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Objective:To construct and validate a combined Nomogram model based on radiomic

and semantic features to preoperatively classify serous and mucinous pathological types

in patients with ovarian cystadenoma.

Methods: A total of 103 patients with pathology-confirmed ovarian cystadenoma who

underwent CT examination were collected from two institutions. All cases divided into

training cohort (N = 73) and external validation cohort (N = 30). The CT semantic

features were identified by two abdominal radiologists. The preprocessed initial CT

images were used for CT radiomic features extraction. The LASSO regression were

applied to identify optimal radiomic features and construct the Radscore. A Nomogram

model was constructed combining the Radscore and the optimal semantic feature. The

model performance was evaluated by ROC analysis, calibration curve and decision curve

analysis (DCA).

Result: Five optimal features were ultimately selected and contributed to the

Radscore construction. Unilocular/multilocular identification was significant difference

from semantic features. The Nomogram model showed a better performance in both

training cohort (AUC = 0.94, 95%CI 0.86–0.98) and external validation cohort (AUC

= 0.92, 95%CI 0.76–0.98). The calibration curve and DCA analysis indicated a better

accuracy of the Nomogram model for classification than either Radscore or the

loculus alone.

Conclusion: The Nomogram model combined radiomic and semantic features could

be used as imaging biomarker for classification of serous and mucinous types of

ovarian cystadenomas.
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INTRODUCTION

Epithelial neoplasm of the ovary accounts for 60% of all
ovary tumors and can be classified as benign, borderline, or
malignant (1). Ovarian cystadenomas are the most common
benign epithelial neoplasms. The two most common types of
cystadenomas are serous (70%) and mucinous (25%), whereas
endometrioid and clear cell cystadenoma are rare (2). The
endometrioid and clear cell cystadenoma have radiological
features similar to those of serous cystadenoma and their
diagnosis is mainly based on histopathological examinations
of surgical samples (3). The radiological presentation of
cystadenoma can be classified as serous or mucinous (2, 4).

Serous cystadenoma do not have mutations in either KRAS or
BRAF andmalignant transformation is rare (3). For patients with
asymptomatic serous cystadenoma, regular follow-ups without
invasive intervention are usually recommended (5). KRAS
mutations of mucinous cystadenoma are present in up to 58% of
cases, and transformation to borderline or malignant carcinoma
is common (6–8). In addition, the mucin within mucinous
cystadenoma could cause peritoneal seeding and appendiceal
mucocele (9, 10). Decisions regarding the treatment of mucinous
cystadenoma need to be made proactively depending on the
histologic classification.

Ultrasound (US), Magnetic resonance imaging (MRI), and

Computed tomography (CT) are widely used in the visualization
and differentiation of ovarian cystadenoma (11, 12). These

unique characteristics can be qualitative descriptors, termed

semantic features, that describe a tumor’s shape and internal
structure that are scored by radiologists to characterize
lesions, such as size, contour, septa, unilocular/multilocular,

FIGURE 1 | Workflow of the study. Workflow can be divided into four parts: image acquisition, ROI segmentation, feature extraction, and model construction.

mural nodules, texture (2, 13, 14). Semantic features are
considered qualitative since they are scored according to
the visual assessment of radiologists, which limits the extent
of the tumor description to what is observable by the
eye (15–17).

Radiomic analysis links quantitative imaging features to
clinical findings by usingmachine-learning and statistics-analysis
methods. With high-throughput computing, innumerable
quantitative features could be extracted from tomographic
images [CT, MR or positron emission tomography (PET)]
(18–20). Previous work (21, 22) has suggested that MR radiomic
features might be affected by factors such as MRI magnetic
strength and scan parameters, resulting in poor reproducibility.
CT scan has a relatively uniform protocol and CT Radiomics
has been used to evaluate grade and prognosis of multiple
types of tumors (18, 19, 23, 24). However, there were sparse
studies addressed radiomic analysis to differentiate the types of
ovarian cystadenoma.

We hypothesized that CT semantic and radiomic
features can identify the associations between the tumor
imaging phenotypes and pathophysiology. We aimed
to develop and validate a combined Nomogram model
that integrates radiomic features derived from contrast-
enhanced CT images with semantic features to improve the
type assessment of ovarian cystadenoma for personalized
precision therapy.

MATERIALS AND METHODS

This retrospective study was approved by the Medical Ethics
Committee of institution I and II and were conducted in
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accordance with relevant guidelines. Informed consent was
waived. The workflow of the analysis is summarized in Figure 1.

Patients
Patients diagnosed with ovarian cystadenoma with pathological
confirmation, who underwent conventional contrast-enhanced
CT imaging of abdominal pelvis between December 2017
and June 2019 were retrospectively collected in two
institutions. Clinical data were collected by gynecologist
including age, lesion location, CA125 level, ascites, pelvic
pain, bloating.

