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Abstract
Purpose: To compare biomechanical evidence on joint compression forces
and rotational stability between isolated lateral meniscus posterior root
(LMPR) tears and those with concurrent meniscofemoral ligament (MFL)
injuries, with a secondary focus on assessing rotational stability in ACL‐
deficient and ACL‐reconstructed knees.
Methods: A comprehensive literature review was conducted following the
2020 PRISMA guidelines, using the Scopus, PubMed, and Embase data-
bases from their inception through 7 October 2024. This review included
biomechanical studies on healthy animal or human cadaveric knees that
assessed lateral compartment contact area and peak pressure following
isolated LMPR and MFL injuries, as well as kinematic outcomes in anterior
cruciate ligament (ACL) deficient knees. The methodological quality of the
studies was assessed using the Quality Appraisal for Cadaveric Studies
(QUACS) scale.
Results: Twelve studies involving 116 knees—86 human cadaveric and
30 porcine models—assessed tibiofemoral contact mechanics (contact
area and pressure) and kinematic data. Both isolated LMPR tear and the
combination of LMPR and MFL injuries significantly increased mean
contact pressure in the lateral compartment compared to the intact state
(p = 0.004 and <0.001, respectively). However, isolated LMPR tear did
not significantly increase peak pressure in the lateral compartment
(p = 0.55), whereas the combination with MFL injury caused a substantial
rise (<0.001). LMPR repair restored both contact and peak pressures to
levels that were not significantly different from those observed in the
intact state (p = 0.86 and <0.28, respectively). Additionally, the combi-
nation of LMPR tear, MFL injury and ACL sectioning further increased
anterior tibial translation (ATT) and internal tibial rotation (IR) during a
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simulated pivot shift test compared to isolated LMPR tear (<0.001).
Although LMPR repair reduced rotational instability, it did not significantly
restore ATT (p = 0.63) and IR (p = 0.923) during simulated pivot shifts in
ACL‐reconstructed knees.
Conclusions: A combined injury to the LMPR and MFL significantly
increases mean and peak contact pressures in the lateral compartment
compared to isolated LMPR tear and intact states, with LMPR repair
restoring contact pressure to near‐normal levels. However, in knees with
ACL deficiency or reconstruction, LMPR tear with MFL injury significantly
increases IR during pivot shift testing, with LMPR repair unable to restore
rotational stability to intact‐state levels.

Level of Evidence: Level IV, systematic review of biomechanical studies.
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anterior cruciate ligament, anterior tibial translation, lateral meniscus posterior root,
meniscofemoral ligament, rotational instability, tibiofemoral contact pressure

INTRODUCTION

Lateral meniscus posterior root (LMPR) tears occur in
up to 14% of patients with concurrent anterior cruciate
ligament (ACL) injuries [9, 16]. Biomechanical studies
have demonstrated that the LMPR attachment plays a
crucial role in stabilising the ACL‐deficient knee,
especially by limiting excessive anterior tibial transla-
tion (ATT) and internal tibial rotation (IR) [10, 27].

Distinct biomechanical and clinical differences
between lateral and medial posterior root attachments
have been linked to varying clinical outcomes, which
are widely explored in the literature [5, 18]. One of the
unique biomechanical characteristics of the lateral
roots is the presence of meniscofemoral ligaments
(MFLs), which appear to stabilise the LMPR by coun-
teracting the adverse effects of mechanical forces on
the lateral compartment following an LMPR tear [4, 7].
This stabilising role of the MFL has become an emer-
ging focus in meniscal root preservation surgery.

Research suggests that meniscal function may be
preserved in LMPR tears if the MFL remains intact, as
evidenced by tibiofemoral joint contact area and pres-
sures in the lateral compartment [7]. Moreover, the
presence of the MFL is increasingly recognised as a
protective factor against meniscal extrusion (ME) [4, 6,
24]. Absence of the MFL appears more common in
cases of extruded menisci with LMPR tear, suggesting
that the MFL may play a role in mitigating ME, which in
turn has implications for cartilage health and osteo-
arthritis (OA) progression [4, 24]. This may partly ex-
plain why LMPR tears typically exhibit lower rates of
ME and OA progression compared to their medial
counterparts [5].

