
Genomics Proteomics Bioinformatics 16 (2018) 365–372
HO ST E D BY

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
APPLICATION NOTE
GITAR: An Open Source Tool for Analysis and

Visualization of Hi-C Data
* Corresponding author.

E-mail: rcalandrelli@eng.ucsd.edu (Calandrelli R).
Equal contribution.
a ORCID: 0000-0002-4541-6320.
b ORCID: 0000-0002-0879-1236.
c ORCID: 0000-0003-2313-7635.
d ORCID: 0000-0001-6419-7453.

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences and Genetics Society of China.

https://doi.org/10.1016/j.gpb.2018.06.006
1672-0229 � 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics, Chinese Academy of Scie
Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Riccardo Calandrelli 1,*,#,a, Qiuyang Wu 2,#,b, Jihong Guan 2,c, Sheng Zhong 1,d
1Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
2Department of Computer Science and Technology, Tongji University, Shanghai 200092, China
Received 2 February 2018; revised 20 May 2018; accepted 19 June 2018
Available online 13 December 2018

Handled by Zhihua Zhang
KEYWORDS

Chromatin interaction;

Pipeline;

Hi-C data normalization;

Topologically-associated

domain;

Processed Hi-C data library
Abstract Interactions between chromatin segments play a large role in functional genomic assays

and developments in genomic interaction detection methods have shown interacting topological

domains within the genome. Among these methods, Hi-C plays a key role. Here, we present the

Genome Interaction Tools and Resources (GITAR), a software to perform a comprehensive

Hi-C data analysis, including data preprocessing, normalization, and visualization, as well as anal-

ysis of topologically-associated domains (TADs). GITAR is composed of two main modules: (1)

HiCtool, a Python library to process and visualize Hi-C data, including TAD analysis; and (2)

processed data library, a large collection of human and mouse datasets processed using HiCtool.

HiCtool leads the user step-by-step through a pipeline, which goes from the raw Hi-C data to the

computation, visualization, and optimized storage of intra-chromosomal contact matrices and

TAD coordinates. A large collection of standardized processed data allows the users to compare

different datasets in a consistent way, while saving time to obtain data for visualization or

additional analyses. More importantly, GITAR enables users without any programming or bioin-

formatic expertise to work with Hi-C data. GITAR is publicly available at http://genomegitar.org

as an open-source software.
Introduction

Genomes are more than linear sequences, with DNA folded up

into elaborate physical structures that allow extreme spatial
compactness of the genetic material and play also an impor-
tant role in epigenetic regulation [1,2]. During the past fifteen

years, several techniques have been developed to explore the
genome architecture, such as Chromosome Conformation
Capture (3C) [3], Circular Chromosome Conformation Cap-

ture (4C) [4], Chromosome Conformation Capture Carbon
Copy (5C) [5], Hi-C [6], and chromatin interaction analysis
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2018.06.006&domain=pdf
http://genomegitar.org
mailto:rcalandrelli@eng.ucsd.edu
https://doi.org/10.1016/j.gpb.2018.06.006
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2018.06.006
http://creativecommons.org/licenses/by/4.0/

366 Genomics Proteomics Bioinformatics 16 (2018) 365–372
by paired-end tag sequencing (ChIA-PET) [7]. Among them,
Hi-C is one of the most important techniques, allowing for
the first time a genome-wide mapping of chromatin interac-

tions. In 2012, Dixon et al. [8] exploited Hi-C data to identify
local chromosomal interacting domains that they named
‘‘topological domains”. These megabase-sized structures

appear to be widespread along the genome, conserved between
mice and humans, and stable across different cell types [8].
Later in 2014, Rao and colleagues generated higher resolution

contact maps by performing Hi-C in intact nuclei (in situHi-C)
[9].

Several steps are needed to process Hi-C data. First, raw
data are subjected to preprocessing, including read alignment

and filtering to remove low-quality mapped reads, PCR dupli-
cates, as well as non-informative pairs. Some strategies could
be implemented to improve the mapping outcome, such as

pre-truncating reads, iterative mapping, allowing split align-
ments, and splitting if not mapped as mentioned by Ay and
Noble [10]. Next, contact matrices are generated. To do so,

the linear genome is divided into loci of a definite size, to create
the matrix rows and columns. Given that, the entries of the
matrix contain the number of contacts observed among each

pair of loci. Contact matrices are then normalized to remove
major systematic biases introduced during the experiment.
These matrices are usually visualized using heatmaps, with
pixel intensity proportional to the contact count within each

entry.
Currently, there are several published tools to process and

analyze Hi-C data (Table 1). While most of the software are

focused just on specific parts of the analysis, only few of them
present the entire Hi-C data processing pipeline mentioned
Table 1 Summary of Hi-C data analysis software and related features

