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Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and

fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles

to share metabolites, proteins, and mitochondrial DNA, promoting complementarity

between damagedmitochondria. Fission increases the number of mitochondria to ensure

that they are passed on to their offspring during mitosis. Mitophagy is a process

of selective removal of excess or damaged mitochondria that helps improve energy

metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction,

high production of reactive oxygen species, increased inflammatory response, and low

levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics

and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and

mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles

in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure,

atherosclerosis, and obesity.

Keywords: mitochondrial dynamics, cardiometabolic disease, mitophagy, mitochondrial fission, mitochondrial

fusion, diabetic cardiomyopathy, myocardial infarction

INTRODUCTION

Cardiometabolic disease (CMD) is a clinical syndrome caused by genes (heredity, environment,
behavior) and metabolic drivers (abnormal obesity, abnormal blood glucose, metabolic syndrome
characteristics), including hypertension, diabetes, dyslipidemia, coronary heart disease, stroke, and
other diseases (1, 2). The incidence of CMD increases gradually with the increase of age, which is
the primary cause of death and disease burden of the global population. Unreasonable diet, lack of
exercise, smoking, and excessive drinking are the main risk factors for the sharp increase in CMD
(3). At present, pathogenesis, risk assessment, and treatment of CMD remain unclear. One of the
most promising treatments for CMD is to improve cardiac metabolism and energy supply (4, 5).

The heart has a very high energy requirement, which must continuously produce large amounts
of ATP through the metabolism of various fuels (fatty acids, glucose, lactic acid, pyruvate, and
amino acids) to maintain systolic function. Mitochondrial oxidative phosphorylation (OXPHOS)
contributes 95% of cardiac ATP requirements and glycolysis provides the remaining 5% (6).
Cardiac energy disturbance is an important cause of most CMD (7). The ability of the heart
to switch between different energy substrates is known as metabolic flexibility (8). As insulin
resistance develops, the metabolic flexibility of the heart gradually decreases, making myocardial
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energy production largely dependent on fatty acid oxidation.
This shift leads to increased uptake and accumulation of
lipids in the heart, resulting in lipotoxicity. At the same
time, glycolytic intermediates accumulate in the heart due to
the unavailability of glucose, producing glucotoxicity (9). By
improving mitochondrial homeostasis and converting metabolic
pathways, it is beneficial to support the homeostasis of the body
environment and promote the change of cell phenotype, thereby
improving the pathological mechanism of CMD (10, 11).

The endosymbiosis theory suggests that mitochondria
are bacteria that are engulfed by primitive eukaryotes.
This bacterium was symbiotic with eukaryotes and became
mitochondria through evolution during the long symbiosis (12).
Mitochondria are the two membrane-encapsulated organelles
present in most cells and are the main sites for the aerobic
respiration of cells. Mitochondria make up about one-third
of the volume of adult cardiomyocytes and are the primary
energy source for the coupling of excitatory contractions in the
heart (13). Mitochondria play an important role in sustaining
cardiology and physiology as metabolic and signal transduction
centers, involved in many important biological processes
such as OXPHOS production of ATP, fatty acid oxidation,
calcium homeostasis, phospholipid synthesis, production, and
maintenance of reactive oxygen species (ROS), and iron-sulfur
cluster biosynthesis (14). In recent years, more and more
evidence showed that mitochondria and CMD are closely
related. Mitochondrial dysfunction can induce ROS production,
activate DNA damage responses, lead to cardiac cell cycle arrest,
and ultimately lead to fatal cardiomyopathy (15). Mitochondrial
Ca2+ is the basic substance that activates the mitochondrial
respiratory chain complex and ATP production and regulates the
key mitochondrial dehydrogenase activity. When mitochondrial
calcium homeostasis is unbalanced, mitochondrial bioenergetics
are damaged, leading to the occurrence of diabetic heart
disease (16).

Given the unique and highly dynamic structure of
mitochondria in the heart and intimate links between
mitochondria and CMD homeostasis in physiology and
pathology. In this review, we focus on the mitochondrial
fusion, fission, and mitophagy in CMD (with a focus on
diabetic cardiomyopathy, myocardial infarction, heart failure,
atherosclerosis, and obesity), and the potential drugs that target
mitochondria to treat CMD.

INTRODUCTION TO MITOCHONDRIA

Mitochondrial Structure
Mitochondria can be divided into four functional regions from
outside to inside: outer mitochondrial membrane (OMM),
intermembrane space (IMS), inner mitochondrial membrane
(IMM), and mitochondrial matrix (Figure 1).

The OMM is the outermost unit membrane of mitochondria
with a thickness of about 6–7 nm. The OMM acts as a diffusion
barrier and mediates mitochondrial signaling. The OMM is
smooth and usually permeable, restricting diffusion only to
molecules greater than ∼5,000 Da. Molecules with a molecular
weight greater than the above limit require a specific signal

sequence for recognition and active transport of mitochondria by
translocase of the outer membrane (TOM) (17, 18). Importantly,
the OMM is crucial to mitochondrial dynamics because it carries
all the molecules involved in mitochondrial fusion and fission.

The IMM is a unit membrane located inside the OMM
and surrounding the mitochondrial matrix. The mass ratio of
protein to phospholipid in the IMM is about 0.7:0.3 and contains
a large amount of cardiolipin. The IMM includes two main
sub compartments: the inner boundary membrane (IBM) and
mitochondrial cristae. The IBM is the part of the IMM that does
not protrude into the matrix but runs parallel to the OMM.
The cristae and IBM are connected by narrow tubular or slit
structures called cristae junctions (CJS) (19).

Cristae are characteristic folds of the inner membrane that
penetrate the matrix. The IBM and cristae are functionally
differentiated and have a distinct protein composition.
Respiratory chain complexes and proteins involved in iron-
sulfur cluster assembly are enriched in cristae membranes, while
protein translocation and membrane fusion mechanisms are
mainly present in IBM (20–23).

