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Abstract

Purpose: Real‐world data for observational research commonly require formatting

and cleaning prior to analysis. Data preparation steps are rarely reported adequately

and are likely to vary between research groups. Variation in methodology could

potentially affect study outcomes. This study aimed to develop a framework to define

and document drug data preparation and to examine the impact of different assump-

tions on results.

Methods: An algorithm for processing prescription data was developed and tested

using data from the Clinical Practice Research Datalink (CPRD). The impact of varying

assumptions was examined by estimating the association between 2 exemplar medi-

cations (oral hypoglycaemic drugs and glucocorticoids) and cardiovascular events after

preparing multiple datasets derived from the same source prescription data. Each

dataset was analysed using Cox proportional hazards modelling.

Results: The algorithm included 10 decision nodes and 54 possible unique assump-

tions. Over 11 000 possible pathways through the algorithm were identified. In both

exemplar studies, similar hazard ratios and standard errors were found for the major-

ity of pathways; however, certain assumptions had a greater influence on results. For

example, in the hypoglycaemic analysis, choosing a different variable to define pre-

scription end date altered the hazard ratios (95% confidence intervals) from 1.77

(1.56‐2.00) to 2.83 (1.59‐5.04).

Conclusions: The framework offers a transparent and efficient way to perform and

report drug data preparation steps. Assumptions made during data preparation can

impact the results of analyses. Improving transparency regarding drug data prepara-

tion would increase the repeatability, reproducibility, and comparability of published

results.
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KEY POINTS

• We have developed an algorithm to prepare raw

prescription data for analysis which allows users to

select from multiple decisions and assumptions.

• We demonstrate that decisions made during drug data

preparation can influence subsequent results.

• The algorithm and framework allow efficient and

transparent performance and reporting of data

preparation steps.

• Future work will expand the algorithm to be usable

across multiple research databases and to include

additional features such as handling dose.
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1 | INTRODUCTION

Anonymised electronic health records (EHR) are increasingly used for

observational research, especially pharmacoepidemiology studies.1

For drug effectiveness and safety studies, EHR research databases

provide data on drug exposure and health outcomes. However,

because the primary purpose of the EHR is to support clinical care,

the data collected are not necessarily of research quality. Conse-

quently, researchers using such data sources need to prepare the data

for scientific analysis.

Data preparation incorporates data cleaning, restructuring data

into a format appropriate for statistical analysis, and categorisation

of variables. While the Strengthening the Reporting of Observational

Studies in Epidemiology guidelines2 recommend the reporting of

how variables are categorised, they make no recommendations

regarding cleaning and formatting. Hence, these 2 steps are rarely

described adequately in publications. Furthermore, most modern epi-

demiological textbooks provide little concrete guidance or discussion

about this issue.3

The more recent Reporting of studies Conducted using Observa-

tional Routinely‐collected health Data (RECORD) Statement recom-

mends the sharing of data cleaning methods and any data

preparation algorithms.4 However, no established framework exists

for reporting the steps taken in preparing drug exposure data from

EHR. Poor reporting and little sharing of methods between groups

mean the methods for preparing medication data remain opaque and

inefficient. Appropriate documentation of data preparation proce-

dures would increase transparency, and thus, improve the repeatabil-

ity and reproducibility, of published results.5-7

It is recognised that the definition of drug exposure, for example,

using prescribed duration vs fixed time windows,8 can impact study

outcomes. However, we are unaware of any studies to date that

explicitly examine the impact of the many small choices made during

cleaning and preparation of drug data on study outcomes. Evidence

of an impact would strengthen the argument for increased transpar-

ency in reporting data preparation steps.

The aims of this study were (1) to develop a framework to define

and document decision nodes when preparing raw prescription data

recorded in a UK EHR research database and (2) to examine the

impact of changing assumptions made at the various decision nodes,

using the clinical example of cardiovascular events (CVE) following

exposure to oral hypoglycaemics in patients with diabetes. As deci-

sions made during drug data preparation are likely to have different

effects on different patterns of drug use, an additional clinical example

of CVE following exposure to oral glucocorticoids in patients with

rheumatoid arthritis was also examined as oral glucocorticoids repre-

sent a more intermittent therapy than long‐term oral hypoglycaemics.
2 | METHODS

2.1 | Setting

The setting was the Clinical Practice Research Datalink (CPRD), a UK

database of anonymised primary care EHRs covering an active
population of around 4.4 million people. Only adult patients (18 years

and over) were included. The study was approved by the CPRD ISAC

Committee (ISAC protocol 11_154A).
2.2 | Example 1: Oral hypoglycaemics and CVE in
patients with type 2 diabetes