Given the limited clinical or biomechanical evidence
that specifically analyse LMPR tears with and without
MFL injury, the primary purpose of this study is to

synthesise biomechanical evidence on joint compres-
sion forces between isolated LMPR tear and those with
concomitant MFL injuries. The secondary objective of
the study included analysis of a subset of studies that
examine ACL sectioning and reconstruction to evaluate
the kinematics of ATT and IR in knees with isolated
LMPR tears and combined MFL injuries. The authors
hypothesized that combined injuries to the LMPR and
MFL will significantly increase joint compression forces
and reduce rotational stability in ACL deficient or re-
constructed knees compared to isolated LMPR tear.

METHODS

Search criteria

The study adhered to the 2020 PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta‐
Analyses) guidelines [23]. A comprehensive search was
conducted on 7 October 2024, using the Scopus,
PubMed, and Embase databases to identify literature on
biomechanical outcomes related to isolated and com-
bined LMPR and MFL injuries. The following search
terms, combined with Boolean operators, were em-
ployed: ‘lateral meniscus posterior root tear’ AND ‘me-
niscofemoral ligament’; ‘meniscofemoral ligament’ AND
‘biomechanical study’; ‘meniscofemoral ligament’ AND
‘controlled laboratory study’; AND ‘meniscofemoral lig-
ament’ AND ‘contact pressure’ OR ‘peak pressure’ OR
‘anterior tibial translation’ OR ‘internal tibial rotation’.

Inclusion and exclusion criteria

Study inclusion criteria were as follows: (1) bio-
mechanical studies conducted on healthy animal or
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human cadaveric knees in a controlled laboratory set-
ting, assessing rotational instability or tibiofemoral
contact mechanics (contact area and pressure) after
combined LMPR tear and/or MFL injuries. (2) Studies
reporting kinematic and joint compression forces in
cases of isolated and combined LMPR and MFL liga-
ment tears. Exclusion criteria included: (1) Bio-
mechanical studies that did not evaluate or report
kinematic outcomes following isolated or combined
MFL injury. (2) Studies involving specimens with pre‐
existing chondral or meniscal injuries or bone abnor-
malities. (3) Editorials, surveys, letters to the editor, and
expert reviews.

Data extraction and outcome measures

A customised data extraction spreadsheet was created
to record all relevant information from the included
studies. The extracted data were analysed qualitatively
and quantitatively based on their methods, results,
discussions, and conclusions. For studies that did not
report data in a numeric format, values were approxi-
mated from graphs using graph digitisation tools.
Additionally, for values reported as median and range,
the mean and standard deviation were estimated using
the methods outlined by Hozo et al. [15] The primary
biomechanical outcome measures evaluated in this
systematic review were mean contact and peak pres-
sure in the lateral compartment at full extension and at
90° of knee flexion after isolated LMPR tear and com-
bined LMPR and MFL injuries. For studies that included
ACL sectioned and reconstructed knees, kinematic
analysis of ATT and IR were compared during a simu-
lated pivot shift manoeuvre with valgus torque applied
15° and 30° of knee flexion, as well as ATT under an
anterior drawer force at 30° and 60° of knee flexion.

Risk of bias assessment

Two investigators (L.D. and M.O.) independently screened
articles by title, abstract, and full text. Risk of bias was
assessed using the 13‐item Quality Appraisal for Cadav-
eric Studies (QUACS) scale, with items scored as 1 (yes/
present) or 0 (no/absent) [30]. An ideal score is 13, with
scores below 10 indicating a high risk of bias [30]. Any
disagreement between the investigators was resolved by
review of a third investigator (A.S.B).