The mitochondrial lumen (named “matrix”) is the inner space
enclosed by IMM,which containsmany proteins such as enzymes
involved in biochemical reactions such as tricarboxylic acid
cycle, fatty acid oxidation, and amino acid degradation (24). In
addition, thematrix also contains mitochondrial DNA (mtDNA),
RNA, and mitochondrial ribosomes (25).

Human mtDNA is a double-stranded circular molecule of
16,569 base pairs with a molecular mass of 107 Da (26).
Maintenance of mtDNA stability and integrity is critical for
cellular energetics. mtDNA is particularly susceptible to damage,
whether by respiration or exogenous contact, which can lead
to damage to the base of the DNA. mtDNA is closely
related to mitochondrial dynamics (25). When cells undergo
apoptosis, mtDNA can be released into the cytoplasm, causing
an inflammatory response (27).

Mitochondrial Fusion and Fission
Homeostasis ofmitochondrial dynamics is critical tomaintaining
cardiac structure and function. Mitochondria are highly dynamic
organelles that maintain their shape, distribution, and size
through fusion, fission, and mitophagy when cells undergo
metabolic or environmental stress (Figure 2). The coordinated
cycle of mitochondrial fission and fusion is known as
mitochondrial dynamics (28, 29). Mitochondrial fusion allows
organelles to sharemetabolites, proteins, andmtDNA, promoting
complementarity between damaged mitochondria (30, 31).
Fission increases the number of mitochondria to ensure that
they are passed on to their offspring during mitosis. In addition,
fission can signal to cells that mitochondria are damaged and
need to be removed through mitosis to maintain a healthy
mitochondrial network (32–34). The balance of fusion and fission
affects the cardiac phenotype. An imbalance between fusion
and fission is more detrimental than stopping both processes
at the same time. Recently, a study showed that compared
to MFN1/MFN2 cardiac knockout or DRP1 cardiac knockout
mice, MFN1/MFN2/DRP1 cardiac triple knockout mice survived
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FIGURE 1 | Mitochondrial structure and function. Mitochondria can be divided into four functional regions from outside to inside: outer mitochondrial membrane,

intermembrane space, inner mitochondrial membrane, and mitochondrial matrix. Mitochondria can regulate metabolism, signal transduction, immune regulation, cell

senescence, and death through TCA cycle metabolites, cytochrome c (Cytc), mtDNA, Ca2+, ROS, AMPK, and other factors, thus affecting the balance of the human

body.

longer and manifested a unique pathological form of cardiac
hypertrophy (35).

The core mechanism of mitochondrial dynamics is regulated
by a group of GTPases related to the dynamin family. These
proteins can oligomerize and change conformation, driving the
remodeling, contraction, shearing, and fusion of mitochondrial
membranes (36). Mitochondria are double-membrane organelles
and complete fusion requires the merging of the outer and inner
membranes. Mitochondrial fusion is a two-step mechanism. The
OMM located GTPases mitofusin (MFN) 1 and 2 ensure the
OMM fusion, and the IMM located optic atrophy protein 1
(OPA1) is responsible for IMM fusion (37, 38). OMM fusion
is mediated by the MFN. MFN form both homo-oligomeric
(MFN1-MFN1 orMFN2-MFN2) and hetero-oligomeric (MFN1-
MFN2) complexes in trans between apposing mitochondria (39).
Mitochondrial fusion is crucial for embryonic development,
mice deficient in either MFN1 or MFN2 die in midgestation
(40). OPA1 is a large GTPase tethered to the IMM facing the
intermembrane space (39). OPA1 is dependent on MFN1 for
fusion function, but not MFN2 (37).

Fission is mainly dominated by dynamin-related protein 1
(DRP1) which translocates from the cytoplasm to mitochondria
and binds to its OMM partners [mitochondrial fission factor
(MFF), mitochondrial dynamics protein of 49 kDa (MID49),
MID51, and mitochondrial fission 1 protein (FIS1)] at sites
of contact with the endoplasmic reticulum (ER) and actin
(14, 41, 42). Following this binding, DRP1 oligomerizes and
drives scission. Recently, DRP2 has been found to collaborate
to drive mitochondrial fission (43). Loss of DRP1 loss results in
highly elongated mitochondria and peroxisome (44). Kageyamae
et al. found that DRP1 and Parkin synergistically control the
biogenesis and degradation of mitochondria. In the absence
of mitochondrial fission mediated by DRP1, mitochondria

became defective in mitophagy. This mitophagy defect led to
the accumulation of the mitophagy adaptor protein p62 and
ubiquitinated proteins on mitochondria in a Parkin-independent
manner, increases in cardiac defects, and loss of mitochondrial
respiratory competence (45).

Mitochondrial Biogenesis
Mitochondrial biogenesis is as important as other mitochondrial
dynamics (46, 47), but it’s almost neglected. Mitochondria
especially injured ones actively regulate cell death, which
is critical for maintaining cardiac homeostasis (48, 49).
Mitochondrial biogenesis is the process by which cells increase
mitochondrial mass. Mitochondrial biogenesis requires extensive
coordination of both mitochondrial and nuclear genomes.
Mitochondrial biogenesis is influenced by a variety of exogenous
and endogenous factors such as exercise, caloric restriction,
low temperature, oxidative stress, cell division, renewal, and
differentiation (50). Mitochondrial biogenesis increases the
copy number of mtDNA, the protein subunits of metabolic
enzymes, and ultimately leads to greater metabolic capacity. In
mammals, mitochondrial biogenesis is primarily regulated by
the transcriptional coactivator PGC-1α (46). A large body of
evidence suggested that CMD is associated with mitochondrial
biogenesis. By regulating the PGC-1α signaling pathway, it
is possible to treat diabetic cardiomyopathy, heart failure,
obesity, and other diseases (51, 52). There is evidence that
the genes involved in mitochondrial fusion (MFN1, OPA1)
and fission (DRP1, Fis1) were altered expression in the
hearts of PGC-1α/β-deficient mice. Significant mitochondrial
structural dysregulation, including breakage and elongation, was
observed in the hearts of PGC-1α/β-/– mice, associated with
the development of fatal cardiomyopathy (53). In addition,
PGC-1α/β-/– mice died shortly after birth with small hearts,
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FIGURE 2 | Mitochondrial function. (A) Mitochondrial fusion is mediated by homo-and heterotypic interactions between MFN1 and MFN2 at the OMM and OPA1 at

