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A B S T R A C T   

The will to live and the ability to maintain one’s well-being are crucial for survival. Yet, almost a million people 
die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a sig-
nificant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype 
with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a 
brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical 
dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory 
behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive 
symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper 
reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. 
We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood 
symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.   

1. The interplay between mood disorders and suicide 

The presence of severe mood symptoms poses the highest risk for 
suicide completion, the 10th leading cause of death, with up to 48,000 
suicide deaths in 2018 in the U.S. alone. Across the most economically 
productive age group of 15–45 years olds, suicide is the third leading 
cause of death (Aleman and Denys, 2014), making suicide a cause of 
devastating economic loss and causing close to a million global deaths 
annually. Although various psychiatric symptoms and other factors in-
crease suicide risk, about sixty percent of all suicides are associated with 
mood disorders, making mood symptoms the leading cause of suicide 
(Aleman and Denys, 2014; Turecki et al., 2019; Lu, 2015; Strakowski 
et al., 1996; Dilsaver et al., 1994; Chen and Dilsaver, 1996a). Because 
mood symptoms pose a considerable risk for suicide attempts and death, 
methods to elucidate the biological markers for mood dysregulatory 
indicators for suicide can facilitate the discovery of novel treatment, 
prediction, and prevention strategies for suicidal phenotypes. 

Major depressive disorder (MDD) and bipolar disorder (BD), referred 
to as mood disorders, are etiologically complex. Given that these two 
disorders account for a larger share of suicide deaths, we will focus this 
review on mood disorders as they are both characterized by recurrent 

bouts of depressive illness and increased suicide risk. The extent to 
which the biological determinants for suicide phenotypes overlap with 
those underlying severe mood disorder symptomatology, especially 
depressive symptoms, remains unclear. However, complex pleiotropic 
and environmental risk factors are emerging as mediators of depressive 
symptoms (Henter et al., 2021). Emerging evidence further supports the 
existence of a robust phenotypic relationship between mood disorder 
severity and the risk for suicide at the clinically-relevant neurobiological 
levels (Jabbi et al., 2020a, 2020b). 

Furthermore, recent genome-wide association studies support a close 
genetic relationship between mood disorder morbidity and suicide risk 
(Levey et al., 2019). However, suicidal behaviors are heterogeneous and 
not limited to mood disorders. Suicidal phenotypes are likely governed 
by many biological risk factors (Turecki et al., 2019), including diseases 
coupled with neuroanatomical, neurochemical, and neuroinflammatory 
risk markers awaiting discovery (Fig. 1). Complicating the complex 
etiologies of suicidal behaviors, myriad environmental factors, including 
the lack of social cohesion/support, early-life adversity and persistent 
traumatic experiences, and chronic substance misuse or other chronic 
diseases, can influence suicide outcomes (Turecki et al., 2019) (Fig. 1). 

Here, we briefly review the neurobiological correlates of mood 
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disorder morbidity and suicide risk and illustrate the role of brain gene 
expression and inflammatory measures in mood disorder-related sui-
cide, using data from post-mortem and clinical studies. In addition, we 
propose a novel suicide model based on a bioenvironmental perspective. 
Components of our proposed suicide model relate to the biopsychosocial 

model (Turecki et al., 2019). Still, the current model integrates envi-
ronmental with bodily homeostatic drivers within a dynamic context 
that can afford individual risk prediction (Fig. 1). Additionally, we 
propose using a novel machine learning approach to integrate existing 
knowledge on the neurobiological and clinical risk correlates for mood 

Fig. 1. Conceptual Framework for the role of bodily & environmental homeostasis in suicide risk dynamics. It is important to note that the environmental/ 
ecological and bodily homeostatic components can influence each other in this conceptual framework. Examples of cumulated negative environmental features/ 
variables include physical environmental factors being ridden with adverse factors that can suppress individual well-being (e.g., adverse circumstances like hunger 
and starvation, extreme heat or cold, adverse socioeconomic status or events, socially caused physical or psychosocial distress/adversity/injury/extreme harm also 
akin to exposure to intraspecies ‘sociopathogenic’ and interspecies ‘zenopathogenic’ factors) (Salvadore et al., 2009, 2010). The framework further includes examples 
of negative values of biological homeostatic features: concerning the immediate bodily states that are detrimental to well-being over time (e.g., psychological or 
subjective experiences of pain or misery, psychosomatic pain, brain health/brain disorder ‘including cellular functional excitatory/inhibitory imbalance, limbic 
system dysregulation, parasympathetic/sympathetic response imbalance, neurological/psychologically challenged states, mild/moderate/severe neuropsychiatric 
disorder’; and systemic innate or adaptive immune imbalance (inflammation) stemming from intraspecies ‘sociopathogenic’ and interspecies ‘zenopathogenic’ 
factors, can all attenuate the wellness and well-being of an individual and decrease the value of staying alive in a bodily homeostatic extreme over time and thereby 
increase the risk for suicide (Salvadore et al., 2009, 2010; McGrath et al., 2013; Riva-Posse et al., 2018; Nauta, 1971; Goldman-Rakic, 1988; Joyce and Barbas, 2018; 
Jabbi et al., 2008; Craig, 2009; Harrison et al., 2009a; Khalsa et al., 2018; Dum et al., 2019; Sanvanson et al., 2019; Lerman et al., 2019; Hart, 1988; Watkins and 
Maier, 1999; Miller et al., 2009; Barbosa et al., 2013; Eisenberger et al., 2009; Gogolla, 2021; Koren et al., 2021; Gimeno et al., 2009; Tsigos and Chrousos, 2002; 
Scangos et al., 2021a) (Fig. 1 and 2). Cumulatively, sustained accumulation of negative survival values in environmental and bodily/physical homeostatic frame-
works can negatively impact existential outlook/perspectives and increase suicidal ideation and thoughts. For instance, when an individual is faced with such 
negative existential outlook, combined with with that same individual having access to means for carrying out a suicidal act such as weapons (e.g., guns, etc.), 
chemicals (e.g., medication or substance overdose, etc.), or mechanical facilitators (e.g., ropes, etc.), these combination of factors can increase the risk for suicide 
completion (Turecki et al., 2019). Although presented as categorically distinct, it is important to note that our proposed homeostatic and environmental variables are 
strongly interrelated, comprising intersecting feedback loops within and between these internal homeostatic reactive states and external environmental systems. The 
green (+) signs represent survival enhancing values that can represent individual states for each of the listed environmental and bodily homeostatic components and 
can, therefore, at the individual level, cumulative result in varying degrees of positive survival values that could enhance well-being and enable (see green arrow) the 
individual to achieve sustained states of well-being/thrive and minimize the likelihood for suicidal thinking and behaviors in a given homeostatic context. In contrast, 
the red minus (− ) signs present negative survival limiting values for each of the listed environmental and bodily homeostatic components that, at the individual level, 
can cumulatively result in negative survival values and diminish well-being or, in the extremes, pose devastating outcomes and thereby increase the risk for suicidal 
thinking and suicide death. In a scenario where the negative environmental and bodily homeostatic states are exponentially exacerbated, an individual could be 
driven to escape their perceived or experienced compounded misery by seeing death or suicide as an escape from suffering. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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disorder morbidity and suicide phenotypes to advance suicide risk 
prediction strategies using the proposed contextual framework. 