Statistical analysis

Continuous variables for each group were summarised
using means, standard deviations, and ranges, while
pairwise comparisons between groups were conducted
with independent two‐sample t‐tests. Categorical variables

were summarised as frequencies and proportions, with
group comparisons assessed using chi‐square tests. For
multi‐group comparisons of mean tibiofemoral contact
pressure, ATT, and IR under valgus torque, a one‐way
analysis of variance (ANOVA) was employed. When AN-
OVA indicated significant differences, pairwise compari-
sons were further examined using post‐hoc Tukey's Hon-
estly Significant Difference (HSD) test to identify specific
differences between groups. To visually represent group
comparisons, box plots were generated for each variable,
with each box depicting the interquartile range (IQR) and a
horizontal line indicating the median. Whiskers extend up
to 1.5 times the IQR or the furthest data points within that
range, while outliers are displayed as individual points
beyond the whiskers. To mitigate the risk of Type I error
associated with multiple comparisons, p‐values were
adjusted using the Bonferroni correction. All statistical
analyses were conducted using R (version 4.3.3, R Core
Team, 2024).

RESULTS

Study overview and reported
biomechanical data

Twenty‐seven full‐text articles were reviewed, with fifteen
studies excluded based on eligibility criteria. Twelve bio-
mechanical studies met the inclusion criteria and were
included in this investigation (Figure 1). All studies were
controlled laboratory experiments conducted on fresh‐
frozen human cadaveric or porcine knee specimens, en-
compassing a total of 116 specimens—86 human cadav-
eric knees and 30 porcine knees. Four studies solely
investigated isolated LMPR tear with or without MFL inju-
ries [2, 7, 21, 26], while eight studies investigated LMPR
tears +/‐ MFL injuries in the setting of ACL section or
reconstruction [8, 10–12, 25, 27–29]. Detailed character-
istics are presented in Table 1. Due to the novelty and
emerging significance of the MFL in biomechanical
research, there are only a limited number of studies that
analyse kinematic data at various knee flexion angles
during testing. Consequently, some studies were refer-
enced more extensively due to their comprehensive da-
tasets. Most studies provided data across a range of knee
flexion angles (0°–90°). Data were insufficient for pooling
at each specific tested angle. However, efforts were made
to aggregate and present clinically relevant findings
wherever possible.

When numerical data were unavailable, computer
vision‐assisted software was utilised to extract numerical
values from graphs and plots. Tibiofemoral contact
mechanics assessed in this review included both average
and peak pressures in the lateral compartment. Given the
frequent association of LMPR tear with ACL‐deficient
knees, kinematic data were also analysed. As the pivot
shift test is clinically significant and typically performed at
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lower flexion angles, anterior ATT and tibial IR under val-
gus torque were analysed at 15° and 30°. Additionally, ATT
was assessed under anterior loading. The impact of iso-
lated LMPR tear and combined LMPR tear with MFL injury
in ACL reconstructed knees during anterior drawer testing
was also evaluated.

Literature quality assessment

Bias analysis of the 12 biomechanical studies was per-
formed using the QUACS bias analysis tool (Appendix
Figure A1). The mean score was 10.8 ± 0.8 (range, 9–12).

Peak contact pressure in the lateral
compartment

Four studies [2, 7, 8, 12] investigated peak contact
pressures in the lateral tibiofemoral compartment.

Isolated LMPR tear resulted in a non‐significant
increase in peak pressure compared to the intact
state. However, when LMPR tear was accompanied by
concurrent damage to the MFL, there was a significant
increase in peak pressure in the lateral compartment
compared to both the isolated LMPR tear and intact
states. Furthermore, the repair of LMPR tear restored
peak pressure to levels that were not significantly dif-
ferent from those observed in the intact state (Table 2
and Figure 2).

Mean contact pressures in the lateral
compartment

Five studies reported the mean contact pressure in
the lateral compartment [2, 7, 8, 12, 26]. Isolated
LMPR tear led to a significant increase in mean
contact pressure in the lateral tibiofemoral compart-
ment at both 0° and 90° of knee flexion compared to

F IGURE 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses) flowchart.
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the intact state. Mean contact pressure was again
significantly higher with combined LMPR and MFL
injuries compared to the isolated LMPR tear state.
Conversely, LMPR repair significantly reduced the
contact pressure in the lateral compartment, showing
no statistically significant difference from the intact
condition (Table 3 and Figure 3).