the IMM. (B) DRP1 binds to its receptors at the OMM at sites of contact with the ER. (C) The PINK1/Parkin-dependent pathway: under stress conditions, PINK1 was

stable on OMM, which promoted the recruitment of Parkin. Parkin ubiquitizes several outer membrane components. The polyubiquitin chain is then phosphorylated by

PINK1 as a “eat me” signal for the autophagy mechanism. Autophagy receptors (AR) recognize phosphorylated polyubiquitin chains on mitochondrial proteins and

initiate autophagosome formation by binding to LC3. (D) The PINK1/Parkin-independent pathway: mitophagy receptors, such as BNIP3, NIX, FKBP8, and FUNDC1

are located to directly interact with OMM and LC3 to mediate mitochondrial clearance. (E) Mitochondria are engulfed by autophagosomes, which fuse with lysosomes

and catabolize them.

bradycardia, intermittent heart block, and a markedly reduced
cardiac output (54).

Mitophagy
Autophagy is an evolutionarily conserved mechanism that
segregates superfluous, aging, or damaged cytoplasmic material

and deliver it to lysosomes for degradation (55). The main
physiological role of autophagy may be to maintain cellular
homeostasis in the context of reduced nutrient supply and
other metabolic disturbances (56). Autophagy occurs in almost
all types of cardiovascular cells, including myocytes, vascular
smooth muscle cells (VSMCs), fibroblasts, macrophages, and
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FIGURE 3 | Mechanisms of mitochondrial dynamics and mitophagy in cardiometabolic diseases.

endothelial cells (57). It has been shown that a measured
level of constructive autophagy is beneficial in restoring cardiac
homeostasis in the CMD settings; whereas both autophagy
impairment and excessive activation can lead to structural and
functional dysfunction of the heart (58).

Mitophagy is the selective degradation of mitochondria
by autophagy. Mitophagy can promote the turnover of
mitochondria, maintain mitochondrial quality, and prevent the
accumulation of dysfunctional mitochondria (59). Mitophagy
is generally divided into two major functional groups based
on the requirements for the kinase PINK1 and the Ub E3
ligase Parkin, often referred to as PINK1/Parkin-dependent
(initiating by a loss of mitochondrial membrane potential)
and PINK1/Parkin-independent mitophagy (not require loss
of the mitochondrial membrane potential) (14). Mitochondrial
autophagy is involved in metabolic activity, cell differentiation,
apoptosis, and other physiological processes associated with
major phenotypic changes, which is an important target for
the treatment of CMD (60). Cardiac stress-induced mitophagy
helps to remove damaged and dysfunctional mitochondria,
thus preventing oxidative damage that could in turn initiate
apoptosis and ultimately lead to heart failure (61). Autophagy
related 7 (Atg7)-and Parkin-dependent mitophagy plays an
essential role in the maintenance of mitochondrial function and
protects the heart during the early development of diabetic
cardiomyopathy (62). In addition, Atg5 deficiency-mediated
mitophagy increases ROS production and NF-κB activity in
macrophages, thereby aggravating cardiac inflammation and

injury (63). Thus, improving mitophagy may be a novel
therapeutic strategy to ameliorate CMD.

MITOCHONDRIAL DYNAMICS AND
MITOPHAGY IN CARDIOMETABOLIC
DISEASES

Diabetic Cardiomyopathy
Diabetic cardiomyopathy (DC) refers to a cardiac disease
that occurs in diabetic patients and cannot be explained
by hypertensive heart disease, coronary atherosclerotic heart
disease, or other cardiac lesions. Diabetic hearts utilize fatty acids
as their main source of energy, producing high levels of oxidative
stress that can lead to mitochondrial dysfunction (64). More and
more evidence suggested that cardiovascular complications of
diabetes are concentrated in the mitochondria, which are central
to cardiomyocyte damage (65, 66).

Exposure to excess nutrients promotes the growth of the
mitochondrial fission and reduces mitochondrial fusion, which
is associated with uncoupled respiration (67). In agreement
with this view, in hyperglycemic conditions, mitochondria
can induce rapid division through DRP1 signaling, resulting
in excessive production of ROS (68). Low MFN2 expression
leads to the generation of ROS, mitochondrial dysfunction,
and mitochondria-dependent apoptosis, which leading DC (69)
(Figure 3). Along this line, a study showed that ablation of
MFN2 leads to the development of impaired glucose tolerance,
hyperinsulinemia, and insulin resistance (70). Montaigne et
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al. found that the deterioration of endogenous myocardial
contraction during the transition from obesity to diabetes may
be related to the deterioration of myocardial mitochondrial
function. Furthermore, they indicated diabetes mellitus was
associated with cardiac mitochondrial network fragmentation
and myocardial MFN1 content was inversely proportional to
hemoglobin A1C (71).

A growing number of studies have demonstrated that
balancing mitochondrial biogenesis and mitophagy is essential
for maintaining cellular metabolism in the DC (72, 73).
Mitophagy dysregulation exacerbate high-fat diet (HFD)–
induced DC. Tong et al. (62) showed that Parkin-mediated
mitophagy protects the heart against HFD-induced cardiac
hypertrophy, and diastolic dysfunction and lipid accumulation,
furthermore, Tat-Beclin 1 (inducer of autophagy) therapy
alleviates cardiac dysfunction induced by HFD. Similarly, Wu et
al. (74) found that deficiency of mitophagy receptor FUNDC1
impairs mitochondrial quality and aggravates dietary-induced
obesity and metabolic syndrome.