The inclusion criteria were as follows: (1) patient with
histologic diagnosis of ovarian cystadenomas obtained with
surgery in two institutions; (2) preoperative contrast-enhanced
CT scans; (3) no chemotherapy or radiation therapy prior to
CT scans.

Exclusion criteria were as follows: (1) any artifacts within the
scan area that affected the display of lesion; (2) the scan area did
not cover the entire lesion.

CT Examination
All patients underwent an abdominal pelvis contrast-enhanced
CT scan preoperatively. Contrast-enhanced CT scan in
Institution I was performed on a 16-slice CT (GE Healthcare,
Milwaukee, Wisconsin) and institution II was performed on

a 64-slice CT (Philips Healthcare, Cleveland, Ohio). Both
institutions applied the same imaging protocols. The non-ionic
contrast agent Ultravist R© (Bayer Schering Pharma, Berlin,
Germany) was bolus-injected (1.5 mL/kg) with a high-pressure
syringe at 3.0 mL/s. Eighty seconds after contrast medium
injection, venous phase contrast-enhanced CT images were
acquired. The scan parameters: tube voltage of 120 kVp, a
pitch value of 0.99, a matrix of 512 × 512, slice thickness and
interval were both 5mm, and milliamperage was adjusted
automatically according to the patient’s size (ranged between 220
and 400 mA).

TABLE 3 | Reproducibility analysis of significant features.

Significant features Feature class ICC (95%CI)

CSAD,o1 GLCM 0.905 (0.649∼0.975)

Ca90,o7 GLCM 0.862 (0.488∼0.963)

LRHGLEa0,o7 GLRLM 0.968 (0.882∼0.991)

LRHGLEa90,o7 GLRLM 0.923 (0.714∼0.979)

LISAE GLSZM 0.921 (0.705∼0.979)

Loculus CT semantic features 1.000

GLCM, gray level co-occurrence matrix; GLRLM, gray level run-length matrix; GLSZM,

gray level zone size matrix; AD, All Direction; a, angle; o, offset.

TABLE 1 | Clinical characteristics of training and validation cohorts.

Characteristics Training cohorts P-value Validation cohorts P-value

Serous Mucinous Serous Mucinous

(n = 34) (n = 39) (n = 15) (n = 15)

Age (mean ± SD) 47.68 ± 12.76 43.00 ± 10.83 0.451 46.64 ± 15.32 40.92 ± 13.77 0.704

Lesion location (%) 0.370 0.700

Unilateral 22 (65%) 29 (74%) 9 (60%) 11 (73%)

Bilateral 12 (35%) 10 (26%) 6 (40%) 4 (27%)

CA125 4 (12%) 6 (15%) 0.742 1 (7%) 2 (13%) 1.000

Ascites 5 (15%) 4 (10%) 0.564 2 (13%) 1 (7%) 1.000

Pelvic pain 12 (35%) 8 (21%) 0.194 5 (33%) 3 (20%) 0.682

Bloating 13 (38%) 9 (23%) 0.204 6 (40%) 3(20%) 0.427

TABLE 2 | CT semantic features of training and validation cohorts.

CT semantic features Training cohorts P-value Validation cohorts P-value

Serous Mucinous Serous Mucinous

(n = 34) (n = 39) (n = 15) (n = 15)

Size 9.69 ± 4.87 11.52 ± 5. 83 0.250 8.91 ± 5.01 10.81 ± 4.03 0.370

Lobulated contour 7 (21%) 17 (44%) 0.087 4 (27%) 7 (47%) 0.225

Thin wall 34 (100%) 36 (92%) 0.243 15 (100%) 13 (87%) 0.483

Septa 16 (47%) 27 (69%) 0.062 7 (47%) 12 (80%) 0.128

Loculus 0.001* 0.009*

Unilocular 24 (71%) 7 (18%) 10 (67%) 3 (20%)

Multilocular 10 (29%) 32 (82%) 5 (33%) 12 (80%)

*indicates statistical significance.
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Imaging Evaluation
CT semantic features were assessed by two abdominal
radiologists (both with 20 years of experience) in CT images,
who were blind to the pathological and clinical data, including
size, lobulated contour, thin wall, septa, and loculus. The
unilocular was characterized by only one closed loculus or cavity;
multilocular was defined more than or equal to two closed loculi.
Thin wall was identified <3 mm (2).