Pivot‐shift testing

Seven studies reported on ATT during simulated pivot
shift testing with a combination of LMPR ±MFL injuries,
with ACL sectioning and subsequent reconstruction [8,
11, 21, 25, 27–29]. The mean ATT in the intact state
was 2.8 ± 1.5 mm, which increased non‐significantly to

TABLE 2 Pairwise comparisons of peak pressure in the lateral compartment at 0° of knee flexion using Tukey's HSD post hoc test.

Testing conditions Mean difference* Lower bound# Upper bound^ p‐Adj"

Isolated LMPR tear vs. Intact 1382.6 −1371.2 4136.4 0.556

LMPR and MFL tear vs. Intact 5662.8 2908.9 8416.7 <0.001

LMPR repair vs. Intact 1886.3 −867.5 4640.2 0.285

LMPR and MFL tear vs. Isolated LMPR tear 4280.2 1526.3 7034.1 0.0005

Note: Significant p values are shown in bold.

Abbreviations: ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.

*The estimated difference in mean values between each pair of groups. A positive value indicates that the mean of the first group in the pair is higher than the second
group, while a negative value indicates the opposite.
#Represents the lower bound of the 95% confidence interval for the mean difference. This indicates the minimum likely difference between the groups at a 95%
confidence level.
^Represents the upper bound of the 95% confidence interval for the mean difference. This represents the maximum likely difference between the groups at a 95%
confidence level.
"The adjusted p value for each pairwise comparison, corrected for multiple testing.

F IGURE 2 The box plot shows the distribution of mean peak pressure in lateral compartment at full extension across four experimental
conditions: Intact, isolated LMPR tear, combined LMPR and MFL injuries, and after LMPR repair. Each box represents the interquartile range
(IQR), with a horizontal line indicating the median. Whiskers extend up to 1.5 times the IQR or the furthest data points within that range, while
outliers are displayed as individual points beyond the whiskers. ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root;
LMPRT, lateral meniscus posterior root tear; LMPRR, lateral meniscus posterior root repair; MFL, meniscofemoral ligament.
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3.1 ± 1.5 mm in knees with isolated LMPR tear (Table 4
and Figure 4). In knees with additional MFL injury, the
mean ATT was 4.0 ± 2.4 mm, which was significantly
higher than that observed in both the intact state and
the isolated LMPR tear group (Table 4). Knees with
both LMPR and MFL injuries in an ACL‐deficient state

exhibited an ATT of 7.3 ± 0.7 mm during the simulated
pivot shift test at 20° of flexion. This value was signifi-
cantly higher than those in the intact state, the isolated
LMPR tear, isolated ACL injury, and the combined
LMPR and MFL injuries in ACL‐intact states (Table 4
and Figure 4).

TABLE 3 Pairwise comparisons of mean contact pressure in the lateral compartment at 0° of knee flexion using Tukey's HSD post hoc test.

Testing conditions Mean difference* Lower bound# Upper bound^ p‐adj"

Isolated LMPR tear vs. Intact 453.6 105.8 801.4 0.004

LMPR and MFL tear vs. Intact state 1194.9 817.6 1572.2 <0.001

LMPR repair vs. Intact −100.8 −438.3 236.5 0.865

LMPR and MFL tear vs. Isolated LMPR tear 741.2 354.6 1127.8 <0.001

LMPR repair vs. Isolated LMPR tear −554.5 −902.3 −206.6 0.0003

LMPR repair vs. LMPR and MFL tear −1295.8 −1673.1 −918.5 <0.001

Note: Significant p values are shown in bold.

Abbreviations: ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.

*The estimated difference in mean values between each pair of groups. A positive value indicates that the mean of the first group in the pair is higher than the second
group, while a negative value indicates the opposite.
#Represents the lower bound of the 95% confidence interval for the mean difference. This indicates the minimum likely difference between the groups at a 95%
confidence level.
^Represents the upper bound of the 95% confidence interval for the mean difference. This represents the maximum likely difference between the groups at a 95%
confidence level.
"The adjusted p value for each pairwise comparison, corrected for multiple testing.