Inflammation plays a key role in the pathogenesis of
diabetes mellitus, and inflammatory injury is usually associated
with pancreatic β cell dysfunction (75). Mitochondria are
negatively affected by pancreatic β cell inflammatory signals,
which can lead to impaired mitochondrial dynamics (76, 77).
Therefore, strategies that block inflammation and/or protect
mitochondrial function are potential treatments for diabetes.
Tanajak et al. (78) showed that impaired β cell mitophagy
exacerbates hyperglycemia and mitochondrial fragmentation in
vivo following inflammatory stimuli, and overexpression of
CLEC16A (mitophagy regulator whose expression in islets is
protective against T1D) can mediate mitophagy and protect β

cells from cytokine-mediated death.
Diabetic cardiomyopathy is closely related to diet, exercise,

and metabolic changes. Caloric restriction and exercise may be
a strategy to treat DC. A study found that caloric restriction
is effective in improving metabolic regulation, and attenuating
cardiac mitochondrial dysfunction in obese-insulin-resistant rats
(79). Furthermore, clinical trials found that exercise improved fat
oxidation and insulin sensitivity in obese insulin-resistant adults,
and the mechanism was related to the decrease of DRP1 and the
increase of MFN1 and MFN2 (80).

Based on the above evidence, we can suggest that inhibition of
mitochondrial fission, promotion of mitochondrial fusion, and
mitophagy are potential strategies for the treatment of DC. It is
worth noting that effective exercise and diet are also a measure to
modulate mitochondria.

Myocardial Infarction
Myocardial infarction (MI) is an irreversible disease of the
myocardium, which is based on ischemic hypoxic necrosis
of cardiac myocytes (81). Ischemia is generally accompanied
by overproduction of ROS, mitochondrial dysfunction, the
translocation of Cytc from the mitochondria to the cytoplasm,
the opening of the mitochondrial permeability transition pore
(mPTP) and inflammatory cascade (82, 83). In this setting,
effective mitochondrial homeostasis is important.

Studies demonstrated that ischemia induces mitochondrial
fission, inhibition of DRP1 protected cardiomyocytes against
ischemia/reperfusion (I/R), inhibited mPTP opening, and
reduced the size ofMI (84–86). Although it is widely believed that
the fused mitochondria function better, however, Ikeda et al. (87)
suggested DRP1 plays an essential role in mediating mitophagy
in cardiomyocytes, they found that DRP1 downregulation
induces mitochondrial elongation, inhibits mitophagy, and
causes mitochondrial dysfunction, thereby promoting cardiac
dysfunction and increased susceptibility to I/R.

Mdivi-1 pharmacologically inhibits mitochondrial fission by
blocking the binding of DRP1 to its receptor. Mdivi-1 given
before ischemia exerts cardioprotective effects by reducing the
incidence of arrhythmias, decreasing infarct size, improving
cardiac mitochondrial function and fragmentation, and reducing
cardiac apoptosis (88). Interestingly, another study found
negative results, they found that treatment with Mdivi-1 at the
start of reperfusion did not reduce MI size or preserve left
ventricular function in pig MI model (89). Mitochondrial fission
is dependent on ER-mitochondria contact. BAP31, an ER protein,
regulates intracellular calcium homeostasis and ER stress (90).
Cheng et al. (91) found that silencing Fis1/ BAP31 reduced
mitochondrial fission and inhibited JNK activation, which led to
a reduction in ROS and promoted cardiomyocyte survival.

Mitochondrial fusion protects stressed cells through two
separate mechanisms. First, fusion counteracts the effects of
excess mitochondrial fission, thereby limiting fission-induced
mitochondrial apoptosis. Second, fusion enhances the timely
detection of damaged parts of mitochondria and balances
mitochondrial proteins, lipids, metabolites, and mitochondrial
DNA (92, 93). Mitochondrial fusion has a protective effect
in physiological conditions, but the role of mitochondrial
fusion-related proteins in I/R injury remains a hot topic of
debate. A study found that MFN2 overexpression significantly
inhibited I/R mediated cell death by promoting mitochondrial
fusion, regulating glucose metabolism, and oxidative stress (94).
Interestingly, another study reported the opposite observation,
they showed that ablation of MFN1 and MFN2 genes had a
protective effect on myocardial infarction, and the mechanism
was related to inhibition of MPTP opening, reduction of
oxidative stress, and attenuating mitochondrial Ca2+ overload
(95). Analogously, MFN1 KO heart mitochondria displayed
a normal respiratory repertoire and were not affected by
mitochondrial depolarization and their viability was enhanced
when attacked by ROS in the form of hydrogen peroxide (96).

Optic atrophy protein 1-related mitochondrial fusion and
mitophagy are vital to sustaining mitochondrial homeostasis
under stress conditions (97, 98). Le et al. (99) showed that
increase in cardiac I/R injury, impairment of dynamic
mitochondrial Ca2+ uptake, and increased incidence of
arrhythmias in Opa1+/- mouse models. Similarly, Zhang et al.
(100) demonstrated that manipulation of the AMPK-OPA1-
mitochondrial fusion/mitophagy axis via melatonin can block
cardiomyocyte caspase-9-involved mitochondrial apoptosis,
which attenuates I/R injury.

Mitochondrial damage and ROS produced by mitochondrial
oxidative stress can act as substrates to induce mitophagy (101).
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During ischemia, upregulation of mitophagy is considered
beneficial (102, 103). For instance, a study showed that
Parkin ablation caused a decrease in a severe decrease in
mitochondrial respiration, mitochondrial uncoupling, and
increased susceptibility to the opening of the permeability
transition pore (104). Further, Parkin (–/–) mice were
much more sensitive to MI, and Parkin (–/–) myocytes had
reduced mitophagy and accumulated swollen, dysfunctional
mitochondria after the infarction (105). PINK1 protein is highly
expressed in the myocardium. PINK1–/– mice had larger MI
and were more susceptible to I/R injury, which is associated with
impaired mitochondrial function (106). Therefore, induction of
autophagy through activation of the Pink1/Parkin pathway could
exert a protective effect against MI (107).