2. The neuroanatomical basis for mood disorder-related suicidal 
phenotypes 

There is growing evidence on the shared neuroanatomical bases for 
mood disorder severity and suicide risk. Neuroimaging studies of mood 
and comorbid disorders have identified predominantly reduced gray 
matter volume in prefrontal cortical networks, including the anterior 
insular and anterior cingulate (AIC-ACC) circuitry (Jabbi et al., 2020b; 
Goodkind et al., 2015; Wise et al., 2016). In addition, reduced gray 
matter volume and cortical thickness have also been observed in pre-
frontal, striatal, and temporal cortical networks (Turecki et al., 2019; 
Jabbi et al., 2020a, 2020b; Mann et al., 2012; van Heeringen and Mann, 
2014; Taylor et al., 2015; Gosnell et al., 2016; Giakoumatos et al., 2013; 
Schmaal et al., 2020; Wagner et al., 2012; Mathews et al., 2013; Jabbi 
and Nemeroff, 2019; Jollant et al., 2018; Pan et al., 2013; Campos et al., 
2021), bilateral thalamus, right pallidum, and lower surface area of the 
left interior parietal networks (Campos et al., 2021) in mood disorders 
and related suicide phenotypes (Jabbi et al., 2020a; Mann et al., 2012; 
van Heeringen and Mann, 2014; Taylor et al., 2015; Gosnell et al., 2016; 
Giakoumatos et al., 2013; Schmaal et al., 2020; Wagner et al., 2012; 
Mathews et al., 2013; Jabbi and Nemeroff, 2019; Jollant et al., 2018; 
Pan et al., 2013; Campos et al., 2021). These findings, especially relating 
to the AIC-ACC circuitry abnormalities in mood disorders, are relevant 
because the dorsal subgenual ACC component of the interoceptive 
network is involved in controlling emotional expression and emotional 
equilibrium/inhibition. In contrast, the anterior insula is documented to 
encode the embodiment of feeling states in health and disease states like 
depression (Melhem et al., 2019; Chen and Dilsaver, 1996b; Kloiber 
et al., 2020; McIntyre et al., 2020; Haarman et al., 2014; Hellwig and 
Domschke, 2019; Arasappan et al., 2021; Scaini et al., 2019; Hess et al., 
2020; Salvadore et al., 2009, 2010; McGrath et al., 2013; Riva-Posse 
et al., 2018). 

Within the human brain, primary sensory and higher-order associa-
tive subcortical and cortical networks coordinate the exteroceptive 
sensing of external audiovisual, social, chemosensory, and tactile stimuli 
(Nauta, 1971; Goldman-Rakic, 1988; Joyce and Barbas, 2018; Jabbi 
et al., 2008). In addition, based on the valence of incoming stimuli, the 
frontolimbic interoceptive brain cortical network processes the survival 
valuation of the environmental contexts and translates this information 
into inner feeling states (Jabbi et al., 2008; Craig, 2009; Harrison et al., 
2009a; Khalsa et al., 2018). Together, the brain’s feedforward-feedback 
integration of the sensorimotor-to-frontotemporal exteroceptive cortices 
(Nauta, 1971; Goldman-Rakic, 1988; Joyce and Barbas, 2018; Jabbi 
et al., 2008) via the subcortical and prefrontal interoceptive AIC-ACC 
circuitry (Nauta, 1971; Goldman-Rakic, 1988; Joyce and Barbas, 
2018; Jabbi et al., 2008) is critical for adaptive behaviors like the 
regulation of body temperature, mood, and ensuing fight or flight re-
sponses. Based on these inter-dependent adaptive functions, the coor-
dinated interaction between exteroceptive and interoceptive brain 
systems is likely needed to maintain bodily and affective homeostatic 
stability. Thus, successful evaluation (Nauta, 1971; Goldman-Rakic, 
1988; Joyce and Barbas, 2018; Jabbi et al., 2008) of how exposure to 
sociopathogens (e.g., trauma or extremely hurtful social interactions, as 
well as states of anxiety, regret, and loss) or zenopathogens (e.g., natural 
disasters or infectious diseases), but also favorable and survival 
enhancing stimuli, is critical for translating the impact of perceived or 
experienced environmental experiences into an individual’s bodily or 
affective feeling states. To summarize, the ventral AIC component of the 
interoceptive network is involved in coding the physiological and af-
fective tone of individual experiences and integrating social-affective 
and painful interoceptive and affective states (i.e., sensing of the inner 
bodily/physiological conditions) (Nauta, 1971; Goldman-Rakic, 1988; 
Joyce and Barbas, 2018; Jabbi et al., 2008; Craig, 2009; Harrison et al., 

2009a; Khalsa et al., 2018). 
In line with the crucial role of this AIC-ACC circuitry in integrating 