F IGURE 3 The box plot displays the distribution of peak pressure in the lateral compartment at full extension across four experimental
conditions: Intact, isolated LMPR tear, combined LMPR and MFL injuries, and after LMPR repair. Each box represents the interquartile range
(IQR), with a horizontal line marking the median value. Whiskers extend to 1.5 times the IQR or the most extreme data points within this range,
while outliers are shown as individual points beyond the whiskers. ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root;
LMPRT, lateral meniscus posterior root tear; LMPRR, lateral meniscus posterior root repair; MFL, meniscofemoral ligament.
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TABLE 4 Pairwise comparisons between groups using Tukey HSD post hoc test for ATT during simulated pivot shift test.

Testing conditions Mean difference* Lower bound# Upper bound^ p‐adj"

Intact vs. ACL deficient −3.4 −4.2 −2.6 <0.001

Isolated LMPR tear vs. Intact 0.5 ‐0.2 1.3 0.293

Isolated LMPR tear vs. ACL deficient −2.9 −3.7 −2 <0.001

LMPR and MFL tears in ACL deficient knee vs. isolated ACL tear 1.1 0.2 2 0.007

LMPR and MFL tears vs. isolated ACL tear −1.8 −2.6 −0.9 <0.001

LMPR and MFL tear vs. intact 1.643 0.897 2.4 <0.001

LMPR and MFL tear in ACL deficient knee vs. Intact 4.5 3.7 5.277 <0.001

LMPR and MFL tear vs. Isolated LMPR tear 1.1 0.3 1.9 <0.001

LMPR and MFL tears in ACL deficient knee vs. Isolated LMPR tear 3.9 3.1 4.8 <0.001

LMPR and MFL tears vs. LMPR and MFL tear in ACL deficient knee −2.8 −3.7 −3 <0.001

LMPR repair vs. LMPR and MFL tears in ACL deficient knee −3.2 −4 −2.4 <0.001

LMPR repair vs. LMPR and MFL tears −0.4 −1.1 0.3 0.638

LMPR repair vs. Intact 1.3 0.6 1.9 <0.001

LMPR repair vs. Isolated LMPR tear 0.7 0.01 1.4 0.045

Note: Significant p values are shown in bold.

Abbreviations: ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.

*The estimated difference in mean values between each pair of groups. A positive value indicates that the mean of the first group in the pair is higher than the second
group, while a negative value indicates the opposite.
#Represents the lower bound of the 95% confidence interval for the mean difference. This indicates the minimum likely difference between the groups at a 95%
confidence level.
^Represents the upper bound of the 95% confidence interval for the mean difference. This represents the maximum likely difference between the groups at a 95%
confidence level.
"The adjusted p value for each pairwise comparison, corrected for multiple testing.

F IGURE 4 The box plot shows the distribution of mean ATT during simulated pivot shift test at 20° (left) and 30° (right) knee flexion across
experimental conditions: Intact, ACL deficient, isolated LMPR tear in an ACL‐deficient knee, combined LMPR and MFL injuries in an ACL‐
deficient knee, and LMPR repair. ACLR: ACL reconstruction state, ACLR + LMPR +MFL tear: ACL reconstruction with combined LMPR, and
MFL tear, ACLR + LMPR tear: ACL reconstruction with LMPRR. ACL, anterior cruciate ligament; ATT, anterior tibial translation; LMPR, lateral
meniscus posterior root; MFL, meniscofemoral ligament.
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Notably, isolated LMPR repair reduced ATT but
did not result in significant changes compared to the
LMPR tear and MFL injuries or the intact state.
Additionally, the combination of LMPR and MFL
injuries in ACL‐deficient knees resulted in signifi-
cantly increased ATT during the simulated pivot shift
test compared to similar injury patterns in ACL‐intact
and isolated LMPR tear states. Furthermore, the
additional MFL injury in knees with LMPR and ACL‐
deficiency further increased both ATT and IR during
the simulated pivot shift test when compared to iso-
lated LMPR tear with and without ACL injury (Table 4
and Figure 4).