Image Processing
The contrast-enhanced CT images of enrolled patients were
exported in Digital Imaging and Communication in Medicine
(DICOM) format in two institutional picture archiving and
communication system (PACS). Two radiologists (with 4 years of
experience and 14 years of experience) who were blinded to the
clinical data, evaluated the contrast-enhanced CT images using
ITK-SNAP (Version 3.6) software. Before delineation, gray-level
standardization was applied to reduce the gray-level differences
caused by the imaging procedure. To avoid false heterogeneity
assumption at the lesion edge area, the region of interest (ROI)
was delineated manually layer by layer along the pixels on the
inner edge of the lesion to eventually show a three-dimensional
image of the tumor region (Figure 1). The ROI contours

were superimposed to improve the consistency of tumor
segmentation. All pixel’s gray levels inside the ROI were extracted
for analysis.

Feature Extraction, Radscore Building, and
Correlation
A total of 396 radiomic features from ROIs were extracted
from preprocessed images using the Artificial Intelligence
Kit Version 3.0.1.A (Life sciences, GE Healthcare, US).
Six main categories were involved, including histogram,
morphology, texture parameters, gray level co-occurrence matrix
(GLCM), gray level run-length matrix (GLRLM), and gray
level zone size matrix (GLZSM). Features were calculated
with the following parameters: window width 400, window
level 40, GLCM bin number 50, GLRLM bin number 50,
GLZSM bin number 200. ANOVA-KW (The analysis of
variance and Kruskal-Wallis test) and single-factor logistic
regression analysis were successively carried out for selecting
significant features that were highly correlated. By removing
the redundancy with correlation coefficient more than 0.90,
radiomic features were further optimally elected. In the final
step, the least absolute shrinkage and selection operator
(LASSO) regression method was applied to identify the most

TABLE 4 | Univariate analysis of radiomic features in the training and validation cohorts.

Radiomic features Training cohorts P-value Validation cohorts P-value

Serous

(n = 34)

Mucinous

(n = 39)

Serous

(n = 15)

Mucinous

(n = 15)

CSAD,o1 −0.10 (−0.42, 0.56) −0.47 (−0.62, −0.30) <0.001* 0.22 (−0.36, 0.46) −0.51 (−0.62, −0.02) 0.037*

Ca90,o7 −0.53 (−0.70, −0.31) 0.07 (−0.47, 0.56) <0.001* −0.63 (−0.70, −0.46) 0.10 (−0.51, 2.49) 0.021*

LRHGLEa0,o7 0.16 (−0.26, 1.04) −0.58 (−0.73, −0.35) <0.001* −0.12 (−0.34, 1.19) −0.59 (−0.78, −0.35) 0.026*

LRHGLEa90,o7 0.34 (−0.37, 0.93) −0.57 (−0.79, −0.24) <0.001* 0.40 (−0.40, 0.91) −0.59 (−0.78, 0.26) 0.016*

LISAE −0.32 (−0.77, 0.41) 0.42 (−0.58, 1.14) 0.002* −0.22 (−0.85, 0.58) 0.42 (−0.58, 1.12) 0.062

Radscore −1.57 (−3.33, −0.19) 1.65 (0.16, 3.41) <0.001* −1.44 (−3.16, 0.00) 1.29 (−0.36, 5.58) 0.001*

AD, All Direction; a, angle; o, offset.

*indicates statistical significance.

FIGURE 2 | The scatterplot of Radscore. The scatterplot in the training (A) and validation (B) cohort. (MC. mucinous cystadenoma; SC. serous cystadenoma).
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non-redundant and robust features among the 396 radiomic
features from the training cohort in order to improve the
class separability and optimize the representation of lesion
heterogeneity (Figure 1). The binomial deviance in the logistic
regression model fitting method was used as the criterion to
select the best value of λ (25). The λ value with the least
binomial deviance was used for the final LASSO regression
by conducting 10-fold cross validation method. Meanwhile,
the best value of λ found by 10-fold cross-validation with
a maximum area under the curve (AUC) was used for
constructing the regression model (26, 27). Details of the
procedures for extraction of radiomic features were described in
Supplementary Materials.

Radscore which defined by corresponding non-zero
coefficients of features selected by LASSO, was created
by a linear combination of selected features weighted by
their coefficients. Respective Radscore was calculated for
each patient.

The Pearson correlation analysis was performed to evaluate
the correlation between the loculus and Radscore, the pair-wise
Pearson correlation coefficients were calculated.

Nomogram Building, Calibration, and
External Validation
Both the Radscore and optimal semantic feature were
integrated by a multivariate logistic regression analysis
in the training cohort. Based on this, a Nomogram was
constructed for classification of ovarian cystadenoma.
The constructed Nomogram model was validated by
the external validation cohort using the same process
of capability assessment with the ROC analysis and
calibration curve. Decision curve analysis (DCA) was
carried out to evaluate the clinical value of the three
models (Radscore, loculus, and Nomogram model) on
the basis of calculating the net benefit for patients at each
threshold probability.