Software Data preprocessing Data normalization Data visu

chromoR +

diffHiC + + +

HiCapp + +

HiC-bench + + +

HiCdat + + +

HiC-inspector + +

hiclib + + +

HiCNorm +

Hi-Corrector +

Hicpipe +

HiCPlotter +

HiC-Pro + +

HiCseg

HiCUP +

HiFive + +

HiGlass +

HIPPIE +

HiTC + +

HOMER + +

HubPredictor

Juicer + + +*

TADbit + + +

TADtree

GITAR + + +

Note: * indicates that the data visualization in Juicer is provided by th

publications associated with HiC-inspector and HOMER, which can be ac

homer/interactions/, respectively. GITAR is reported in the current s

topologically-associated domain.
above. The former usually contain additional features related
to the specific parts of analysis, but it is often difficult for
the users to provide the input data requested, especially for

those who are not very familiar with Hi-C data analysis or pro-
gramming in general. Instead, a single comprehensive tool
would provide all the means needed to carry out the entire

analysis, thus helpful in circumventing the difficulty related
to data integration. This is particularly valuable, when differ-
ent tasks are performed by several software and the user needs

to figure out which tools to use and if the data are in the speci-
fic format required by each of them. A few software are com-
prehensive and allow for data preprocessing, contact matrix
normalization, visualization, and topologically-associated

domain (TAD) analysis. In addition, they may include other
functions such as annotation of genomic features and chro-
matin loops over interactions, or interactive Hi-C map visual-

ization. However, input file generation could be left to the user
(for example, tracks such as GC content or mappability) and
programming skills are often required to exploit the full capa-

bilities of these tools.
Here, we present the Genome Interaction Tools and

Resources (GITAR), a standardized, easy to use, and flexible

solution, to manage Hi-C genomic interaction data, from pro-
cessing, to storage and visualization. GITAR comprises two
modules: HiCtool and the processed data library. All the codes
of GITAR are available as open source and the complete pipe-

line is explicitly provided step-by-step in the documentation.
Nothing is left to be programmed by the user, except for
parameter tuning to allow full customizability. Therefore, with

GITAR, we achieved the goal of building a comprehensive
tool, which includes the fundamental steps of the Hi-C data
alization TAD analysis Processed data library Ref.

[11]

+ [12]

[13]

+ [14]

+ [15]

[16]

[17]

[18]

[19]

[20]

[21]

+ [22]

[23]

[24]

[25]

[26]

+ [27]

+

+ [28]

+ + [29]

+ [30]

+ [31]

+ + Current study

e ‘‘associated” visualization software Juicebox [32,33]. There are no

cessed at https://github.com/HiC-inspector and http://homer.ucsd.edu/

tudy and can be accessed at https://www.genomegitar.org/. TAD,

https://github.com/HiC-inspector
http://homer.ucsd.edu/homer/interactions/
http://homer.ucsd.edu/homer/interactions/
https://www.genomegitar.org/

Calandrelli R et al / GITAR: Genome Interaction Tools and Resources 367
analysis to make it accessible for every type of users, including,
for example, experimental biologists or anyone else with no
programming or bioinformatic expertise.
Implementation

HiCtool: a standardized pipeline to process and visualize Hi-C

data

HiCtool is an open-source bioinformatic tool based on
Python, which integrates several software to perform a stan-
Figure 1 HiCtool workflow

HiCtool is a pipeline comprising three main sections: data preprocessin

data and plot heatmaps), and TAD analysis (to calculate the observed D

topologically-associated domain; GEO, Gene Expression Omnibus;

Markov model; MAPQ, mapping quality.
dardized Hi-C data analysis, from the processing of raw data,
to the visualization of intra-chromosomal heatmaps and the
identification of TADs. We implemented a pipeline that is

divided into three main sections: data preprocessing, data nor-
malization and visualization, and TAD analysis (Figure 1).
HiCtool documentation and code are available at http://doc.

genomegitar.org.
The data preprocessing pipeline takes files downloaded in

SRA format and it requires several steps to generate input files

for the normalization procedure. To do so, HiCtool integrates
Python code, Unix code, and several software including SRA
Toolkit, Bowtie 2, SAMtools, and BEDTools. SRA Toolkit
g, data normalization and visualization (to normalize the contact