exteroceptive-interoceptive senses, we have shown that the AIC-ACC 
circuitry’s involvement in regulating the body’s physiological condi-
tions like the experience of tasting unpleasant and pleasant liquids is 
also mapped onto imagined social or one’s environmental contexts 
relating to the same tastants (Jabbi et al., 2008). This functional role of 
the AIC-ACC brain circuitry in embodying feeling states is facilitated by 
its interconnection with the peripheral adrenal medulla, adrenal cortex, 
gut, and cardiovascular systems (Dum et al., 2019). The AIC-ACC is 
interconnected with the gut, circulatory, and adrenal cortical systems 
(Dum et al., 2019) through the vagal nerve and related descending 
spinothalamic nerve fibers from the brain to the periphery (Dum et al., 
2019; Sanvanson et al., 2019; Lerman et al., 2019), and anatomically 
situated to embody and integrate bodily (i.e., gut feelings) and affective 
feeling states and thereby chart moment-to-moment physiological and 
emotional well-being of the individual (Joyce and Barbas, 2018; Jabbi 
et al., 2008; Craig, 2009; Harrison et al., 2009a; Khalsa et al., 2018). This 
embodiment role of the AIC-ACC circuitry is supported by evidence of 
this brain network’s involvement in coding feelings of sickness and pain 
(Hart, 1988; Watkins and Maier, 1999; Miller et al., 2009; Barbosa et al., 
2013; Eisenberger et al., 2009; Gogolla, 2021; Koren et al., 2021; 
Gimeno et al., 2009; Tsigos and Chrousos, 2002), including inflamma-
tory sensing and regulation of cytokine-induced depressed mood and 
social pain (Hart, 1988; Watkins and Maier, 1999; Miller et al., 2009; 
Barbosa et al., 2013; Eisenberger et al., 2009; Gogolla, 2021; Koren 
et al., 2021; Gimeno et al., 2009; Tsigos and Chrousos, 2002), as well as 
in coding the awareness of feeling states, including depressive symptoms 
(Hart, 1988; Watkins and Maier, 1999; Miller et al., 2009; Barbosa et al., 
2013; Eisenberger et al., 2009; Gogolla, 2021; Koren et al., 2021; 
Gimeno et al., 2009; Tsigos and Chrousos, 2002). 

Given the reciprocal connections between the AIC-ACC network with 
the peripheral organ systems, including the adrenal gland secretory 
stress hormone system (Chen and Dilsaver, 1996b; Dum et al., 2019; 
Hart, 1988; Tsigos and Chrousos, 2002), and sympathetic and para-
sympathetic nervous systems (Chen and Dilsaver, 1996b), it is likely that 
an overdrive of inflammatory processes in the AIC-ACC and inter-
connected peripheral pathways could lead to profound dysregulation of 
mood states. Future research needs to study inflammatory abnormalities 
in the AIC-ACC network and peripheral blood in the same postmortem 
donors, including those who died by suicide, to better understand the 
mechanistic link between brain and peripheral inflammation and mood 
disorder outcomes. Emerging evidence points to an anatomical and 
physiological influence of the AIC-ACC network and interconnected 
peripheral body systems on affective feeling states (Hart, 1988; Watkins 
and Maier, 1999; Miller et al., 2009; Barbosa et al., 2013; Eisenberger 
et al., 2009; Gogolla, 2021; Koren et al., 2021; Gimeno et al., 2009; 
Tsigos and Chrousos, 2002). How this brain network influences the 
onset and lifetime trajectory of mood disorder and documented thera-
peutic responses (Sanvanson et al., 2019; Lerman et al., 2019; Hart, 
1988; Watkins and Maier, 1999; Scangos et al., 2021a, 2021b, 2021c) 
needs to be characterized at the molecular level. 

Identifying the precise neuroanatomical abnormalities associated 
with mood disorder phenotypes is crucial for the mechanistic under-
standing of how such structural alterations in specific brain networks 
can lead to the expression of suicidal behaviors. For instance, better 
localization of clinically-relevant network abnormalities can guide tar-
geted brain stimulation techniques and advance diagnostic and prog-
nostic studies. Furthermore, a better understanding of anatomical 
abnormalities, especially within the AIC-ACC circuitry that is more 
proximate to mood symptom severity, treatment response, and suicidal 
risk behaviors (see below and Figs. 1 and 2), can guide future studies of 
the molecular and physiological mechanisms associated with severe 
mood symptoms and suicide risk phenotypes. 
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3. Mood disorder-related suicide model 

We present a suicide model that integrates environmental (including 
social) contexts with bodily (internal bodily states) and homeostatic 
states or experiences to predict survival valuation endpoints. Survival 
valuation endpoints include a) individual subjective values of being 
alive within a specific homeostatic range from thriving or in optimal 
well-being ‘top, Fig. 1’ to suffering, or b) a state in which one is suffering 
to the extent that their survival valuation endpoint becomes negative 
and an escape from more suffering by ending one’s life becomes an 
appealing option ‘bottom, Fig. 1’). In this model/conceptual framework, 
cumulative positive survival values could increase well-being, whereas 
compounding negative survival values could increase suicide risk 
(Fig. 1). The green plus (+) signs and the red (− ) signs denote the 
contextual positives and negatives that could influence overall envi-
ronmental or bodily homeostatic drivers/factors to maintain equilib-
rium or shift towards either extreme positives (thriving) or extreme 
negatives (increased suicide risk). 

This proposed suicide model is based on data across the behavioral, 
clinical, neuroanatomical, and peripheral blood studies in mood disor-
ders. For instance, recent research has shown that sickness behavior is a 
critical behavioral component of the immune and inflammatory 
response. Specifically, sickness behavior is well-documented to mediate 
the redirecting mechanism of energy expenditure towards context- 
dependent adaptive behaviors such as self-care and contextual infor-
mation processing, rather than appetitive behaviors like foraging or 
mate-seeking. 

Although neuroendocrine, monoamine, and inflammatory mecha-
nisms are collectively implicated in mediating mood symptoms, this 
review focuses on immune and inflammatory processes, given the strong 
neuro-immune link with general sickness behavior and mood symptoms. 
It is important to note that environmental factors can bidirectionally 
cause bodily homeostatic changes and influence mood dysregulation 
states like bipolar depression or manic episodes. Furthermore, repeated 
exposures to adverse ecological (e.g., low socioeconomic status or so-
cially inflicted physical, psychosocial, and emotional trauma) experi-
ences akin to exposure to intraspecies adversity (i.e., sociopathogenic 
factors) can cause inflammatory pathologies. Moreover, interspecies 
pathogenic exposures, including bacterial, viral, and other physically or 
environmentally injurious vectors or even disasters (i.e., zenopatho-
genic factors), can all suppress well-being, inflict high inflammatory 
costs, cause diseases including physical and mental disorders and predict 
poorer health outcomes, including mood disorders and suicide. 