In this example, the study window was from January 1, 2009 to

February 29, 2012. Patients with type 2 diabetes were identified

from CPRD (see Data S1 for details). Patients were included if

their first prescription for an oral hypoglycaemic drug occurred

during the study window. Patients with prescriptions for oral

hypoglycaemics prior to January 1, 2009 (prevalent users) were

excluded from the analysis. Individual patients were followed from

the date of their first prescription for oral hypoglycaemics during

the study window until transfer out of GP practice, GP practice

last collection date, death, or February 29, 2012. Patients with

gestational diabetes and polycystic ovaries (an alternative indication

for metformin) were excluded (codelists for all variables available in

Data S2).

Oral hypoglycaemic drugs were categorised into biguanides,

sulphonylureas, and other oral hypoglycaemics. Patients who used

insulin during the course of the follow‐up were excluded from the

analysis.
2.3 | Example 2: Oral glucocorticoids and CVE in
patients with rheumatoid arthritis

For this example, 2 analyses were performed, the first with a 3‐year

study window (January 1, 2008 to October 1, 2011) and the second

with a 20‐year study window (January 1, 1992 to October 1, 2011).

Patients with incident rheumatoid arthritis (RA) were identified from

the CPRD based on an algorithm designed by Thomas et al9 (details

in Data S1). Patients were included if they were diagnosed with RA

during the study window and had at least one prescription for an oral

glucocorticoid drug after their RA diagnosis. Individual patients were

followed‐up from the date of their RA diagnosis to transfer out of
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GP practice, GP practice last collection, death, or October 1, 2011.

Prevalent RA cases were excluded from the analysis.
2.4 | Algorithm definition

The aim of the algorithm was to transform raw prescription data into a

matrix of drug use through time ready for analysis. For this initial

study, dosage was agreed to be out of scope. The planned output

was therefore a binary variable (currently exposed or unexposed to

the medication), with exposure status varying over time according to

the start and end of prescriptions.

Raw prescription data for the example medications were

extracted from CPRD using information from the “therapy” and “prod-

uct” files. For each prescription record, the information available

includes a (product) code identifying the medication prescribed, the

total quantity prescribed (“qty”), the date a prescription was written,

and the duration of a prescription (“numdays”). In addition, the follow-

ing variables are derived by CPRD from the free text written by GPs

for individual prescriptions: “dose_duration,” an estimated prescription

duration available for approximately 1% of records, and the numeric

daily dose (“ndd”), available for 95% of prescriptions. The date a pre-

scription stopped is not provided and therefore needs to be calculated
FIGURE 1 The drug exposure preparation algorithm. qty = total quanti
daily dose; numdays = number of treatment days; dose_duration = deriv
preparation pathway” we defined in the second phase of each analysis; t
were generated by varying a single assumption with respect to this prim
missing unless otherwise stated. *For options 6d: If only one stop availa
unequal (but within x days), use mean; if 3 available and unequal, use m
after step 7 are dropped
from one of the measures of duration. It is possible to have multiple

prescriptions for the same product code on the same day and prescrip-

tions that overlap.

Two independent groups (RT/NG/DBu and WD/TS/ML/SP) iden-

tified the steps required to transform raw prescription data. Discus-

sion between the groups generated a list of decision nodes with

assumption options at each node. The list was reviewed by a third

group (JH/DBa) who suggested additional decisions, assumptions, or

modifications. A final list was agreed by the whole group. Disagree-

ment was resolved through discussion.

The agreed decision nodes and assumption options (Figure 1)

included 10 decision nodes, incorporating 54 plausible assumption

options. Data S3 has a detailed description of each decision. The

translation of raw data into a drug matrix took place in 3 broad steps.