Statistical Analysis
Statistical analysis was conducted by SPSS software (Version
19.0) and R software (Version 3.3.2). Variables of a normal
distribution were shown as mean ± SD, and variables
of a skew distribution were shown as median (Quartile).
Statistical group comparisons of data were analyzed by χ2

tests and Wilcoxon using rank-sum. P < 0.05 were considered
statistically significant. The agreement between two radiologists
was evaluated using interclass correlation coefficient (ICC)
analysis, which was defined as good consistency between
0.75 and 1, fair consistency between 0.4 and 0.75, and
poor under 0.4. The correlation and collinearity of radiomic
features were evaluated using VIF function. The loculus,
Radscore, and Nomogram model were respectively subjected
to ROC analysis, by using area under the curve (AUC),
sensitivity, specificity, and accuracy to evaluate the classification
efficacy. The comparison of ROC curves was performed by
Delong’s test.

RESULTS

Patients Characteristics and Conventional
CT Findings
A total of 103 cases with pathologically confirmed
ovarian cystadenoma were selected in the final cohort.
The 103 cases were divided into a training cohort (N
= 73) and a validation cohort (N = 30) (Figure 1).
The serous and mucinous cystadenoma had an even
distribution in patient characteristics. No significant
difference was found in ovarian cystadenoma clinical
characteristics (age, location of lesion, the tumor marker
CA125 level, ascites, pelvic pain, bloating) between two
groups (Table 1).

Conventional CT semantic features including
lesion size, lobulated contour, thin-wall, septa, loculus
(Unilocular/multilocular). Size, lobulated contour, thin-
wall, septa were no significant difference between two
groups, However, loculus (Unilocular/multilocular)
identification was significant difference in both
cohorts (p < 0.05).The detailed distribution of CT
semantic features in the two groups were summarized
in Table 2.

Reproducibility Analysis
Based on the result of reproducibility analysis by two radiologists,
351 out of 396 (88.6%) radiomic features and all the
semantic features had good consistency (ICC ≥ 0.75). The
number of features with fair consistency (0.75 > ICC ≥

0.4) and poor consistency (ICC < 0.4) were 25 (6.3%) and
20 (5.1%), respectively. Table 3 showed the ICC value of
significant features.

FIGURE 3 | Correlation between the Loculus and the Radscore based on

Pearson correlation analysis. The mean absolute correlation coefficient was

0.40.
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Radscore Model Building, Correlation, and
Validation
A total of 396 radiomic features were extracted using
AK software. A significance level of 0.05 was set as
the threshold. After dimensionality reduction, which
included ANOVA and KW, univariate logistic regression
(143 features), remove the redundancy with correlation
coefficient more than 0.90 (28 features) and after the
LASSO algorithm with a value of λ = 0.001445 and
log (λ) = −2.84, five significant radiomic features
were identified. The complete details were shown in
Supplementary Materials.

To demonstrate the effectiveness of radiomic features model
at the individual scale, the quantitative values of radiomic
features for each patient regarding the classification of serous

and mucinous cystadenoma groups were shown in Table 4,
which included ClusterShade_AllDirection_offset1 (CSAD,o1),

Correlation_angle90_offset7 (Ca90,o7), Long Run High Gray

Level Emphasis_angle0 _offset7 (LRHGLEa0,o7), Long Run High
Gray Level Emphasis_angle90_offset7 (LRHGLEa90,o7), and Low
Intensity Small Area Emphasis (LISAE). A Radscore model was
further constructed based on five features with respective non-
zero coefficients selected through LASSO regression method.
There were no collinearity between the five features after being

FIGURE 4 | Nomogram, ROC and calibration curves of training cohort. Nomogram (A), To draw an upward vertical line to the “Points” bar to calculate points. Based

on the sum, draw a downward vertical line from the “Total Points” line to calculate the probability of classification of ovarian cystadenoma for each patient. For

instance, Type serous cystadenomas in a 49-years-old woman with the Radscore value of−1 calculated from the formula, manifesting uniloculus, the corresponding

value on the “Points” bar were 62 and 0, respectively. The probability of classification of serous cystadenomas was 88% by drawing a downward vertical line from the

value of 62 on “Total Points” bar. ROC curves for the Nomogram, Radscore, and Loculus model (B) corresponding calibration curves based on the Nomogram model

(C) in the training cohort.
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TABLE 5 | Performance of the Loculus, Radscore, and Nomogram models.

Model Training cohort Validation cohort

AUC (95%CI) SEN SPEC ACC AUC (95%CI) SEN SPEC ACC

Radscore 0.88 (0.79–0.95) 0.94 0.68 0.82 0.84 (0.67–0.95) 0.73 0.87 0.80

Loculus 0.76 (0.65–0.85) 0.82 0.71 0.77 0.73 (0.54–0.88) 0.80 0.87 0.73

Nomogram 0.94 (0.86–0.98) 0.90 0.88 0.89 0.92 (0.76–0.98) 0.73 1.00 0.87

AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity; ACC, accuracy; AD, All Direction; a, angle; o, offset.