For instance, acute or sustained bodily states such as psychological or 
subjective pain or misery, or brain disorder, including cellular functional 
excitatory/inhibitory imbalance, can all exert a toll on bodily homeo-
static balances and trigger mood disturbances. Furthermore, systemic 
innate or adaptive immune imbalances can trigger inflammatory cas-
cades stemming from sociopathogenic (Chen and Dilsaver, 1996b; 

Slavich et al., 2010; Kiecolt-Glaser et al., 2003; Glaser and 
Kiecolt-Glaser, 2005; Sloan et al., 2007; Cole et al., 2007, 2011; Cole, 
2014; Cacioppo et al., 2015) and zenopathogenic (Gosnell et al., 2016; 
Finch, 2010; Decker et al., 2005; Rhen and Cidlowski, 2005) factors. 
Therefore, environmental pathogens and genetically determined neu-
rodevelopmental vulnerabilities can compound well-being and pro-
foundly impact physical and mental health outcomes such as mood 
disorders (Syed et al., 2018; Nemeroff, 2020; Teicher et al., 2021; Kirsch 
et al., 2021). The accumulation of negative biological and environ-
mental pathogenic factors (Gosnell et al., 2016; Scangos et al., 2021a, 
2021b, 2021c; Syed et al., 2018; Nemeroff, 2020; Teicher et al., 2021; 
Kirsch et al., 2021), including those noted above, can decrease the 
subjective value of staying alive in a highly imbalanced homeostatic 
states and thereby increase the risk of suicide. Thus, sustained accu-
mulation of negative survival values perceived from adverse environ-
mental experiences coupled with genetic vulnerability can depreciate 
the level of positive existential outlook and increase psychological pain 
and misery (Nemeroff, 2021; Shneidman, 1993). Such negative valua-
tion processes can, in turn, trigger suicidal ideation and attempts as a 
maladaptive solution to escape current and future unbearable pain and 
misery mortally. 

Environmental pathogens and sickness behavior (Chen and Dilsaver, 
1996b; Slavich et al., 2010; Kiecolt-Glaser et al., 2003; Glaser and 
Kiecolt-Glaser, 2005; Sloan et al., 2007; Cole et al., 2007, 2011; Cole, 
2014; Cacioppo et al., 2015) have a close link. For instance, repeated 
exposures to sociopathogens can induce components of sickness 
behavior such as fatigue, disruptions in normal sleep and anhedonia, 
impaired cognition, attenuated social behaviors, and unstable mood 
(Dantzer, 2004; Eisenberger et al., 2010; Krabbe et al., 2005; Reich-
enberg et al., 2001). Although these examples of environmentally 
induced sickness behaviors are not linearly compatible with manic ill-
nesses, they could lead to excessive foraging and hypersexuality, 
underscoring the biological complexity underlying sickness behaviors. 
Therefore, it is not surprising that sickness behavior coincides, albeit 
temporarily, with the production and release of cytokines and chemo-
kines (Moieni et al., 2015; Lasselin et al., 2016; Grigoleit et al., 2011; 
Wang and Miller, 2018). Thus, successful evaluation of how exposure to 
potential sociopathogens (e.g., human inflicted trauma, extremely 
hurtful social interactions, and perceived anxiety) (Chen and Dilsaver, 
1996b; Slavich et al., 2010; Kiecolt-Glaser et al., 2003; Glaser and 
Kiecolt-Glaser, 2005; Sloan et al., 2007; Cole et al., 2007, 2011; Cole, 
2014; Cacioppo et al., 2015) or zenopathogens (e.g., natural disasters, 
infections/disease, pollutants) (Gosnell et al., 2016; Finch, 2010; Decker 
et al., 2005; Rhen and Cidlowski, 2005) can cause sickness is a critical 
ability for survival. It is likely that the brain’s translation of perceived or 
experienced harmful environmental contexts into negative bodily or 
affective feeling states may, in part, be a mechanism for feeling 
depressed. Indeed, the direct connectivity between frontolimbic net-
works with peripheral adrenal cortex, gut, and cardiovascular systems 

Fig. 2. Integrative Bio-environmental and De-
mographic Correlate for Mood Disorder-Suicide 
risk over the lifespan. The model illustrates how 
increased environmental (i.e., adverse environmental 
factors) and demographic risk factors can impact 
localized brain anatomical integrity, cerebrospinal 
fluid (CSF), and inflammatory blood dysregulation, 
influencing mood disorder onset and disease course 
over the lifespan. Accordingly, increased brain 
anatomical atrophy, in interaction with increased CSF 
& peripheral blood immune/inflammation processes 
across sex and age, can collectively influence mood 
disorders and related suicidal risk outcomes.   
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(Dantzer et al., 2000), via the hypothalamus could be necessary for 
mediating depressive sickness (Goldman-Rakic, 1988; Dantzer et al., 
2000). As such, dysregulated frontolimbic connections with striatal 
reward pathways (leading to anhedonia and, in turn, affecting inflam-
mation) or dysregulated frontolimbic connections with the extra-striate 
pathways (leading to psychomotor inhibition) may serve as biological 
determinants of depression and suicidal urges. Furthermore, dysregu-
lated frontolimbic links with the hypothalamus can lead to endocrine 
dysregulation, inflammation, and low mood (Inagaki et al., 2015; Har-
rison et al., 2009b, 2016; Lekander et al., 2016). In summary, evidence 
suggests that frontolimbic-related dysregulations could affect three 
distinct mechanisms: 1) frontolimbic-vagus nerve links to the peripheral 
systems, or 2) frontolimbic mediated cytokine diffusion into the cere-
brospinal fluid, and 3) frontolimbic through blood-brain barrier endo-
thelial transmission (Vitkovic et al., 2000; Inagaki et al., 2012). 

The specific inflammatory processes mediating depressive sickness 
within the context of our suicide model are not well-defined (Fig. 1), and 
future studies need to characterize the inflammatory biological mech-
anisms for suicide risk in a broader context (see Fig. 2). 