Four studies reported on IR under valgus torque
after combined LMPR and MFL injuries in the setting
of ACL sectioning and reconstruction [10, 11, 25, 29].
In ACL‐deficient knees, combined sectioning of the
LMPR and MFL significantly increased IR at both 30°
and 90° of flexion angles compared to isolated LMPR
tear (p < 0.001). In ACL‐reconstructed knees, a
combined injury to the LMPR tear and MFL signifi-
cantly increased IR at 30° of knee flexion (p = 0.007).
Although LMPR repair reduced rotational instability,
it did not significantly restore IR (p = 0.10) (Figure 5).

The data available were insufficient to analyse IR at
90° of knee flexion in ACL‐reconstructed specimens.

Anterior tibial translation under anterior
drawer force application

Five studies reported on ATT under anterior drawer force
[11, 21, 27–29]. The mean ATT at 30° in the intact state
was 5 ± 1.6mm, which increased to 6.5 ± 2.3mm in
knees with isolated LMPR tear. This increase was further
elevated to 15.4 ± 0.7mm in cases with root tears asso-
ciated with ACL injury (p < 0.001). In ACL‐deficient knees
with combined LMPR and MFL injuries, the mean ATTat
30° of knee flexion was 16.5 ± 0.6mm, which was sig-
nificantly greater than the ATT observed in isolated ACL
tears (p = 0.02) (Figure 6). In ACL‐reconstructed knees
with intact LMPR and MFL, the mean ATTat 30° of knee
flexion was 7.3 ± 0.4mm. This increased to 8 ± 0.1mm
with combined LMPR and MFL injuries (p = 0.28). Fol-
lowing root repair, the ATT decreased to 7.3 ± 0.3mm,
which was not significantly different from the ACL‐
reconstructed state (p = 0.97) but remained significantly
greater than the intact knee (p < 0.001; Figure 6).

F IGURE 5 The box plot shows the distribution of mean IR (°) at 30° of knee flexion in ACL‐ reconstructed knees. ACLR, ACL reconstruction
alone; ACLR + LMPR +MFL tear: ACL reconstruction with combined LMPR and MFL tear, and ACLR + LMPR tear: ACL reconstruction with
LMPRR. ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.
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ACL graft strain during anterior drawer
testing at 30° of knee flexion

Three studies reported the strain on the ACL graft
during anterior drawer testing [25, 28, 29].

Combined sectioning of the LMPR and MFL signif-
icantly increased ACL graft force during anterior drawer
testing at 30° of knee flexion compared to the ACL
reconstructed state with intact LMPR and MFL
(p = 0.009). Furthermore, LMPR repair reduced graft
strain to levels that were not significantly different from
the ACLR state with an intact meniscus (p = 0.1)
(Figure 7).

DISCUSSION

The main finding of this systematic review of bio-
mechanical studies is that combined injury to the LMPR
and MFL significantly increases mean contact and
peak pressures in the lateral compartment compared to
an isolated LMPR tear, which maintains pressure levels
closer to the intact state. Additionally, in knees with
ACL deficiency or reconstruction, combined LMPR and
MFL tears increase ATT with anterior drawer and IR
with pivot shift, imposing greater load on the ACL graft
than isolated ACL or LMPR tears.

The growing focus on meniscal root tears over the
past decade has sparked increased interest in un-
derstanding the biomechanical role of the MFL. As
clinical and radiological outcomes appear to differ
between medial and lateral root tears, and as patient
characteristics vary, the MFL has gained attention as
a primary stabiliser of the LMPR attachment [5, 7].

Increased joint compression forces are known to
correlate with root injuries and may lead to cartilage
damage [1, 8, 12]. The current review found that
combined LMPR and MFL injuries elevate both mean
and peak contact pressures in the lateral compart-
ment, whereas isolated LMPR tears with intact MFLs
did not significantly impact contact mechanics. This
finding aligns with previous research showing no
significant difference in mean contact pressure
between the intact state and an isolated LMPR tear
[7]. Furthermore, the role of the MFL as a crucial
stabiliser of the LMPR was highlighted in a previous
biomechanical study that reported joint compression
forces in the lateral and medial compartments fol-
lowing isolated lateral and medial root tears,
respectively [7]. The study found that, after an
induced isolated LMPR tear, mean pressure in the
lateral compartment did not significantly increase
compared to the intact state. In contrast, following a
MMPR tear, joint compression forces in the medial
compartment significantly increased relative to the
intact knee [7].