FIGURE 5 | ROC and Calibration curve of validation cohort. Performance of the Nomogram, Radscore and Loculus model on external validation cohort. ROC curve

for the three model with an AUC of 0.92, 0.84, and 0.73, respectively (A). Calibration curve of the Nomogram model in the validation cohort (B).

verified by VIF function. The complete details were shown in
Supplementary Materials.

Radscore = −0.009− 0.864× CSAD,o1 + 1.417× Ca90,o7

−2.259× LRHGLEa0,o7 + 0.1× LRHGLEa90,o7

+0.799× LISAE. (1)

The Radscore had the AUC of the model in training and
validation cohorts were 0.88 and 0.84, respectively, which showed
higher value of mucinous cystadenoma than serous cystadenoma
in both two cohorts (Figure 2).

The pair-wise Pearson correlative analysis revealed that the
Radscore was moderate correlated to loculus feature (Figure 3).

Nomogram Building and Validation
The Nomogram based on both Radscore and the loculus was
constructed to visualize the results of multivariable logistic
regression analysis for classification of ovarian cystadenoma
(Figure 4A). Nomogram = −0.010 + 0.075 × Radscore +

0.346× loculus.
The total points accumulated by the various variables

correspond to the predicted probability for a patient (28). The
complete details were shown in Figure 4A.

Compared to the Radscore and the loculus alone, the
Nomogram model yielded a better performance in the training
cohort with a larger AUC value (Table 5 and Figure 4B).The
calibration curves in the training cohort demonstrated a high
accuracy of the model in the classification capability (Figure 4C).

The performance of the Nomogram model was validated
using the external dataset collected from the institution II. The
Nomogram yielded a favorable AUC value in the validation
cohort (Figure 5A). The calibration curves of the proposed
Nomogram model based on the validation cohort suggested a
favorable classification performance (Figure 5B). Specifically, the
Nomogram showed a significant improvement compared to the
Radscore and loculus alone in training cohort (p < 0.05). The
complete details were shown in Supplementary Materials.

DCA was conducted to assess the clinical utility of the three
models (Figure 6). The Nomogram demonstrated a larger net
benefit than did the Radscore and loculus alone, indicating that
the Nomogram had the best clinical utility for classification of
ovarian cystadenoma in the validation cohort.

DISCUSSION

In this study, we established and validated a Nomogram
model for classification of ovarian cystadenoma, which
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incorporated five robust radiomic features extracted from
contrast-enhanced CT and the semantic features. The
Nomogram model achieved a better performance in both
training cohort and validation cohort with a larger AUC
value than the radiomic model or loculus alone, suggesting
the reliability of the improved model for classification of
ovarian cystadenoma.

Previous studies have summarized the typical semantic
features of serous cystadenoma were often seen as unilocular,
thin-walled cystic masses with simple fluid (3). Mucinous
cystadenoma were usually seen as multilocular that may
be similar or of widely varying size, with liquids of various
viscosities (2, 4).Contrast-enhanced CT imaging can differentiate
serous from mucinous cystadenoma to a certain extent
(3). In this study, the loculus was significant difference
between the two groups, multilocular semantic feature might
be associated with proteinaceous cellular debris within
the fluid, abnormal vasculature, or papillary projections.
However, CT semantic features were defined by experienced
radiologists, which were still a subjective assessment, and large
amounts of quantitative imaging information representing
underlying histologic characteristics could not be acquired by
visual inspection.

In this study, five optimal quantitative radiomic features
were extracted: CSAD,o1; Ca90,o7; LRHGLEa0,o7; LRHGLEa90,o7;
and LISAE. ClusterShade and Correlation are both the gray
level co-occurrence matrix (GLCM) parameters. ClusterShade
quantitatively analyzes the similarity between objects in the same
cluster. Correlation is a value showing the linear dependency of
gray level values to their respective voxels in the GLCM (29).
Our results suggested that higher (CSAD,o1) values and lower
(Ca90,o7) values indicated higher heterogeneity of the lesion. Long
Run High Gray Level Emphasis (LRHGLE), which measures
image texture smoothness quantitatively, is a parameter for
the Gray level run-length matrix (GLRLM) (30). In this study,
lower LRHGLEa0,o7 and LRHGLEa90,o7 values indicating higher
heterogeneity of the lesion. LISAE values which measure the
uniformity of image texture, is a parameter for the Gray level
zone size matrix (GLSZM) (31). In this study, higher LISAE
values indicating more heterogeneous textures of the lesion.
The Radscore of mucinous group was higher value than that
of serous group in both two cohorts, which suggested that the
mucinous cystadenoma had greater heterogeneity, as evidenced
by the uneven distribution of greyscales and unorganized local
texture on the CT images. The Radscore had the AUC of
the model in training and validation cohorts were 0.88 and
0.84, respectively.