Step A (data cleaning) sought to correct values of number of tablets

per prescription, number of tablets per day, missing data, and clinically

improbable prescription durations. Cut‐offs for clinical plausibility

were defined for each individual product code using the British

National Formulary guidelines and clinical experience. Step B aimed

to define individual prescription lengths by selecting a stop date from

a range of options, or rules to handle missing stop dates. Step C pro-

vided options for how to deal with overlapping prescriptions and
ty entered by GP for the prescribed product; ndd = derived numeric
ed duration of prescription. The highlighted pathway is the “primary
his pathway was used to generate one dataset, then further datasets
ary pathway. All options that produce a missing value stay coded as
ble, use it; if 2 available and equal, use that date; if 2 available and
ean of closest 2 if within x days. **Records with missing stop dates
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potentially continuous sequential prescriptions with short gaps

between prescriptions.

2.5 | Cardiovascular events

Cardiovascular events were identified from the events file using Read

codes representing acute myocardial infarction, acute coronary syn-

drome, or stroke (provided in Data S2). Cardiovascular events were

defined as the first date in which an event occurred within the fol-

low‐up time.

2.6 | Covariates

The purpose of the analysis was to examine the impact of assumptions

made during data preparation on subsequent results, rather than to

examine the safety of oral hypoglycaemics or glucocorticoids. There-

fore, no covariates were included.

2.7 | Analysis

Descriptive statistics were used to characterise the study cohorts.

Both oral hypoglycaemic and glucocorticoid drug use were determined

as being on or off therapy at the time of the event. The influence of

oral hypoglycaemic drug class on the risk of CVE was examined using

Cox proportional hazards modelling, with subjects on biguanides as

the referent group. The results for “other” oral hypoglycaemics are

not reported for simplicity. The influence of oral glucocorticoids on

risk of CVE was also examined using Cox modelling, with subjects

off therapy as the referent group. The results are expressed as hazard

ratios (HR) and 95% confidence intervals (CI). A two‐stage approach

was taken to examine variability in results obtained from different

data preparation pathways. Firstly, 50 random data preparation path-

ways were run for each of the 3 analyses. Cox modelling was con-

ducted on each dataset, and the distributions of HRs and SEs were

examined graphically using boxplots. Secondly, the group defined a

primary data preparation route by listing their preferred combination

of assumptions (highlighted in Figure 1). The primary data preparation

route was executed first then secondary datasets were created by

changing one option in one decision node. Secondary datasets were

created for all possible assumption options at each node, keeping
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FIGURE 2 Influence of drug exposure data preparation assumptions o
compared with biguanides as referent) and CVD events: Distribution of ha
pathways
the primary pathway fixed at all but one decision node. The analysis

was conducted using Stata version 12.1 (http://www.stata.com).
3 | RESULTS

3.1 | Oral hypoglycaemics and CVE in patients with
type 2 diabetes

Between January 1, 2009 and February 29, 2012, a total of 38 902

patients were identified with 719 344 prescriptions for oral

hypoglycaemic medication and 4162 CVEs during the study window.

In the raw prescription data, the distribution of missing data was as

follows: 12.5% missing numeric daily dose (ndd), 97.2% missing

numdays, and 99.9% missing dose_duration.

The distributions of HRs and SEs obtained from analysing 50 ran-

dom data preparation pathways are shown in Figure 2A,B. Very similar

HRs and SEs were observed for the majority of the pathways. The

median HR was 1.74 and the median SE was 0.11. Six pathways pro-

duced outlying HRs of greater than 2.0 and outlying SEs of greater

than 0.17, all of which used either option 6a (calculating the stop date

from start date + “numdays”) or 6b (calculating the stop date from

start date + “dose_duration”). Point estimates could not be calculated

for 3 pathways, all using option 6b, due to a high proportion of missing

data.

Figure 3 shows the results obtained using the primary data prep-

aration pathway and all possible secondary pathways. For the primary

pathway, patients on sulphonylureas were 77% more likely to experi-

ence a CVE compared with those on biguanides (HR = 1.77; CI, 1.56‐

2.00). Changing the data preparation options produced very similar

results for the majority of decisions, with HRs ranging from 1.75 to

1.77. Option 4c (set missing “ndd” to the population mean “ndd” for

that product code) produced a slightly lower HR than the primary

preparation pathway, with a 72% increased risk of CVE amongst

sulphonylurea users (HR = 1.72; CI = 1.53, 1.95). Option 6a resulted

in an almost threefold increased risk of a CVE for those on

sulphonylureas compared with biguanides (HR = 2.83; CI, 1.59‐5.04).