I and ‘‘true” DI using HMM, as well as TAD coordinates). TAD,

FEND, fragment end; DI, directionality index; HMM, hidden

http://doc.genomegitar.org
http://doc.genomegitar.org

368 Genomics Proteomics Bioinformatics 16 (2018) 365–372
is used for downloading the SRA raw data and conversion to
fastq format; then Python code is used to pre-truncate the
reads that contain potential ligation junctions as a mapping

improvement strategy [10]. Mapping of the read pairs over
the reference genome independently is performed subsequently
using Bowtie 2 to avoid any proximity constraint; and finally,

unmapped and low-quality mapped reads with map quality
(MAPQ) <30 are filtered out and only the paired reads are
selected using SAMtools and Unix code. Log files are gener-

ated at each step for quality control purpose, including num-
ber of truncated reads and length distribution plots after pre-
truncation, read alignment ratio before and after filtering,
and final pairing statistics. At the end, the pipeline enables

the generation of the fragment-end (FEND) file used to nor-
malize the data. The FEND file contains restriction site coor-
dinates and additional information such as GC content and

mappability score of FENDs [19]. The generation of the
FEND file was optimized using parallelized computation to
sensibly reduce the time complexity, while we provide the

FEND files for human (hg38) and mouse (mm10) for the most
commonly-used restriction enzymes (HindIII, NcoI, DpnII,
and MboI). The outputs of the data preprocessing section

include two BAM files corresponding to the first and second
reads in the pairs and the FEND file in BED format.

The data normalization and visualization pipeline provides
the code to normalize the data and plot the contact heatmaps.

The complex experimental Hi-C protocol unavoidably pro-
duces several technical biases, which are related to spurious
ligation products between fragments, as well as length, GC

content, and mappability of the fragments [19]. Moreover, it
has been observed that transcription start sites (TSSs) and
CTCF binding sites influence the frequency of interactions,

due to the local chromatin conformation around them [19].
To normalize the data, we use the Python package HiFive

[24], which has been demonstrated before to efficiently handle

high-resolution data [24]. HiFive allows to correct all the
aforementioned technical biases, taking also into account of
‘‘biological biases” that influence the contact frequency (TSSs
and CTCF-bound sites), to not confound technical artifacts

with meaningful biological features while calculating correc-
tion parameters. Before normalization, PCR duplicates and
non-informative reads, likely produced due to incomplete

restriction enzyme digestion and fragment circularization, were
removed. Moreover, HiFive allows to estimate the distance-
dependence signal from the data before normalization, thereby

avoiding biases caused by the restriction site distribution.
Restriction sites are unevenly distributed in the genome, result-
ing in different distances between fragments and their neigh-
bors. Since the interaction frequency is strongly inversely-

related to the inter-fragment distance, fragments surrounded
by shorter ones would show higher nearby interaction values
than those with longer adjacent fragments [24]. To learn the

contact correction parameters associated with fragment fea-
tures, we use the explicit-factor correction method reported
by Yaffe and Tanay [19], and performed by the HiFive binning

algorithm, which shows a consistent performance across all
binning resolutions [24]. Given that the features in the input
FEND file are length, GC content, and mappability, the cor-

rection values for contact counts calculated from the model
are explicitly related to the cross-correlation of these three fac-
tors. ‘‘Biological biases” associated with TSSs and CTCF
binding sites are considered at this step by excluding fragments
interacting within a distance of 500 kb from the model.

After learning the correction parameters, we computed two

matrices for each chromosome at a specific bin size. The first is
an observed intra-chromosomal contact matrix O[i,j], where
each entry represents the observed read count between the

regions identified by the bins i and j. The second is a correction
matrix E[i,j], where each entry contains the sum of corrections
for the read pairs between bins i and j. Then, the normalized

contact matrix N[i,j] is calculated using the formula:

N i; j½ � ¼ O½i; j�
E½i; j�

where each entry contains the corrected contact count accord-
ing to Yaffe and Tanay’s correction model [19]. We computed
also the ‘‘observed over expected’’ contact matrix, where the

expected counts are calculated considering both the learned
correction parameters and the linear distance between read
pairs. Specifically, the average intrachromosomal contact

probability for loci pairs decreases monotonically with the
increase in their linear genomic distance [6].

Finally, the pipeline allows to plot the heatmaps, with addi-
tional histogram of the data distribution (Figure 2). The inten-

sity of each pixel in the normalized heatmap is the contact
count between the corresponding loci (Figure 2A). Normalized
data can be plotted either using the full range of contact counts

or a cut-off, expressed as a percentile or a maximum number of
contacts, to highlight local chromatin structures (such as
TADs and sub-TADs) over the background. Complete cus-

tomizability about the appearance of the maps is provided,
by allowing to choose among the default colormaps from Mat-
plotlib or generating a colormap from a custom list of colors.