The radiomic features represented underlying histologic
characteristics could not be acquired by visual inspection,
meanwhile the loculus of semantic feature represented the
morphology of intratumor which could not be extracted
by radiomic analysis. Due to the radiomic and semantic
features complement each other, the ROC, DCA and
calibration analysis results showed the Nomogram model
to be more effective and reliable than the radiomic model or
semantic features alone. The classification performance of the

FIGURE 6 | Decision curve analysis (DCA) for the Nomogram model in

validation cohort. Compared to other models, the combined Nomogram

model, showing the highest area under the curve, is the optimal decision

making for maximal net benefit in Classification of Ovarian Cystadenomas.

Nomogram model was validated using an external cohort,
demonstrating a strong confirmation of reproducibility by a
satisfactory AUC of 0.92. The Nomogram incorporates the
five selected radiomic and semantic features which might offer
a clinically translatable paradigm easy to implement in the
clinical setting.

Although the two radiologists who worked on radiomic
analysis differed significantly in their years of experience, the
contouring results were relatively consistent (ICC > 0.75). The
advantage of a fully quantitative radiomic assessment method is
that a wealth of experience in imaging diagnosis is not required.
Even a junior physician can accurately delineate tumor at the
appropriate window level, and preliminarily classify the type of
ovarian cystadenoma.

This study has several limitations. First, we used manual
segmentation when delineating the lesion, and therefore we
could not completely avoid the interference caused by the
partial volume effect. Second, this was a retrospective study
with a relatively small dataset in external validation cohort,
and further prospective studies are expected to verify the
conclusions. Finally, Because of the low incidence of other
types of ovarian cystadenomas, they were not included in
this study.

CONCLUSION

The combined Nomogram integrated radiomic and semantic
features can be a reliable and effective model for classification
of ovarian cystadenoma, which could serve as a potential

Frontiers in Oncology | www.frontiersin.org 8 June 2020 | Volume 10 | Article 895

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Nomogram Classify Ovarian Cystadenomas

marker to classify the type of ovarian cystadenoma and facilitate
precision treatment.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Affiliated Hangzhou First People’s
Hospital, Zhejiang University School of Medicine; Women’s
Hospital School of Medicine Zhejiang University. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

SP contributed to prepare the manuscript and the statistical
analysis. QS put forward the concept of the study, designed
the study. ZD reviewed the manuscript. LZ, MR, and YS
contributed to the data acquisition, analysis, and interpretation.

PP carried out the data analysis. All authors read and approved
the final manuscript.

FUNDING

This study was granted by the Natural Science Foundation of
Zhejiang Province, China (No. LSY19H180009), Clinical science
foundation of ZheJiang university, China (No. YYJJ2019Z06),
and the Department of Health of Zhejiang Province, China (No.
2018KY582 and No. 2019KY123).

ACKNOWLEDGMENTS

This work was supported in part by Translational Medicine
Research Center, Key Laboratory of Clinical Cancer
Pharmacology and Toxicology Research of Zhejiang Province
under Grants No. 2020E10021.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00895/full#supplementary-material

REFERENCES

1. Mishra S, Yadav M, Walawakar SJ. Giant ovarian mucinous cystadenoma

complicating term pregnancy. JNMA J Nepal Med Assoc. (2018) 56:629–

32. doi: 10.31729/jnma.3163

2. Buy JN, Ghossain M. Surface Epithelial-Stromal Tumors of the Ovary. Berlin;

Heidelberg: Springer-Verlag (2013). doi: 10.1007/978-3-642-31012-6_9

3. Limaiem F, Mlika M. Ovararian Cystadenoma. Treasure Island, FL:

StatPearls. (2018).

4. Jung SE, Lee JM, Rha SE, Byun JY, Jung JI, Hahn ST. CT and MR imaging of

ovarian tumors with emphasis on differential diagnosis. Radiographics. (2002)

22:1305–25. doi: 10.1148/rg.226025033

5. Alcazar JL, Castillo G, Jurado M, Garcia GL. Is expectant

management of sonographically benign adnexal cysts an option in

selected asymptomatic premenopausal women? Hum Rep. (2005)

20:3231–4. doi: 10.1093/humrep/dei206

6. KoensgenD,WeissM, AssmannK, Brucker SY,Wallwiener D, StopeMB, et al.

Characterization and management of borderline ovarian tumors - results of

a retrospective, single-center study of patients treated at the department of

gynecology and obstetrics of the University medicine Greifswald. Anticancer

Res. (2018) 38:1539–45. doi: 10.21873/anticanres.12382

7. Seidman JD, Krishnan J. Ovarian epithelial inclusions with mucinous

differentiation: a clinicopathologic study of 42 cases. Int J Gynecol Pathol.