4. Postmortem brain studies of mood disorders and suicide- 
related gene expression signatures 

Multiple studies using brain gene expression analyses, which mea-
sure genetic functions by capturing transcript abundance for specific 
genes and molecular pathways, have identified differentially expressed 
genes involved in microglial and immune system functions in mood 
disorders. In Pantazatos et al., differentially expressed immune system 
genes were identified in the prefrontal cortex of depressed individuals 
who died by suicide compared to non-suicide deaths (Pantazatos et al., 
2017). These authors additionally found the IL8 gene to be down-
regulated in MDD (Pantazatos et al., 2017). Another study found that the 
mRNA expression of chemokines, a family of immunity modulating 
chemoattractant cytokines or small proteins secreted by cells, namely 
CXCL1, CXCL2, CXCL3, and CCL2 chemokine families, were signifi-
cantly downregulated in the prefrontal cortex of depressed suicides 
compared with controls (Pandey et al., 2021). In contrast to these che-
mokine findings, another study found increased chemokine gene 
expression in the dorsal anterior cingulate of depressed suicides (Tor-
res-Platas et al., 2014). However, CCL4 was downregulated in mood 
disorders when comparing high vs. low psychiatric morbidity and sui-
cide mortality (Jabbi et al., 2020b). Jabbi et al. (2020b) replicated the 
Pantazatos finding (Pantazatos et al., 2017) of CCL4 downregulion in 
MDD and suicide. Together, these postmortem brain gene expression 
results (Jabbi et al., 2020b; Pantazatos et al., 2017) align with findings 
of lower cerebrospinal fluid and blood plasma levels of IL8 in suicide 
attempters versus non-attempters (Janelidze et al., 2014). In Jabbi et al., 
N.F.- κB pathway genes necessary for cellular-immune response to in-
fections (Jabbi et al., 2020b) were also downregulated in mood disorder 
morbidity and suicide mortality, in line with the role for innate immu-
nity immune and inflammatory abnormalities in the pathophysiology of 
depression (van Amerongen and Nusse, 2009; Caviedes et al., 2017). 
Furthermore, overexpression of ZC3H12D and POU2F1, a DNA-binding 
transcription factor involved in inflammation via stress-induced modu-
lation of tissue-specific gene expression, was associated with suicide. 
This result is noteworthy because ZC3H12D is thought to a) suppress 
inflammatory cytokines, b) increase ubiquitination-associated immu-
nological dysfunctions, and c) play a role in toll-like receptor signaling 
and host immunity (Huang et al., 2012). 

Despite this mixed evidence regarding the up or downregulation of 
chemokine expression, other evidence suggests that chemokines are 
pleiotropic, having beneficial and deleterious attributes, thereby 
explaining the putative discrepancy between the studies mentioned 
above. Additionally, gene expression may fluctuate in different brain 
regions and tissue-type (brain versus blood) based on varying anatom-
ical and environmental factors, yielding potential differences between 

results from specific brain regional studies or tissue-specific findings 
with different underlying molecular mechanisms. For example, lower 
expression of genes associated with chemokine activity and regulation in 
depression might suggest altered microglia-mediated synaptic pruning 
in MDD (Zhan et al., 2014). Furthermore, because chemokine and 
immune-related genes are expressed in microglia and astrocytes, 
reduced chemokine and immune-related gene expression could reflect 
cellular abnormalities such as reduced astrocytes and impaired neuro-
protection, as well as impaired neuron-glia communication in depressed 
suicide brains (Barres, 2008). Together, these results point to innate/-
adaptive immune and related inflammatory abnormalities in mood 
disorders and suicide. More research is needed to elucidate the specific 
contribution of neuro-immune and inflammatory gene pathways to 
advance our understanding of the specific roles of immune and in-
flammatory abnormalities in mood disorder morbidity and suicide. 

In summary, many avenues of research have explored the in-
terdependencies between mood disorder morbidity, suicide risk, and 
aberrant gene expression in the brain. One example study used RNA-seq 
to show how gene expression patterns across the whole transcriptome 
are associated with major depressive disorder (MDD) and related suicide 
phenotypes (Pantazatos et al., 2017). Another study explored the neu-
rotranscriptomic linkage between suicidal behaviors and mood disor-
ders in the anterior insula (Jabbi et al., 2020b). The latter study used 
factor analysis to identify a possible higher-order factor explaining 
variance in post-mortem variables. i.e., how groups of variables cluster. 
This work assessed psychiatric morbidity and suicide mortality risk 
factors on a dimensional continuum so that clinical designations of 
mood disorder subtypes (i.e., MDD, BD) don’t incorrectly segregate 
patients into MDD versus BD diagnostic groups that share underlying 
gene expression profiles. Future research will need to extend and 
translate brain gene expression abnormalities, across multiple brain 
regions, to living populations by identifying related peripheral 
blood-based predictive biomarkers for suicide risk. 

5. Inflammatory gene expression profiles in mood disorders and 
suicide 

Major depressive disorder linked inflammatory signatures: Recent 
studies show the relationship between stress-related neuroinflammation 
and mood disorders. For example, stress/adversity can cause major 
depression and related alterations in innate and adaptive immunity 
(Beurel et al., 2020) and is paired with systemic immune activation, 
changing inflammatory markers, immune cell numbers, and antibody 
titers (Beurel et al., 2020; Tantin et al., 2005). Depressed patients have 
increased interleukin-6(IL-6) plasma concentrations and circulatory 
proinflammatory cytokines (Beurel et al., 2020). Various studies have 
shown that proinflammatory cytokines and acute-phase proteins are 
increased in depressed individuals. For instance, IL-6, tumor necrosis 
factor (TNF), and C-reactive protein (CRP) are upregulated, and patients 
with increased suicidal risk have increased interleukin concentrations in 
their blood and cerebrospinal fluid (Beurel et al., 2020; Tantin et al., 
2005; Musselman et al., 2001). 

Moreover, stress, MDD, and cancer are associated with an immuno-
compromised state marked by T cell response, natural killer cell activity, 
and the number of T helper cells (Tantin et al., 2005; Musselman et al., 
2001; Brundin et al., 2017). A relatively new but promising area of 
research is the bidirectional relationship between autoimmune and 
other medical diseases and depression. For instance, people with MDD 
have an increased risk of developing autoimmune thyroiditis, multiple 
sclerosis, lupus, and irritable bowel syndrome (Beurel et al., 2020; 
Tantin et al., 2005). Additionally, cytokines, thought to be requisite 
mediators of inflammation, are associated with elevated depressive 
symptoms and suicide (Brundin et al., 2017; Podlipný et al., 2010). 
While evidence exists of a profound immune and inflammatory pathway 
abnormality in depressive disorders and related comorbid conditions, 
specific brain peripheral and cellular mechanisms by which immune and 
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inflammatory processes influence depressive symptoms and disease 
outcomes need to be further characterized by future studies. 

Bipolar disorder linked inflammatory signatures: Similar to 
depression, bipolar disorder is associated with elevated inflammatory 
cytokine levels (O’Brien et al., 2006; Black and Miller, 2015). Cortico-
limbic brain areas such as the amygdala, insula, and ACC play an 
important role in immune functional regulation and signaling (Jabbi 
et al., 2020b; Irwin and Cole, 2011). Therefore, abnormal corticolimbic 
activity might cause immune dysfunction, and more studies of the 
possible mechanisms by which corticolimbic networks mediate neuro-
immune functions are needed (Jabbi et al., 2020b; Maletic and Raison, 
2014). In several studies, IL-4 level was elevated in bipolar disorder 
patients relative to controls. Raised IL-4 in bipolar disorder is expected 
to compensate for the condition-dependent increase in proinflammatory 
cytokines (Munkholm et al., 2013). Other studies have also found 
increased tumor necrosis factor-alpha and IL-6 in bipolar depressive and 
manic patients (Brietzke et al., 2009; Kim et al., 2007). 