An HR could not be calculated after selecting option 6b as the major-

ity of the data were missing for the “dose_duration” variable. Option
.1
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FIGURE 3 Influence of drug exposure data preparation assumptions
on association between oral hypoglycaemic drug class (sulfonylureas
compared with biguanides as referent) and CVD events: Effect of
changing one data preparation option from primary pathway
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7a (keep missing stop dates as missing) and options 10b(30) and

10b(60) of node 10 (assume continuous use if gaps between prescrip-

tions are <30 days or <60 days) produced results that were slightly

lower in magnitude than the primary data preparation pathway.
FIGURE 5 Influence of drug exposure data preparation assumptions
on association between oral glucocorticoid use (on vs off) and CVD
events: Effect of changing one data preparation option from primary
pathway; 3 years of follow‐up
3.2 | Oral glucocorticoids and CVE in patients with
RA: 3‐year follow‐up

Between January 1, 2008 and October 1, 2011, a total of 2377 inci-

dent RA patients were identified with 30 493 prescriptions for oral

glucocorticoid medication and 103 CVEs during the study window.

In the raw prescription data, the distribution of missing data was as

follows: 50% missing ndd, 97% missing numdays, and 99.2% missing

dose_duration.

As for oral hypoglycaemics, similar HRs and SEs were observed

for the majority of the 50 random data preparation pathways

(Figure 4). The median HR was 1.78, and the median SE was 0.40.

Four pathways, all using either option 6a or 6b, produced outlying

HRs of greater than 2.5 and outlying SEs of greater than 2.0. For
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FIGURE 4 Influence of drug exposure data preparation assumptions on a
Distribution of hazard ratios and standard errors from 50 random data pre
one pathway, using option 6b, a point estimate could not be

calculated.

For the primary data preparation pathway, current glucocorticoid

users were almost twice as likely as non‐users to experience a CVE

(HR = 1.96; CI, 1.25‐3.09) (Figure 5). The majority of the secondary

pathways produced broadly similar results, with HRs ranging from

1.63 to 2.28. As before, option 6a produced a markedly higher HR

(HR = 4.86; CI, 1.20‐19.67) and an HR could not be calculated for

option 6b. Option 7a produced a slightly higher HR (HR = 2.46; CI,

1.55‐3.90) and option 7c (set missing stop date to mean for the pop-

ulation) produced a slightly lower HR with confidence intervals that

spanned one (HR = 1.54; CI, 0.99‐2.40).
3.3 | Oral glucocorticoids and CVE in patients with
RA: 20‐year follow‐up

Between January 1, 1992 and October 1, 2011, a total of 12 786 inci-

dent RA patients were identified with 369 738 prescriptions for oral
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FIGURE 6 Influence of drug exposure data preparation assumptions on association between oral glucocorticoid use (on vs off) and CVD events:
Distribution of hazard ratios and standard errors from 50 random data preparation pathways; 20 years of follow‐up
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glucocorticoid medication and 2565 CVEs during the study window. In

the raw prescription data, the distribution of missing data was as fol-

lows: 39.8% missing ndd, 93.4% missing numdays, and 99.5% missing

dose_duration.

Very similar HRs and SEs were observed for the majority of the 50

random data preparation pathways (Figure 6), although slightly more

variability was observed in this setting, particularly with respect to

HRs. The median HR was 1.86, and the median SE was 0.08. Three

outlying HRs of greater than 3.0 were observed and 6 outlying HRs

of less than 1.7 were observed. Five pathways generated outlying

SEs of greater than 0.13, with one producing a very large SE of 1.3.

All pathways producing an outlying HR or SE used either option 6a

or 6b.

For the primary data preparation pathway, compared with

patients not taking oral glucocorticoids, those who did were almost

twice as likely to have a CVE (HR = 1.89; CI, 1.74‐2.06) (Figure 7).

The majority of secondary pathways produced very similar results,

with HRs ranging from 1.79 to 1.94. However, option 6a generated

a higher HR (HR = 3.19; CI, 2.68‐3.80) and option 6b produced a lower

HR with wide confidence intervals that spanned one (HR = 1.22; CI,
FIGURE 7 Influence of drug exposure data preparation assumptions
on association between oral glucocorticoid use (on vs off) and CVD
events: Effect of changing one data preparation option from primary
pathway; 20 years of follow‐up
0.39‐3.78). In addition, option 7a generated a slightly higher HR

(HR = 2.00; CI, 1.82‐2.19).
4 | DISCUSSION

We developed a framework for transparently preparing raw prescrip-

tion data from an EHR research database for analysis, in the form of

a generic algorithm, and applied this framework to data from the

CPRD. It has previously been demonstrated that high‐level decisions

about drug exposure definition, for instance, whether a fixed time win-

dow or the prescribed duration is used,8,10 can influence study results.