The mTOR pathway is a well-known upstream node that acts
to inhibit autophagy. It was found that rapamycin improves MI
and inhibits cardiac remodeling by inhibiting mTORC1 and ER
stress pathways, preventing angiotensin II-induced apoptosis in
h9c2 cells, and promoting autophagy (108).

FUNDC1 was first reported in 2012 as a new hypoxia-
induced mitophagy receptor (109). Zhou et al. showed that the
pathogenesis of cardiac I/R injury is related to the disruption
of mitochondrial homeostasis by CK2α through the inhibition
of FUNDC1-related mitophagy. They indicated that CK2α
inactivation of FUNDC1, thus effectively inhibiting mitophagy.
Defective mitophagy fails to clear damaged mitochondria
induced by I/R injury, leading to mitochondrial genome collapse,
electron transport chain complex inhibition, mitochondrial
biogenesis arrest, mPTP turn-on, and ultimately mitochondrial
apoptosis (103). Zhang et al. (110) demonstrated that FUNDC1-
mediated mitophagy regulates both mitochondrial quality and
quantity in vivo under I/R conditions, and plays a role in
mitochondrial quality control and functional integrity in platelet
activation. Similarly,Mao et al. (111) found that the enhancement
of the p-AMPK/FUNDC1 axis can alleviate the hypoxia and
reoxygenation induced apoptosis of H9c2 cells and alleviate
injury in the I/R mouse model. In addition, Zhang et al.
showed that mitophagy in MI is mediated by Rab9-associated
autophagosomes, rather than relying on the Atg7 conjugating
system and LC3. And they indicated that the Rab9-associated
autophagosome pathway is mediated by the synergistic action of
Ulk1, RAB9, Rip1, and DRP1 (112).

In conclusion, the role of proteins regulating mitochondrial
fusion and fission on MI is divergent, and there seems
to be a bidirectional regulation, and the beneficial and
detrimental effects still need further validation. Notably,
promoting mitophagy is beneficial for MI.

Cardiac Hypertrophy and Heart Failure
Heart failure (HF) is a syndrome in which the pumping function
of the heart is impaired for various reasons and the output of
the heart is unable to meet the basic metabolic demands of the
tissues of the body (113). It is known that prolonged or high
levels of cardiac stress can cause mitochondrial damage and
dysfunction in cardiac myocytes. Throughout, mitochondrial
metabolism is essential for adequate myocardial pump function,
as cardiomyocytes in this state require large amounts of energy

to maintain contractile performance, Ca2+ homeostasis, and
ion transport (114). Based on this by improving mitochondrial
function, clearance has the potential to be a strategy for the
treatment of HF.

Mitochondrial fusion and fission are associated with
myocardial hypertrophy and the development of HF. A
study showed that MFN1/MFN2 deficiency-induced eccentric
ventricular remodeling with ventricular wall thickening and
DRP1 deficiency-induced dilated cardiomyopathy. Further, this
study showed that inhibition of the mitochondrial permeability
transition alleviates cardiomyocyte death and mitochondrial
loss induced by cardiac DRP1 deficiency (115). Another study
showed that MFN2 was downregulated in a rat model of
myocardial hypertrophy, depending on the etiology and time
course of myocardial hypertrophy (116). Therefore, myocardial
hypertrophy can be inhibited by up-regulation of MFN2
expression (117, 118). Along similar lines, a clinical study found
reduced mitochondrial content, oxidative capacity, and MFN2
expression in skeletal muscle of patients with HF, which is related
to the accumulation of dysfunctional organelles and decreased
OXPHOS ability in the mitochondrial network due to the low
expression of MFN2 (119).

Optic atrophy protein 1 plays an important role in preventing
the release of Cytc from the cristae (120). Apoptotic cell
death via reduction of OPA1 and mitochondrial fusion may
contribute to HF progression. Chen et al. (121) found that
OPA1 reduction in HF models leads to increased mitochondrial
fragmentation, increased apoptosis, increased sensitivity to
ischemia. In addition, OPA1 also has a significant effect on
energy utilization, OPA1 can increase the utilization of cardiac
fatty acids, thereby reducing ROS production and maintaining
mitochondrial morphology during HF (122). Two mitochondrial
proteases (OMA1 and the AAA protease YME1L) cleave OPA1
from long (L-OPA1) to short (S-OPA1) forms. L-OPA1 is
required for mitochondrial fusion, but S-OPA1 is not (123). Wai
et al. found that deletion of YME1L activates OMA1, accelerates
the proteolytic processing of OPA1, and causes mitochondrial
fission of the heart, which changes the metabolism of the heart
and further causes dilated cardiomyopathy and HF. However, if
deletion of OMA1, OPA1 processing can be avoided and cardiac
function and mitochondrial morphology can be restored (124).

Mitophagy in the heart is a homeostatic mechanism for
maintaining cardiomyocyte size and global cardiac structure and
function, and the upregulation of mitophagy in failing hearts
is an adaptive response for protecting cells from hemodynamic
stress. For instance, in adult mice, deficiency of Atg5, a
protein required for autophagy, led to cardiac hypertrophy,
a disorganized sarcomere structure, left ventricular dilatation,
and contractile dysfunction, accompanied by increased levels of
ubiquitination (125, 126).