Bipolar depressive states are characterized by an imbalanced ratio of 
proinflammatory IL-6 to anti-inflammatory IL-10. Additionally, in-
flammatory cytokines are known to decrease the sensitivity of gluco-
corticoid receptors (Tsigos and Chrousos, 2002), and inflammatory 
cytokines activate microglia cells in the brain, which boost inflamma-
tion by releasing reactive oxygen species, chemokines, and cytokines 
(Maletic and Raison, 2014). Inflammatory cytokines further influences 
dopamine receptor expression, impeding monoamine signaling (Felger 
and Lotrich, 2013) suggesting that mood disorders and related inflam-
matory abnormalities may be linked with other biological pathways. 

Suicide-linked inflammatory signatures: Inflammation is particu-
larly elevated in suicide (Musselman et al., 2001; Black and Miller, 
2015). In specific terms, suicide risk behaviors are associated with 
global brain molecular changes affecting several functional pathways, 
including monoamine, immune and inflammatory, and GABAergic and 
glutamatergic excitatory/inhibitory dysfunctions (Lutz et al., 2017). The 
extent to which any functional pathway dysfunctions are specific to 
suicide and not shared with depression or other psychiatric disorders is 
challenging to resolve, given the interrelatedness of these phenotypes. 
Nevertheless, there are connections between immune responses and 
inflammation and depression (Turecki et al., 2019; Beurel et al., 2020; 
Tantin et al., 2005; Raison et al., 2006) (Fig. 2). Individuals with chronic 
medical conditions (i.e., cardiovascular and metobolic diseases) and 
those receiving cytokine therapy are more likely to develop inflamma-
tion (Kayser and Dalmau, 2011; Courtet et al., 2016). Furthermore, 
proinflammatory cytokines (IL-6, IL-8) are higher in individuals who 
attempted suicide (Serafini et al., 2013; Janelidze et al., 2015), under-
scoring the possibility that high levels of inflammatory markers may be 
indicators of suicide risk in depression (Bergmans et al., 2019). 

In multiple studies, microglial and immune system genes were 
differentially expressed in suicide and depression groups. Differentially 
expressed immune system genes were identified between depressed 
subjects with and without suicide (Jabbi et al., 2020b; Pantazatos et al., 
2017). CCL2 and CCL4, chemokine ligands 2 and 4, respectively (Semple 
et al., 2010), were further downregulated in depressed suicides, whereas 
increased chemokine gene expression was found in the dorsal anterior 
cingulate of depressed suicides (Torres-Platas et al., 2014). In addition to 
increased chemokine signaling, CCL4 was downregulated in BD, MDD, 
and the pooled mood disorder group in relation to high vs. low mood 
disorder morbidity and suicide (Jabbi et al., 2020b). In light of the po-
tential pleiotropic properties of inflammasomes like cytokines and 
chemokines, future studies need to ascertain the role of inflammatory 
dosage in disease and suicide phenotypes. 

6. Using machine learning with clinical features to predict 
suicide risk 

Given the profound disease burden and premature deaths attribut-
able to suicide phenotypes, predicting suicide risk is paramount but 

remains challenging due to its biological heterogeneity. Much research 
has been conducted to identify clinical records of suicide attempts, 
depression symptomatology, and comorbid substance use disorders as 
key predictors of suicide death (Melhem et al., 2017). Separately, high 
levels of psychopathology are a risk factor for suicide (Gvion and 
Levi-Belz, 2018), and logistic regression models have identified 
self-report metrics and clinically relevant health data to predict suicide 
with high accuracy (Simon et al., 2018). 

Burgeoning machine learning research has shown potential for in-
cremental advances in suicide prediction (Rakesh, 2017). For example, 
one machine-learning study on mood disorder outpatients found pre-
vious MDD-related hospitalizations, a history of psychosis and cocaine 
use, and comorbid PTSD to be strong clinical predictors of suicide 
(Passos et al., 2016). In this study, variables were chosen a priori based 
on previous findings, which might inhibit discovering latent features 
that could be important in predicting suicide. However, clinical het-
erogeneity might limit the discovery of underlying biological mecha-
nisms, i.e., clinical factors may not explain or complement the suicide 
predictive values of biologically meaningful measures. Another study of 
soldiers and veterans after inpatient hospitalization found that male sex, 
late enlistment age, a history of criminal activity, and previous suicidal 
ideation were the strongest predictors of suicide completion (Kessler 
et al., 2015). However, these studies achieved a sensitivity and speci-
ficity of 70%, suggesting that the clinical markers used in these studies 
were insufficient to predict suicide with high accuracy, reinforcing the 
idea that suicide is phenotypically complex. 

Because of the multi-dimensionality of suicide risk factors, we pro-
pose that machine learning tools enable a more robust prediction of 
mood disorder-related suicide outcomes at the population level. 
Furthermore, there is increasing evidence that elements of our proposed 
approach are emerging as a blossoming field in psychiatric and behav-
ioral research. For instance, machine learning algorithms based on 
clinical and biological features have been developed to predict suicide 
with mixed success (Bernert et al., 2020; Bhak et al., 2019). Indeed, 
prediction models that rely solely on self-report metrics can be inade-
quate in their predictive power due to the subjectivity and lack of in-
dividual transparency about expressing troubling and often stigmatizing 
suicidal thoughts (Busch et al., 2003). Still, machine learning ap-
proaches have shown promise in discovering genetic biomarkers for 
disease and suicide outcomes (Bhak et al., 2019; Libbrecht and Noble, 
2015). 

Herein, we propose that machine learning enables researchers to 
integrate multiple data types (e.g., transcriptomics, clinical behavioral, 
environmental/ecological, and demographic variables) to facilitate a 
more gestalt understanding of suicide risk outcome measures across the 
lifespan and different global settings. Additionally, machine learning 
allows the detection of essential features not informed by a priori in-
formation, which can advance the identification of novel brain-related 
genetic risk components of suicide. Using machine learning to study 
the interplay between brain gene expression and history of mood 
symptoms and suicide phenotypes in post-mortem samples will advance 
the understanding of suicide etiology and guide the identification of 
potential biomarkers. Such biomarkers could, in turn, inform the 
development of novel drugs to treat suicidal phenotypes. By combining 
diagnostic, demographic, adversity history, and brain gene expression 
data in a discovery sample of post-mortem donors, researchers will more 
robustly develop sensitive models to predict suicide in mood disorders. 
Such models using postmortem samples will uncover previously un-
known brain genetic and related biomolecular determinants of suicide 
outcomes across disease phenotypes. 

