -0.53 -0.58 -1.43 -0.45 -1.24 0.46

gender-ratio -0.27 -0.09 -0.19 0.17 -0.23 -0.16 4.38 -0.81 0.08

pop-density -0.05 -0.06 -0.11 -0.10 0.20 -0.14 -0.14 7.14 -0.13

dem-rep-ratio 0.21 -0.19 -0.44 0.03 0.53 0.85 -0.29 7.12 -0.34

Scaled outcome averages

cases 0.79 -0.46 -0.10 0.15 -0.38 1.17 1.37 0.36 -0.15

deaths 0.86 -0.24 -0.19 -0.06 -0.15 0.86 0.35 1.56 -0.41

case rate -0.09 -0.25 0.11 0.02 -0.42 1.56 0.24 -0.54 0.61

death rate 0.41 -0.14 0.09 -0.06 -0.36 0.43 0.37 -0.32 -0.04

https://doi.org/10.1371/journal.pone.0267558.t006
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• Cluster 5 has the greatest median income and education levels and has among the lowest val-

ues for recent trends in COVID-19 cases or deaths.

• Cluster 6 has an American Indian population that is 9.5 standard deviations above the aver-

age for US counties. It also has the lowest median income, highest unemployment rate, low-

est health insurance ratio, and some of the most unhealthy metrics for physcial and mental

health. This group of counties has a population that is much younger than the average. The

number of COVID-19 cases and recent COVID-19 case growth exceeds 1 standard deviation

above the mean for all US counties. Cluster 6 has the highest values for the recent trend in

COVID-19 deaths.

• Cluster 7 has the highest percentage of adults without a highschool degree and a much

greater than average ratio of males to females (exceeding 4 standard deviations above the

mean). This subset of 70 counties, has on average the highest per capita COVID-19 cases

and above average values for the other three COVID-19 outcomes.

• Cluster 8 contains 21 counties whose average population density is far greater than the aver-

age (more than 7 standard deviations above the mean). It is cluster with the greatest Black

population per capita, the highest ratio of Democrats to Republicans, and the highest college

education level. While its per capita COVID-19 deaths to-date is the highest among all clus-

ters, it has the lowest value for recent trend in COVID-19 cases and second to lowest in

recent trend of COVID-19 deaths.

• Cluster 9 has the second highest score for White population and the lowest number of men-

tally unhealthy days and lowest value for self-reported Poor/Fair health. This group also

reports the lowest unemployment rate from among all the clusters. It has the second highest

recent COVID-19 case growth.

Clusters 6, 7, and 9 consist of counties with low population density, e.g., Big Horn, MT,

Alfalfa, OK, and Kit Carson, CO, with 2.6, 6.5, and 3.8 persons per square mile, respectively.

These rural clusters have greater than average recent COVID-19 case growth and/or recent

increase in per capita deaths. Cluster 9 in particular is notable in that it represent 550 counties

and while its per capita COVID-19 cases and deaths are lower than average, its recent above

average increase in cases may precede a significant increase in COVID-19 deaths. Cluster 6 on

the other hand, while rural and also colder than average, looks very different than cluster 9.

Cluster 6 has a notable American Indian population and has the lowest median income, high-

est unemployment rate, lowest health insurance ratio, and some of the unhealthiest metrics in

the data. Cluster 9 mostly represents White population with the least number of mentally

unhealthy days and lowest values for self-reported poor/fair health. Our results with cluster 6

are consistent with previous studies that show COVID-19 incidence is much higher among

American Indians/Alaska Natives than among White counterparts [76]. The lower values for

the cluster 6 health and insurance factors imply that its recent case growth may have a more

severe impact on lives lost. Indeed, the per county average for increase in recent deaths is

already well above average.

The 7-day rolling averages of new COVID-19 cases per 100,000 capita for the combined

populations of each cluster are depicted in Fig 6 from July 2020 until mid-October. The upticks

in both cluster 6 and 9 are notable in that the other clusters have had relatively flat trends

recently whereas these two have seen a pronounced increasing trend for several weeks. We

hypothesize that the COVID-19 cases in both clusters have increased (since September) due in

part to colder weather and potentially less restrictive lockdown policies. Cluster 6 has unique
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issues with inequities in access to health care, education, stable housing, healthy foods, and

insurance coverage, which can lead to health disparities and higher risk for COVID-19 inci-

dence among this aggregate population. We also suspect the notable rise in cluster 9

(since August) is due to multiple reasons including both dropping temperatures and the fact

that it is located in the Midwestern US census region, which has been the epicenter of long-

term care facility outbreaks during past four months from August to November 2020 accord-

ing to [77].

It is clear that the characteristics and trends are different for all of the defined clusters.

Given the diversity from cluster to cluster, the underlying factors inherent to the associated

groups affect both the speed and impact of the disease propagation. This inter-cluster

diversity should be considered when designing interventions to effectively slow or stop the

spread.

Fig 6. Cluster per capita COVID-19 case trends.

https://doi.org/10.1371/journal.pone.0267558.g006
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Conclusion

Forecasting COVID-19 propagation is difficult. The challenge is exacerbated for projections

focused on local regions and locations with smaller populations such as rural areas in the US.

In part, this is due to the reliance of traditional methods on assumptions of population homo-

geneity. The heterogeneity of US counties contributes to this complexity and local factors may

have disproportionate affect on disease spread.

The overall research objective of this study is to produce a new, statistically sound, data-

driven clustering of US counties to create a novel COVID-19 related map of the US which bal-

ances issues of data quantity with that of regional diversity along a critical feature set. The

resulting newly defined clusters are more homogeneous groups whose populations can be ana-

lyzed distinctly from one another. To achieve the objective, we address several important sub-

tasks including (i) aggregation of a large array of demographic, mobility, health, and weather

data, (ii) data transformation via dimension reduction to create a data set amenable to the

research scope, and (iii) extensive experimentation with appropriate machine learning meth-

ods to intelligently filter and rank critical variables. From this exploration, we discover weather

playing a dominant role in case propagation in a similar fashion as regular influenza spread;

demonstrate that race plays an outsized role for both case counts and deaths; identify self-

reported health and mental health as important predictors; find that there is some political

bias that relates to recent increases in county-level cases. Finally (iv), using k-means, agglomer-

ative hierarchical clustering, and Partitioning Around Medoids, we evaluate numerous

county-level clustering outcomes to determine a final set with good mathematical properties

(i.e., according to the Gap statistic) and that is composed of semi-contiguous regions that

reflect wide diversity in their characteristics and COVID-19 patterns. Since this latter element

was not embedded into the design of the clusters, the vastly different COVID-19 propagation

trends are a direct result of the cluster definitions. This provides additional empirical evidence

that the critical factors we identify do drive COVID-19 outcomes.

The policies, communication, and interventions to protect all groups identified should take

into account their distinct profiles. This study provides a mechanism to leverage data to better

understand the diversity across the nation and how that diversity impacts disease spread.

When considering the clusters, meaningful patterns emerge that can help guide policy deci-

sions, mitigation efforts, and analytical accuracy. In future work, we seek to leverage the

unique characteristics of each cluster to enhance regional and local level time series forecasting

and disease prediction. Additionally, we will consider the impact of local, state, and federal

public health interventions on the unique subgroups across the US and how these exogenous

factors interact with the inherent characteristics of the clusters to affect disease propagation.
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