Overall, two clinically relevant hypotheses emerge
from the above findings. First, the available evidence
suggests a potentially greater degree of load seen by
the lateral compartment in combined LMPR and MFL
injuries compared to isolated LMPR tears. Second,
isolated MMPR tears may be more biomechanically
deleterious than isolated LMPR injuries. This under-
scores the significant stabilising role of the MFL
attachments in the lateral compartment and the higher
incidence and severity of ME following MMPR tears
compared to lateral root injuries. Future research
should prioritise comparing joint compression forces in

F IGURE 6 The box plot illustrates the distribution of mean ATT (mm) at 30° of knee flexion in ACL deficient (left) and reconstructed (right)
knees under anterior drawer force across experimental states. Each box represents the interquartile range (IQR) with the horizontal line
indicating the median value. Whiskers extend up to 1.5 times the IQR or to the furthest data points within that range, while individual points
beyond the whiskers denote outliers. ACLR: ACL reconstruction, ACLR + LMPR and MFL tear: ACL reconstruction with combined LMPR and
MFL tear, and ACLR + LMPR tear: ACL reconstruction with LMPRR. ACL, anterior cruciate ligament; ATT, anterior tibial translation;
LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.
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isolated MMPR tears versus combined LMPR and MFL
injuries to further elucidate the biomechanical and
clinical implications of these injuries.

It is well‐established that LMPR tears often occur
concurrently with ACL tears [9]. In the present review,
combined LMPR tear and MFL injuries significantly
increased ATTand IR during a simulated pivot shift test
in ACL‐deficient knees. This finding suggests that
combined injuries in the context of an ACL tear may
result in a higher grade of pivot shift. Additionally, the
MFLs appear to contribute further to increased IR in
ACL‐deficient knees under valgus torque. These find-
ings are clinically relevant for several reasons. First,
LMPR tears, which frequently accompany ACL injuries,
are commonly observed in younger patients. The
combined disruption of the LMPR and MFL may lead to
increased contact stress and reduced rotatory stability,
potentially increasing the load on an ACL
reconstruction graft. In this study, significantly greater
ACL graft force was observed during anterior drawer
testing at 30° of knee flexion in cases of combined
LMPR and MFL sectioning compared to the ACL‐

reconstructed state with intact LMPR and MFL
(p = 0.009).

Additionally, data from the current review showed
that in ACL‐deficient knees, combined sectioning of the
LMPR and MFL significantly increased IR at both 30°
and 90° flexion angles compared to isolated LMPR tear
or ACL cut states (p < 0.001). This aligns with previous
biomechanical studies indicating the secondary rota-
tional stability provided by the LMPR and that com-
bined LMPR and MFL injuries in ACL‐deficient knees
significantly increase IR [11]. Notably, although LMPR
repair reduced rotational instability, it did not fully
restore stability to the level of the intact state
(p < 0.001). The lack of significant differences between
combined LMPR tear and MFL injuries in ACL‐
reconstructed knees and the isolated ACL
reconstruction states may suggest that anteroposterior
stability is primarily driven by the ACL, rather than the
LMPR. In contrast, the LMPR and MFL act as signifi-
cant secondary stabilisers to IR stability with the pivot
shift mechanism, as evidenced by the significant
increase in IR with LMPR tear and MFL injuries in ACL‐

F IGURE 7 Box plot of ACL graft strain (N) across different experimental states during anterior drawer testing at 30° of knee flexion.
ACLR: ACL reconstruction alone, ACLR + LMPR +MFL tear: ACL reconstruction with combined LMPR and MFL tear, and ACLR + LMPR tear:
ACL reconstruction with LMPRR. ACL, anterior cruciate ligament; LMPR, lateral meniscus posterior root; MFL, meniscofemoral ligament.
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deficient states, which is restored with LMPR repair to a
near‐intact state [11, 27, 28].