We suggest using a two-pronged machine learning approach (Fig. 3) 
in future studies. The first is to use supervised machine learning tools 
with post-mortem RNA-seq and clinical data to develop a more robust 
predictive model for suicide attempts. The second is to use unsupervised 
machine learning tools to uncover clusters of unique mood disorder and 
suicide predictive phenotypes. For the predictive model, once brain- 
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based biomarkers for suicide are identified, those same markers can be 
validated in blood measures of the same subjects in follow-up studies. If 
successful, this will provide a framework of cross-tissue validated dis-
ease morbidity and mortality risk marker identification and enable cli-
nicians to test for blood-based biomarkers in living patients to identify 
their risk profiles for mood disorder severity and imminent suicide risk. 
Secondly, using unsupervised learning will allow the identification of 
subtypes of suicide. Such unsupervised machine learning approaches 
can enable researchers to analyze what variables drive similarity, and 
advance understanding and identification of distinct suicide pheno-
types. Integrating brain imaging studies into predictive suicide models 
could further bolster their efficacy, improving personalized 
neuropsychiatry. 

7. Considerations for mood disorder and suicide heterogeneity 
in suicide risk prediction 

This review shows that neurobiological measures such as brain gene 
expression profiles in postmortem mood disorders and suicide can vary 
significantly across individuals and contexts. This heterogeneity might 
partly be due to how mood disorders are defined incompatibly from 
biology to psychiatry. Depression, as defined by the Diagnostic and 
Statistical Manual of Mental Disorders Version V, can manifest in more 
than 10000 ways (Cai et al., 2020). Subtypes of depression, based on 
theory and data-driven approaches, have been proposed to reconcile this 
heterogeneity. Furthermore, the time course of mental illness generally 
varies substantially between individuals; depression subtypes with 
temporal dissimilarities could have different underlying biological 
pathways. Additionally, though clinically distinct, mood disorders such 
as MDD and bipolar disorder might not always be necessarily differen-
tiable at a molecular level, as demonstrated by several overlapping gene 
expression profiles in previous research (Jabbi et al., 2020b). 

While more analytically feasible, most RNA-seq studies that conduct 
group-level analysis of mood disorders have so far failed to capture in-
dividual differences in mood disorder-related gene expression abnor-
malities. One reason is that mildly depressed individuals who barely 
pass the symptom threshold are lumped together with severe cases with 
above threshold symptom scores. Furthermore, different molecular 
mechanisms could potentially confer symptom severity. Thus, future 
studies need to identify molecular substrates for mood disorder 
morbidity and suicide risks and conduct further analyses on homoge-
neous diagnostic cohorts as undertaken recently (Jabbi et al., 2020b; 
Arasappan et al., 2021). Such approaches could advance the mechanistic 
understanding of phenotypic specificity (i.e., mood disorder symptoms 
relative to suicide risk phenotypes). 

Identifying quantitative biological traits and novel symptom cluster 
definitions of psychiatric disorders that better correlate with underlying 
biological abnormalities will advance the goals of developing better 
methods for identifying the underlying neurobiological mechanisms. 
Moreover, various genes and gene networks mediating specific molec-
ular pathways have been identified, but the extent to which these mo-
lecular mechanisms are measurable at the individual level is 
underexplored. Finally, identifying unique molecular properties that 
scale with mood disorder severity and suicide lethality indices will 
enable research collaborations with clinical practices toward personal-
ized and precision treatment and prevention strategies. Such interdis-
ciplinary approaches will advance the biological understanding of 
suicide risk behaviors and thereby help decriminalize (Aleman and 
Denys, 2014) the expression of suicidal phenotypes as suicidal behaviors 
are still treated as a crime in at least 20 countries. 

8. Example studies of machine learning prediction of suicide 
risk 

In a recent study, Passos et al. (Passos et al., 2016) explored suicide 
prediction with machine learning techniques by identifying clinical risk 
factors for a suicide attempt at the individual level. One hundred 
forty-four patients with mood disorders were included in the study with 
exclusion criteria including head trauma, neurological disease, and 
uncontrolled primary medical conditions. Mood and anxiety symptoms 
were assessed with the Hamilton Depression Rating Scale (HDRS), the 
Young Mania Rating Scale (YMRS), and Hamilton Anxiety Rating Scale 
(HARS). Clinical and demographic variables were chosen according to a 
priori identification of suicide risk factors, including age, gender, race, 
years of education, current employment status, mood disorder diagnosis 
(i.e., bipolar disorder or major depression), anxiety spectrum disorders, 
obsessive-compulsive disorder, alcohol/cocaine dependence, number of 
lifetime depressive episodes, prior hospitalizations by depressive epi-
sodes, and psychotic symptoms (Passos et al., 2016). 

Passos et al. (Passos et al., 2016) applied three machine learning 

Fig. 3. Supervised and unsupervised learning methods for suicide 
research. A) Clinical and demographic data combined with RNA-sequencing 
data from post-mortem brain tissue improve suicide prediction models and 
neurobiological understanding of suicide risk. B) Features are automatically 
selected that facilitate suicide classification on the left and suicide subtype 
aggregation on the right C) Supervised learning classifies suicides from non- 
suicides with a boundary line (red) using input features (x1 and x2). Colored 
clusters represent suicide and non-suicide groups. Unsupervised learning clus-
ters represent suicide phenotypes based on input features such as de-
mographics, clinical, and biological and tissue qualitative variables. Colors are 
arbitrary and represent groupings of suicide subtypes. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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algorithms, including 1) support vector machine (SVM), which performs 
linear classification by identifying a decision boundary that separates 
two classes (in this case, suicide and non-suicide); 2) relevance vector 
machine (RVM), which uses a Bayesian framework and linear kernel to 
provide probabilistic classification from a sparse use of data points; and 
3) the least absolution shrinkage and selection operator (LASSO), which 
is a linear regression analysis method that uses variable selection and 
regularization, assigning some predictor variables to zero coefficients. 
The machine learning approach separates data into training and testing 
sets and utilizes cross-validation to generalize the data. The authors used 
leave-one-out cross-validation (LOOCV), which involves training an al-
gorithm on all subject data except one, and repeated the LOOOCV 
process until all subjects are left out at least once. To avoid class 
imbalance, where observations in one class outnumber those in another, 
biasing classification of new observations, Passos et al., 2016 
under-sampled the majority class and then resampled for the training 
stage for 1000 iterations to include each observation in the majority 
class in training at least once. In essence, each algorithm adopted in 
Passos et al.‘s study was designed to distinguish suicide attempters from 
non-attempters with greater than chance accuracy (Passos et al., 2016). 
RVM was most successful, yielding 72% classification accuracy (Passos 
et al., 2016). The most relevant predictor variables were as follows: 1) 
increased number of previous hospitalizations for depression, 2) history 
of psychosis, 3) cocaine dependence, and 4) PTSD. Additionally, a 
reduction in age and mood diagnosis, i.e., low age of onset for bipolar 
disorder diagnosis, was relevant in identifying suicide attempters. When 
removing the number of previous hospitalizations from the algorithm, 
the RVM performed with 68.9% accuracy, indicating that this variable 
was not the only driver of the predictive power of the applied algorithm. 
Although Passos et al.‘s study predicted suicide risk at the individual 
level using clinical and demographic variables with machine learning 
algorithms, their method did not include biological variables needed to 
identify mechanisms and treatment targets (Passos et al., 2016). 