(2017) 36:372–6. doi: 10.1097/PGP.0000000000000348

8. Jung EJ, Eom HM, Byun JM, Kim YN, Lee KB, Sung MS, et al.

Different features of the histopathological subtypes of ovarian

tumors in pre- and postmenopausal women. Menopause. (2017)

24:1028–32. doi: 10.1097/GME.0000000000000976

9. Brown J, Frumovitz M. Mucinous tumors of the ovary: current

thoughts on diagnosis and management. Curr Oncol Rep. (2014)

16:389. doi: 10.1007/s11912-014-0389-x

10. Hauptmann S, Friedrich K, Redline R, Avril S. Ovarian borderline tumors

in the 2014 WHO classification: evolving concepts and diagnostic criteria.

Virchows Archiv. (2017) 470:125–42. doi: 10.1007/s00428-016-2040-8

11. Wu Y, Peng H, Zhao X. Diagnostic performance of contrast-

enhanced ultrasound for ovarian cancer: a meta-analysis. Ultrasound

Med Biol. (2015) 41:967–74. doi: 10.1016/j.ultrasmedbio.2014.

11.018

12. Foti PV, Attina G, Spadola S, Caltabiano R, Farina R, Palmucci S, et al. MR

imaging of ovarian masses: classification and differential diagnosis. Insights

Imaging. (2016) 7:21–41. doi: 10.1007/s13244-015-0455-4

13. Vargas HA, Micco M, Hong SI, Goldman DA, Dao F, Weigelt

B, et al. Association between morphologic CT imaging traits and

prognostically relevant gene signatures in women with high-grade

serous ovarian cancer: a hypothesis-generating study. Radiology. (2015)

274:742–51. doi: 10.1148/radiol.14141477

14. van Nimwegen LWE, Mavinkurve-Groothuis AMC, de Krijger RR, Hulsker

CCC, Goverde AJ, Zsiros J, et al. MR imaging in discriminating between

benign and malignant paediatric ovarian masses: a systematic review. Eur

Radiol. (2020) 30:1166–81. doi: 10.1007/s00330-019-06420-4

15. Guerriero S, Mallarini G, Ajossa S, Risalvato A, Satta R, Mais V, et al.

Transvaginal ultrasound and computed tomography combined with clinical

parameters and CA-125 determinations in the differential diagnosis of

persistent ovarian cysts in premenopausal women. Ultrasound Obstet Gynecol.

(1997) 9:339–43. doi: 10.1046/j.1469-0705.1997.09050339.x

16. Gemer O, Gdalevich M, Ravid M, Piura B, Rabinovich A, Gasper T, et al. A

multicenter validation of computerized tomography models as predictors of

non- optimal primary cytoreduction of advanced epithelial ovarian cancer.

Eur J Surg Oncol. (2009) 35:1109–12. doi: 10.1016/j.ejso.2009.03.002

17. Yip SSF, Liu Y, Parmar C, Li Q, Liu S, Qu F, et al. Associations

between radiologist-defined semantic and automatically computed

radiomic features in non-small cell lung cancer. Sci Rep. (2017)

7:3519. doi: 10.1038/s41598-017-02425-5

18. Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, et al. Radiomics

analysis of PET and CT components of PET/CT imaging integrated

with clinical parameters: application to prognosis for nasopharyngeal

Carcinoma. Mol Imaging Biol. (2019) 21:954–64. doi: 10.1007/s11307-018-

01304-3

Frontiers in Oncology | www.frontiersin.org 9 June 2020 | Volume 10 | Article 895

https://www.frontiersin.org/articles/10.3389/fonc.2020.00895/full#supplementary-material
https://doi.org/10.31729/jnma.3163
https://doi.org/10.1007/978-3-642-31012-6_9
https://doi.org/10.1148/rg.226025033
https://doi.org/10.1093/humrep/dei206
https://doi.org/10.21873/anticanres.12382
https://doi.org/10.1097/PGP.0000000000000348
https://doi.org/10.1097/GME.0000000000000976
https://doi.org/10.1007/s11912-014-0389-x
https://doi.org/10.1007/s00428-016-2040-8
https://doi.org/10.1016/j.ultrasmedbio.2014.11.018
https://doi.org/10.1007/s13244-015-0455-4
https://doi.org/10.1148/radiol.14141477
https://doi.org/10.1007/s00330-019-06420-4
https://doi.org/10.1046/j.1469-0705.1997.09050339.x
https://doi.org/10.1016/j.ejso.2009.03.002
https://doi.org/10.1038/s41598-017-02425-5
https://doi.org/10.1007/s11307-018-01304-3
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Nomogram Classify Ovarian Cystadenomas