Limitations

This study has several limitations. The primary limita-
tion of the current review is the scarcity of evidence in
the existing literature regarding the impact of the MFL
in cases both with and without LMPR tears.
Unfortunately, the available clinical data are insufficient
to enable meaningful pooling or robust conclusions.
Additionally, some studies fail to specify whether the
MFL was injured in the included patients, a significant
confounding factor identified by the authors. As such,
these studies were excluded from the current review.
Consequently, the analysis is limited to biomechanical
investigations. Furthermore, the available studies con-
ducted on human cadaveric knees are insufficient to
derive robust and meaningful conclusions.

Another key limitation of the current review is the
challenge of pooling data from studies that employ
diverse methodologies and testing models. The
inclusion of investigations using porcine knee models
may raise concerns regarding the validity and gen-
eralisability of the results. However, the porcine knee
is widely recognised in the literature as a valid model
for biomechanical research [3, 17, 19, 20, 22]. While
there are anatomical differences between porcine and
human cadaveric knees, these differences are well‐
documented [13]. For instance, quadruped knees
have a thicker MFL and a relatively thinner LMPR
compared to human knees [13]. However, the MFL in
quadrupeds is analogous to the human posterior MFL
[14]. This variability can result in differences in fe-
morotibial contact mechanics and peak pressure val-
ues. Nonetheless, previous research on 28 human
cadaveric knees investigated the MFL to determine its
incidence, structural characteristics, and material
properties [14]. This study highlighted the significant
anatomical and biomechanical role of the MFL in knee
function and concluded that these findings should be
considered when evaluating MFL function [14]. It is
evident that the MFL plays a critical role in knee sta-
bility, regardless of whether the data originate from
porcine or human cadaveric models. The next impor-
tant step is to translate these findings into clinical
practice and determine the true relevance of this small
but crucial structure in the context of lateral meniscus
root surgery.

Additional limitations include the fact that this review
focuses on time‐zero cadaveric studies, which inher-
ently do not account for the dynamic stabilisers of the
knee, such as muscles and soft tissues, which con-
tribute to joint stability in vivo. Furthermore, the stabi-
lising role of the MFL and the impact of root repair are
likely to vary depending on knee flexion angles and

tibial movements, factors not fully captured in these
studies.

The primary strength of this investigation lies in its
clinical relevance. The current systematic review
highlights a potential clinical consideration that the MFL
should be examined in all cases of LMPR tears, as
LMPR tears with intact MFLs may have a less detri-
mental effect on knee biomechanics than LMPR tears
with MFL injuries, especially in cases of concomitant
cruciate pathology. Currently, patients are often treated
without routine assessment of concomitant MFL inju-
ries, despite their potential clinical significance. The
principal contribution of this review lies in its focus on
raising awareness of MFL injuries among knee pres-
ervation surgeons and researchers. The findings of this
study should not provide a definitive rationale for the
surgical repair or augmentation of MFL injury in LMPR
tears with concomitant ACL injuries. The hypothesis
that LMPR repair in ACL‐reconstructed knees may not
provide adequate stability is a clinically relevant con-
cern that warrants further investigation using large
clinical datasets. While the current meta‐analysis gen-
erates hypotheses, definitive conclusions require high‐
quality clinical studies. At this stage, the findings are
based solely on biomechanical evidence, emphasising
the need for further clinical research to validate this
hypothesis and facilitate its translation into clinical
practice. Through this review, the authors aim to inspire
future studies investigating the clinical implications of
MFL injuries in the context of LMPR tears, in both MFL‐
deficient and intact scenarios. This effort has the
potential to open a new chapter in meniscal root
preservation surgery by addressing unresolved ques-
tions and filling critical gaps in the current literature. By
advancing understanding in this area, the authors seek
to establish a foundation for better diagnostic and
treatment strategies, which represent the primary sig-
nificance and ultimate goal of this review.

CONCLUSIONS

A combined injury to the LMPR and MFL significantly
increases mean and peak contact pressures in the
lateral compartment compared to isolated LMPR tear
and intact states, with LMPR repair restoring contact
pressure to near‐normal levels. However, in knees with
ACL deficiency or reconstruction, LMPR tear with MFL
injuries significantly increases IR with pivot shift testing,
with LMPR repair unable to restore rotational stability to
intact‐state levels.
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