In another study, Bhak et al. (Bhak et al., 2019) constructed random 
forest binary classification models for three diagnostic group compari-
sons (i.e., suicide attempters vs. major depressive non-suicide attemp-
ters, suicide attempters vs. controls, and major depressive non-suicide 
attempters vs. controls) to identify differentially expressed genes and 
differentially methylated predictive features from whole blood using a 
sample of 56 suicide attempters with diagnosed major depression, 39 
non-suicide attempters diagnosed with major depression, and 87 
healthy controls. For Bhak et al.’ s machine learning prediction study, all 
participants were alive at the time of data collection and provided 
written informed consent before donating blood. Differentially 
expressed genes from whole blood with a fold change over 1.2 and a 
Benjamini-Hochberg adjusted p-value <0.05 were chosen as features in 
each model (Bhak et al., 2019). A tree-based feature selection method 
using a LOOCV method was used to eliminate irrelevant features that 
didn’t contribute to prediction accuracy. Using blood-derived multi-o-
mics data, these authors found that suicide attempters had different 
characteristics than major depressive non-suicidal individuals with 
92.6% accuracy. Major depressive individuals were further successfully 
discriminated from controls with 87.3% accuracy. In addition, suicide 
attempters were discriminated from controls with 86.7% accuracy 
(Bhak et al., 2019). The authors additionally built linear regression 
models based on multi-omics data that could predict psychiatric scale 
scores successfully using the Hamilton Rating Scale for Depression-17 
(HAMD-17) and Scale for Suicidal Ideation (SSI) ratings. Predictive 
features were selected if differential methylation and gene expression 
significantly correlated with HAMD-17 or SSI. After predictive feature 
selection, 48 and 51 differentially expressed genes remained very pre-
dictive for HAMD-17 and SSI regression models, respectively. The linear 
regression models for the depressed and bipolar groups yielded an R̂2 of 
0.961 for HAM17 and 0.943 for SSI (Bhak et al., 2019). In sum, Bhak 
et al.‘s study reveals that blood-based multi-omics data can be used to 
predict suicide risk behaviors successfully. 

Furthermore, the applied integrative bio-behavioral methods by 
Bhak and colleagues could provide a framework for individualized 
predictive approaches (Bhak et al., 2019; Lutz et al., 2017). Emerging 
studies using clinical symptomatology (Melhem et al., 2017; Gvion and 
Levi-Belz, 2018; Simon et al., 2018; Rakesh, 2017; Passos et al., 2016; 
Kessler et al., 2015; Bernert et al., 2020; Bhak et al., 2019; Busch et al., 
2003; Edavally et al., 2021; Gradus et al., 2020), health informatics 
(Gradus et al., 2020), multi-omic (Bhak et al., 2019; Cai et al., 2020; Han 
et al., 2019), or integration of clinical and biological datasets (Bhak 
et al., 2019) are being pursued for more accurate predictions of suicide 
risk with machine learning algorithms. Given the phenotypic complexity 
of suicide risk behaviors that are not specific to mood disorders, iden-
tifying highly reliable predictive clinical features for suicide risk will 
guide more reliable biological risk predictive markers in high-risk 
populations. Combining machine learning with postmortem brain bio-
logical studies and related records of lifetime clinical and endpoint 
suicide outcome measures can identify powerful predictors of suicide 
risk, albeit retrospectively. 

9. Conclusions and future directions 

Despite the high prevalence of suicide, accounting for close to a 
million global premature deaths annually (Aleman and Denys, 2014; 
Saxena et al., 2013; Turecki et al., 2019), especially in individuals with 
severe mood disorders, the need for better-prediction of suicide risk 
remains unmet. Pragmatic and individually precise research solutions 
are needed (Aleman and Denys, 2014). Evidence suggests that integra-
tive biological and clinical research can identify the underlying bio-
logical mechanisms for mood disorder severity and suicide risk 
phenotypes. Once such clinically relevant biomarkers are characterized, 
prediction of suicidal intent and acts can be facilitated with integrative 
machine learning approaches (Edavally et al., 2021). 

We propose using machine learning methods to comprehensively 
integrate environmental history, demographics and clinical symptom-
atology (Melhem et al., 2017; Gvion and Levi-Belz, 2018; Simon et al., 
2018; Rakesh, 2017; Passos et al., 2016; Kessler et al., 2015; Bernert 
et al., 2020; Bhak et al., 2019; Busch et al., 2003; Edavally et al., 2021; 
Gradus et al., 2020), with physical homeostatic measures and molecular 
neurobiological outcomes such as gene expression data (Bhak et al., 
2019; Cai et al., 2020; Han et al., 2019) as proposed in our suicide model 
(Fig. 1) using post-mortem studies. While such post-mortem methods in 
deceased individuals have low preventative value because disease and 
mortality outcomes are known for each donor, such postmortem studies 
can ultimately help identify suicide risk predictive features and related 
biological risk markers in a deterministic fashion (Jabbi et al., 2020b; 
Pantazatos et al., 2017). In addition, such studies could guide clinical 
translation of postmortem brain findings into peripheral blood markers 
that are less invasive to access in clinical populations. In line with cancer 
research that has increasingly integrated mixed data types to improve 
cancer patient stratification and disease prognostics (Han et al., 2019), 
such integrative mixed data approaches (Fig. 3) hold promise for the 
field of neuropsychiatry. Using biomarkers from postmortem studies 
with predictive values, future identification of diagnostic, prognostic, 
and predictive risk biomarkers for mood disorders and related suicide 
risk will advance mechanistic understanding and help identify biologi-
cally valid phenotypic markers for suicide risk prediction. 
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