19. Balachandran VP, Gonen M, Smith JJ, deMatteo RP. Nomograms in

oncology: more than meets the eye. Lancet Oncol. (2015) 16:e173–

80. doi: 10.1016/S1470-2045(14)71116-7

20. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

21. Arun B, Bayraktar S, Liu DD, Gutierrez Barrera AM, Atchley D, Pusztai L,

et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA

mutation carriers and noncarriers: a single-institution experience. J Clin

Oncol. 29:3739–46. doi: 10.1200/JCO.2011.35.2682

22. Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S. Effects of MRI

acquisition parameter variations and protocol heterogeneity on the results

of texture analysis and pattern discrimination: an application-oriented study.

Med Phys. 36:1236–43. doi: 10.1118/1.3081408

23. Shen Q, Shan Y, Hu Z, Chen W, Yang B, Han J, et al. Quantitative

parameters of CT texture analysis as potential markersfor early prediction

of spontaneous intracranial hemorrhage enlargement. Eur Radiol. (2018)

28:4389–96. doi: 10.1007/s00330-018-5364-8

24. Wu Y, Xu L, Yang P, Lin N, Huang X, Pan W, et al. Survival prediction

in high-grade osteosarcoma using radiomics of diagnostic computed

tomography. EBioMedicine. (2018) 34:27–34. doi: 10.1016/j.ebiom.2018.

07.006

25. Vasquez MM, Hu C, Roe DJ, Chen Z, Halonen M, Guerra S. Least absolute

shrinkage and selection operator type methods for the identification of serum

biomarkers of overweight and obesity: simulation and application. BMC Med

Res Methodol. (2016) 16:154. doi: 10.1186/s12874-016-0254-8

26. Jiang Y, Chen C, Xie J, Wang W, Zha X, Lv W, et al. Radiomics

signature of computed tomography imaging for prediction of survival and

chemotherapeutic benefits in gastric cancer. EBioMedicine. (2018) 36:171–

82. doi: 10.1016/j.ebiom.2018.09.007

27. Jiang Y, Zhang Q, Hu Y, Li T, Yu J, Zhao L, et al. ImmunoScore signature: a

prognostic and predictive tool in gastric cancer. Ann Surg. (2018) 267:504–

13. doi: 10.1097/SLA.0000000000002116

28. Jiang Y, Wang W, Chen C, Zhang X, Zha X, Lv W, et al. Radiomics

signature on computed tomography imaging: association with lymph

node metastasis in patients with gastric cancer. Front Oncol. (2019)

9:340. doi: 10.3389/fonc.2019.00340

29. Feng Q, Chen Y, Liao Z, Jiang H, Mao D, Wang M, et al. Corpus

callosum radiomics-based classification model in Alzheimer’s disease: a

case-control study. Front Neurol. (2018) 9:618. doi: 10.3389/fneur.2018.

00618

30. Park BE, Jang WS, Yoo SK. Texture analysis of supraspinatus ultrasound

image for computer aided diagnostic system. Healthcare Inform Res. (2016)

22:299–304. doi: 10.4258/hir.2016.22.4.299

31. Thibault G, Tudorica A, Afzal A, Chui SY, Naik A, Troxell ML, et al. DCE-

MRI texture features for early prediction of breast cancer therapy response.

Tomography. (2017) 3:23–32. doi: 10.18383/j.tom.2016.00241

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Pan, Ding, Zhang, Ruan, Shan, Deng, Pang and Shen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 10 June 2020 | Volume 10 | Article 895

https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1200/JCO.2011.35.2682
https://doi.org/10.1118/1.3081408
https://doi.org/10.1007/s00330-018-5364-8
https://doi.org/10.1016/j.ebiom.2018.07.006
https://doi.org/10.1186/s12874-016-0254-8
https://doi.org/10.1016/j.ebiom.2018.09.007
https://doi.org/10.1097/SLA.0000000000002116
https://doi.org/10.3389/fonc.2019.00340
https://doi.org/10.3389/fneur.2018.00618
https://doi.org/10.4258/hir.2016.22.4.299
https://doi.org/10.18383/j.tom.2016.00241~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	A Nomogram Combined Radiomic and Semantic Features as Imaging Biomarker for Classification of Ovarian Cystadenomas
	Introduction
	Materials and Methods
	Patients
	CT Examination
	Imaging Evaluation
	Image Processing
	Feature Extraction, Radscore Building, and Correlation
	Nomogram Building, Calibration, and External Validation
	Statistical Analysis

	Results
	Patients Characteristics and Conventional CT Findings
	Reproducibility Analysis
	Radscore Model Building, Correlation, and Validation
	Nomogram Building and Validation

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