Mitophagy is transiently activated and then downregulated
in cardiac tissues during the early phase of HF, restoration of
mitophagy attenuates dysfunction in the heart during pressure
overload. In the presence of pressure overload, treatment with
Tat-Beclin 1 can attenuate the progression of HF (127). For
instance, a study demonstrated that AMPKα2 protects against
the development of HF by enhancing mitophagy via PINK1
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Phosphorylation (128). Similarly, Beak et al. (129) demonstrated
that deficiency of the nuclear receptor RORα in the mouse
exacerbates angiotensin II-induced cardiac hypertrophy and
compromises cardiomyocyte mitochondrial function, which
is associated with reduced mitophagy. Along similar lines,
Nah et al. (130) showed that Ulk1-cKO mice had suffered
from impaired mitochondrial quality control and more severe
cardiac dysfunction, hypertrophy, and myocardial fibrosis, the
mechanism of which is related to Ulk1-dependent alternative
mitophagy. Lysosomal-associated membrane protein-2 (LAMP-
2) is a highly glycosylated protein that is an essential component
of the lysosomal membrane. This protein is critical for the fusion
of lysosomes and autophagosomes, leading to the degradation
of their contents, and LAMP-2 deficiency can lead to premature
death in mice and inhibit myocardial systolic function (131).
Therefore, overexpression of either autophagy gene and thus
increased autophagy levels could improve CMD.

Current evidence overwhelmingly suggests that caloric
restriction and fasting induce mitophagy and mitophagy-
related markers (132). Fasting or caloric restriction can as a
new and practical treatment for CMD. For instance, a study
found that caloric restriction can enhance cardiac autophagy
and delay cardiac aging by inhibiting the mTOR pathway.
Meanwhile, caloric restriction can also reduce the accumulation
of senescence-associated β-galactosidase and lipofuscin and
reduced myocyte apoptosis (133). Weir et al. (134) found that
caloric restriction increased fatty acid oxidation by maintaining
mitochondrial network homeostasis and functional coordination
with the peroxisome to promote longevity in C. elegans.
Therefore, it is practical to use non-pharmacological therapies
like exercise and diet to treat metabolic diseases.

Atherosclerosis
Atherosclerosis (AS) is a chronic inflammatory disease of
large and medium-sized arteries that causes ischemic heart
disease, strokes, and peripheral vascular disease (135). The
pathogenesis of AS begins with the accumulation and retention
of apolipoprotein B-containing lipoproteins in the vascular sub
endothelium which initiates the recruitment and entrance of
inflammatory monocytes into the vessel wall. There is increasing
evidence that mitochondria play a key role in the development
of inflammatory responses and the maintenance of chronic
inflammation (136).

Recently, studies have found that age-related mitochondrial
dysfunction promotes AS, which is associated with elevated
inflammatory factors (137). Mitochondrial damage results in
the release of mitochondrial components (mtDNA, cardiolipin),
which is a potent DAMP recognized by the immune cells that
can trigger the inflammatory response. Exposure to these cellular
debris allows the recruitment of adaptor molecules/receptors
that triggers an innate immune response (138). It is worth
noting that a study has found that mtDNA damage can
promote AS independently of ROS through effects on smooth
muscle cells and monocytes and correlates with higher-
risk plaques in humans (139). Khodzhaeva et al. (140)
suggested pro-inflammatory effects of MFN2 deficiency in
humanmacrophages, which could enhance the expression of IL-β

and TNF-α, and activate the transduction of the NF-kB signaling
pathway. Thus, by correcting mitochondrial dysfunction, it may
be possible to reduce the inflammatory state in AS.

It is well-known that mitochondrial generation of ROS is
closely related to the occurrence and development of AS. Under
normal conditions, mitochondrial antioxidant and repair systems
counteract the harmful effects of excess ROS. In addition,
mitochondria can counteract the effects of ROS by regulating
fusion and fission (141). When mitochondrial dysfunction
occurs, ROS is overproduced, leading to the oxidation of
lipids, nucleic acids, and proteins, which eventually leads to
severe cell damage. Excessive ROS production can lead to
endothelial dysfunction, inflammation of blood vessels, and the
accumulation of oxLDL in arterial walls (142). By inhibiting
DRP-mediated mitochondrial fission, oxidative stress is reduced,
endothelial dysfunction is improved, and inflammation is
suppressed, thereby reducing the progression of AS (143).

Vascular smooth muscle cells are the main components
of the vessel wall and plaques. Abnormal proliferation of
VSMCs promotes plaque formation, but VSMCs are beneficial
in advanced plaques (preventing rupture of fibrous caps)
(144). The pathogenesis of AS is closely related to VSMCs
mitochondrial dysfunction (145). DRP1 and mitochondrial
fission could promote inflammation and oxidation of VSMCs,
and Mdivi1 can significantly inhibit the inflammatory response
and oxygen consumption in VSMCs (146). The relationship
between MFN2 and AS has been studied for a long time. In
2004, Chen et al. (147) found that MFN2 was significantly
reduced in hyperproliferative VSMCs of AS plaques or balloon
lesions, and that increasing MFN2 prevented neointimal VSMCs
proliferation after balloon injury and prevented restenosis caused
by balloon injury. Along this line, another study found that
MFN2 constituted a primary determinant of VSMCs apoptosis,
and the mechanism is associated with MFN2 mediated Akt
signaling pathway as well as a mitochondrial apoptotic pathway,
specifically reflected in increasing Bax/Bcl-2 ratio, promoting
Cytc release, activating Caspase-9 and Caspase-3 activation (148).