In this study, we demonstrate the influence of much smaller‐scale

decisions (ie, steps taken to define “prescribed duration”) on study

results. This highlights the importance of full transparency in study

methodology for replication of results.

While the results were similar for the majority of the pathways

tested, certain assumptions appear to have a greater influence on

results. In particular, options 6a and 6b led to markedly different

HRs compared with the primary path (Figures 3, 5, and 7). Decision

6 is the step in which a stop date is assigned to each prescription

and options 6a and 6b assign one of the 2 duration variables provided

in the raw data (numdays and dose_duration); this would therefore be

a reasonable approach to take. However, both of these variables have

a high proportion of missing values which could result in many incom-

plete records being dropped in later decisions: This is likely the reason

for the atypical results produced.

We observed more variation in the 3‐year oral glucocorticoid

results, representing intermittent prescribing, compared with the oral

hypoglycaemic results, representing continuous prescribing. In the

20 year oral glucocorticoid results, we observed more variation when

testing the 50 random pathways but less variation when comparing

secondary pathways to the primary pathway. This perhaps indicates

that the impact of data preparation decisions may differ according to

the length of follow‐up.

There are some limitations to consider when interpreting these

results. We did not examine all possible data preparation pathways

as there were in excess of 11 000 and each preparation pathway

required considerable computing time. It is possible that certain com-

binations of assumptions could have had a larger impact on the results
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and our findings are an underestimate of the full range of variability in

the results. Changing the order in which the decision nodes are exe-

cuted may also impact the results. The algorithm was developed using

CPRD data from the UK and may not be immediately transferrable

when preparing drug data from other EHR research databases, partic-

ularly non‐UK databases. Furthermore, the impact of data preparation

decisions might be different in different databases and countries.

The framework presented in this paper represents a first attempt

to formalise the steps taken to prepare drug exposure data from EHR

which we plan to expand on in future work. The current algorithm

does not explicitly include assumptions for calculating drug dose.

Additional assumptions, within the current nodes or at new decision

nodes, are also possible. Planned refinements include allowing a

choice of average measurement (ie, median and mode as well as

mean), processing at the drug‐substance level rather than specific

product code level, and incorporating a researcher‐specified order of

preference when selecting duration. Furthermore, we aim to develop

the algorithm so it can be used on non‐CPRD EHR data. The algorithm

and Stata code are available for download on Zenodo.org11 and future

updates will also be made publicly available. According to a New York

Times article, data scientists estimate spending 50% to 80% of their

time preparing datasets for analysis,12 meaning a shared algorithm

might significantly increase the efficiency of many research groups.

The goal of increasing transparency, by using the algorithm as a frame-

work for reporting steps in data preparation, aligns with recently pub-

lished recommendations from the RECORD initiative.4

This study has focussed on the importance of transparency for

replicability. It has purposefully not presented a recommended route

for data preparation, and while a “primary pathway” was defined for

the purposes of the paper this is not to be taken as a “correct” path.

Appropriate data preparation will depend on many factors including

the drug type and typical prescribing patterns. Ideally, individual stud-

ies should attempt to validate their exposure definitions or to quantify

the risk of misclassification bias. The algorithm enables the efficient

preparation of multiple datasets, as in this study, and testing multiple

datasets would indicate how typical the output of a particular pathway

was. However, this would not imply the result was unbiased.

In conclusion, we have developed a drug preparation algorithm

for calculating drug exposure from raw prescription data and have

shown that there are a large number of potential data preparation

pathways. The majority of assumptions made when preparing drug

exposure data for analysis in pharmacoepidemiological studies did

not influence the results in these 2 exemplar studies, but assump-

tions involving the calculation of stop dates did have a substantial

impact, meaning it is vital to be transparent about assumptions made

in data preparation. More explicit and transparent reporting of how

drug data are prepared for analysis is therefore crucial and would

increase the repeatability, reproducibility, and comparability of pub-

lished results.
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