Lack of autophagy genes may severely disrupt intravascular
homeostasis (149). Progressive AS has features of dysfunctional
autophagy, which is related to plaque macrophages (150).
Recently, a study suggested that a high protein diet increases
AS progression by activating macrophage mTOR to inhibit
mitophagy (151). Macrophages lacking the key autophagic
protein ATG5 enhance atherosclerotic plaque formation.
Inclusion bodies rich in P62 and polyubiquitinated proteins in
macrophages prevent AS (152). Analogously, VSMC-specific
ATG7 knockout mice were found to have increased total
collagen deposition, nuclear hypertrophy, up-regulation of
CDKN2A, reduced phosphorylation of RB, and enhanced
GLB1 activity, which is closely related to the promotion of
neointima formation and atherosclerosis formation (153).
Endothelial autophagy is necessary to maintain vascular lipid
homeostasis. By both confocal and electron microscopy, Torisu
et al. found that autophagy in endothelial cells may represent
an important mechanism for regulating excess exogenous lipids.
Their study showed that excess LDL appeared to be engulfed
within autophagic structures and that temporary knockdown
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of ATG7 resulted in increased intracellular levels of I-LDL and
oxLDL (154).

Overall, the above evidence demonstrates that mitochondrial
dynamic proteins play an important role in inflammation and
oxidative stress in AS. Effective mitophagy can play an anti-
AS role.

Obesity
Obesity is a major risk factor for several other diseases, such as
diabetes, cardiovascular disease, and metabolic disease. High
levels of fat mass accelerate the development of dyslipidemia,
blood pressure, inflammation, and glucose/insulin resistance
(155, 156). Long-term, high-concentration substrate supplies
deplete NAD+, leading to the accumulation of metabolic
intermediates, such as acetyl-CoA, which promotes the
production of ROS and makes mitochondria vulnerable to
damage. Glucose and lipid metabolism are largely dependent on
mitochondrial metabolism, and mitochondrial function is most
affected in primary tissues, such as bone and heart muscle, liver,
and adipose tissue.

It has been found that hyperglycemia and high free fatty
acids can modulate insulin sensitivity and lead to mitochondrial
dysfunction (157, 158). Several mitochondrial genes critical to
mitochondrial function and OXPHOS were down-regulated in
obese, HFD fed, insulin-resistant mice (159, 160). Mitochondrial
dynamics are influenced by metabolic demands, changes, and
alterations. Specific MFN2 mutations lead to tissue-selective
mitochondrial dysfunction and increase adipocyte proliferation
and survival (161). MFN2 in fat is important for regulating
metabolism and has been found to be lower in adipose tissue
of mice and obese humans on a HFD (162). Bach et al. showed
that weight loss upregulated MFN2 expression in skeletal muscle
and type 2 diabetes downregulated MFN2 expression in skeletal
muscle in the obese population. Further, MFN2 expression in
skeletal muscle was positively associated with insulin sensitivity,
but inversely associated with BMI, TNF-α and IL-6 (163).
Along this line, Pich et al. (164) found that decreasing MFN2
inhibited the oxidation of pyruvate, glucose and fatty acids
and decreased the mitochondrial membrane potential, while
increasing MFN2 increased glucose oxidation and mitochondrial
membrane potential.

Excessive lipid uptake in the heart affects dynamin and
induces mitochondrial fission and dysfunction (165). Lipid
overload increased DRP1 level and activity in mouse hearts, and
overactivated DRP1 increases mitochondrial fission and interacts
with VDAC1 to lead to myocardial cell death, and targeting
DRP1 helps reduce cardiac hypertrophy and dysfunction caused
by lipid overload. Similarly, it has been reported that blocking
DRP-1 onmitochondrial fission can improve white adipose tissue
abnormalities in obesity and diabetes in ob/ob mice by short-
term leptin and Mdivi-1 treatment (166).

Mitophagy plays an important role in maintaining cardiac
function in obesity (167). Defective mitophagy is causally
linked to obesity complications. Loss of FUNDC1 aggravates
HFD-induced cardiac remodeling, functional and mitochondrial
abnormalities, cell death, and Ca2+ overload (168). In contrast,
a study found that mice lacking muscle FUNDC1 were found

to have a protective effect against HFD-induced obesity, with
improved insulin sensitivity and glucose tolerance despite
reduced muscle mitochondrial energy. The mechanism may be
related to FUNDC1 deficiency leading to muscle degeneration
and up-regulation of FGF21 expression, thus promoting
thermogenic remodeling of adipose tissue (169).

In 2021, Cho et al. reported that serine/threonine-protein
kinase 3 (STK3) and STK4 are key physiological suppressors
of mitochondrial capacity in brown, beige, and white adipose
tissues. They found that STK3 and STK4 increase adipocyte
mitophagy in part by regulating the phosphorylation and
dimerization status of the mitophagy receptor BNIP3, which
increased resistance to metabolic disorders induced by a HFD
(170). Increased fatty acid oxidation has been implicated in the
development of cardiomyopathy induced by obesity/diabetes.
However, Shao D et al. (171) found that increased fatty acid
oxidation by regulating Parkin-mediated mitophagy can prevent
HFD-induced cardiomyopathy.

THERAPIES FOR CARDIOMETABOLIC
DISEASES

Mitochondrial Targeted Drug Therapy
Targeting mitochondrial dynamics andmitophagy is increasingly
becoming a research direction in the treatment of CMD.
DRP1-mediated mitochondrial fission is an attractive drug
target. By inhibiting DRP1, excessive mitochondrial fission can
be reduced, mitochondrial fusion activity can be enhanced,
and loss of mitochondrial membrane potential and release
of Cytc can be prevented, thereby preventing cell death
(172). Deng et al. (173) found that treatment with Mdivi-
1 (20 mg/kg/day) significantly reduced angiotensin II-induced
hypertension, arterial remodeling, and cardiac hypertrophy by
a mechanism that may be related to preventing phenotypic
transformation of VSMCs. Aishwarya et al. (174) found
several novel pleiotropy effects of Mdivi-1 in cardiomyocytes,
including decreased expression of OXPHOS complex protein
and superoxide production, impaired macroautophagy flux, and
altered mitochondrial serine protease expression during L-OPA1
proteolysis. Mdivi-1 has been shown to have a cellular protective
effect on I/R injury (84, 175). Interestingly, a study found
that Mdivi-1 attenuates oxidative stress and exerts vascular
protection in I/R injury through a mechanism unrelated to DRP1
activity, possibly due to elevated levels of antioxidant enzymes,
SOD1, and catalase, as well as Nrf2 expression (176). Insulin
resistance co-occurs with mitochondrial dysfunction in skeletal
muscle, and Mdivi-1 can reduce insulin resistance by enhancing
mitochondrial function (177, 178).

Melatonin belongs to an indole heterocyclic compound with
numerous receptor-mediated and receptor-independent actions
It has been found that melatonin can reduce the size of
MI, inhibit myocardial cell death, and maintain myocardial
function by promotingOPA1-relatedmitochondrial fusion (179).
Further, it was found that melatonin can promote mitochondrial
fusion/mitophagy through the AMPK/OPA1 pathway and reduce
calcium deposition in VSMCs (180). Zhou et al. (181) showed
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that melatonin protects cardiac microcirculation from I/R
injury by inhibiting mitophagy in PINK1/Parkin pathway and
weakening mitochondrial fission. In addition, it was found that
melatonin can also protect against diabetic heart disease by
inhibiting DRP1 expression through SIRT1-PGC-1α (182). In
2021, Bai et al. (183) demonstrated that melatonin regulates
mitophagy and mitochondrial dynamics in a SIRT3-dependent
manner to ameliorate hypoxia/reoxygenation damage.

Mitochondrial Targeted Natural Medicines
Therapy
Natural medicines are characterized by multi-target and
multi-pathway synergies, and their potential in mitochondrial
dynamics is gradually recognized (184). Panax ginseng is a
traditional herbal medicine that can improve human immunity
and ginsenosides are the major bioactive constituents in ginseng
root. Yang et al. showed that ginsenoside Rg5 can attenuate I/R
injury in cardiomyocytes by inhibiting the opening of mPTP
and increasing ATP production. In addition, ginsenoside Rg5
can also inhibit the activation of DRP1 through the AKT
pathway, thereby protecting cells from I/R injury (185). Recently,
Jiang et al. (186) discovered through proteomics that the
mechanism by which ginsenosides Rb1 alleviate I/R injury is that
ginsenoside Rb1 reduces the activity of NADH dehydrogenase,
making mitochondrial complex I in a deactivated form upon
reperfusion, thereby reducing the burst of ROS. Berberine is the
extract of Coptis chinensis and is widely used. A study showed
that berberine improved myocardial hypertrophy and apoptosis
induced by transverse aortic contraction in mice by upregulating
PINK1/Parkin-mediated mitophagy (187). Gypenosides is an
extraction product of Gynostemma pentaphyllum (Thunb)
Makino. A study found that gypenosides improve AS levels in
ApoE–/– mice through the regulation of mitochondrial fission
proteins and fusion proteins via the PI3K/Akt/Bad pathway
(188). Quercetin, widely distributed in the plant kingdom,
has a variety of bioactive flavonol compounds. Quercetin can
improve vascular calcification (189), insulin sensitivity (190), and
I/R injury (191) by inhibiting DRP1-mediated mitochondrial
fission. In addition, a study found that quercetin inhibited
excessive mitochondrial fission by activating mitophagy via
SIRT1/TMBIM6, inhibits endoplasmic reticulum stress, and
improves human cardiomyocyte activity (192). Related studies
on DC also found that quercetin can regulate mitochondrial
fusion and fission mechanisms by regulating SIRT5 and IDH2-
related succinylation, thereby protecting the pathological damage
of myocardial cells stimulated by high glucose (193).

In addition to the active ingredients of traditional Chinese
medicine, the compound preparation of traditional Chinese
medicine can also have a certain regulatory effect on the
interaction mechanism of mitochondrial dynamics and
mitophagy. Tongyang Huoxue Recipe, a traditional Chinese
medicine compound, can protect sinoatrial node cells under
stress through PINK/parkin-mediated mitophagy, and can
also inhibit DRP1-mediated mitochondrial fusion/fission
dysfunction, increase mitochondrial membrane potential,

maintain calcium homeostasis, and inhibits oxidative stress
damage (194). Zishen Huoxue Decoction is an effective
compound for the treatment of patients with coronary heart
disease. Liu et al. (195) found that Zishen Huoxue Decoction has
the effects of activating mTORC1 signaling pathway, inhibiting
the overexpression of 4E-BP1, inhibiting fatty acid oxidation,
protecting the respiratory function of mitochondria, and thus
protecting myocardial cells from injury. It is worth noting that
natural medicines are subject to many uncertainties and require
extensive clinical and basic research for validation.

CONCLUSIONS

Mitochondrial dynamics and mitophagy play an important role
in the physiology and pathology of CMD. CMD is closely
related to energy metabolism, and effective mitochondrial
homeostasis is an important defense mechanism for the
heart to deal with various stress and injury. In CMD,
mitochondrial dynamics and mitophagy play an important role
in improving insulin resistance, improvingmetabolite utilization,
inhibiting inflammatory response, reducing apoptosis, protecting
endothelial cells, and reducing ventricular remodeling.

Current evidence overwhelmingly suggested that mitophagy
has a positive effect on CMD. Mitochondrial fusion and fission,
on the other hand, need to be viewed dialectically. Many studies
have shown that MFN1 and MFN2 are beneficial and DRP1 is
detrimental, but there are also studies that take the opposite
attitude. Therefore, more in vivo and in vitro studies are still
needed for further validation. In terms of targeted mitochondrial
therapy, exercise and diet therapy are promising roles without
side effects and should be recommended. In addition, natural
medicines are a great treasure with great potential from which
we can discover better targeted mitochondrial drugs. With the
continuous development of modern science and technology
and the deepening of research on mitochondrial dynamics and
mitophagy drugs, mitochondrial-targeted therapy will provide
more ideas for the treatment of CMD, and with the development
of new microscopy, biotechnology, and computer technology,
the mystery of mitochondria will be gradually explored by
human beings.
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