Values above the cut-off are plotted with a different color,
which is chosen by the user as well. In addition, the resolution
of the heatmap in DPI can be set as well. Increasing the reso-
lution of the figures is critical especially for high resolution

contact maps (with low bin sizes), allowing to zoom in while
maintaining an optimum visual feedback. For the ‘‘observed
over expected” (O/E) heatmap, the intensity of each pixel rep-

resents the log2 of the O/E contact count, to allow easier inter-
pretation of contact enrichment or depletion (Figure 2B). For
the visualization functionality, only the Python library

Matplotlib was used, without integrating any other external
software. Heatmaps and histograms are saved in pdf format.

The TAD analysis section provides the code to calculate the
directionality index (DI) and the TAD coordinates [8] from the

normalized contact data. In order to do so, the observed DI is
used to calculate the ‘‘true” DI using a hidden Markov model
(HMM), implemented with the Python package hmmlearn.

Both the observed DI and the ‘‘true” DI values can be plotted
in the same figure (Figure 3), making it possible to directly
infer the presence of TADs and boundaries over the genomic

region examined. TAD coordinates are then calculated using
the shifts of the HMM-biased states [8]. The entire TAD anal-
ysis pipeline is programmed in Python.

Processed data library

The processed data library is a collection of standardized pro-
cessed datasets using HiCtool, which is available for the public

at http://data.genomegitar.org. So far, we have run 20 datasets

http://data.genomegitar.org

Figure 2 Contact heatmaps for chromosome 6: [50–54] Mb at the 40-kb resolution

A. Normalized contact matrix, where each entry contains the corrected contact count. The upper limit of the colormap is the 95th

percentile of the contact counts and values above this limit are represented in brown in the heatmap. Using an upper cut-off for the contact

counts allows to emphasize local chromatin structures (TADs and sub-TADs) over the background. The histogram displays the

normalized contact count distribution. Values on the X axis indicate the number of contacts, while values on the Y axis indicate the

frequency of the bins in the contact matrix with the corresponding contact count on the X axis. The number of contacts ranges from 0 to

137. B. O/E contact matrix, where each entry contains the log2 of the O/E contact counts, considering the linear distance between loci and

the learned correction parameters. Loci without expected contacts and loci without observed contacts are indicated with black and gray

pixels, respectively. The histogram displays the O/E contact count distribution in log2-transformed form, ranging from �3.153 to 3.530.

O/E, observed over expected.

Calandrelli R et al / GITAR: Genome Interaction Tools and Resources 369
of humans (hg38), taken from the library on the 4D Nucleome
(4DN) Web Portal (https://4dnucleome.org) [34], and 2 data-

sets of mice (mm10), to build a large collection that allows con-
sistent comparison among datasets and saving time to process
data for visualization or additional analyses. The 4DN library

is a collection of genome interaction papers related to the 3C-
based assays (3C, 4C, 5C, and Hi-C). Specifically, for GITAR
we referred only to Hi-C derived datasets.

Four different outputs for each chromosome of a processed
dataset are computed and saved to file: contact matrices, DI
values, HMM-biased states (‘‘true”DI values), and TAD coor-
dinates. All the outputs are in txt format, and the functions to

load each type of data are provided. Here, we processed the
data at 40-kb resolution to perform TAD analysis according
to Dixon et al. [8]. In addition, we uploaded to the library

the HDF5 files generated by HiFive to allow the user to
quickly obtain results at a different resolution, without going
through the entire pipeline from the beginning.

Even at the 40-kb resolution, contact matrices contain sev-
eral million of elements per each chromosome, which requires
big storage space, relatively high data saving, and long loading

time. To reduce storage usage and computing time, we used an
optimized compressed format to store the contact matrices,
exploiting their properties of symmetry and sparsity (Fig-

ure S1). For instance, if we consider normalized contact matri-
ces for the dataset from Rao et al. [9] (GEO accession No.:
GSM1551550) at the 40-kb resolution, our optimized format
requires only 13% of space compared to the full contact data

(208.6 MB and 1566.7 MB (1.53 GB), respectively). Even if
data are compressed into a zip file, our format uses 44% of
space for the full data (93.1 MB vs. 213 MB). As for the com-

puting time, it takes more than 6 min and 3 min, respectively,

https://4dnucleome.org

Figure 3 TADs for chromosome 6: [50–54] Mb at the 40-kb resolution

A. Triangular part of the normalized contact matrix. TADs calculated with GITAR are plotted in blue along the diagonal. B. Observed DI

values and ‘‘true” DI values (HMM-biased states). Positive ‘‘true” DI and negative ‘‘true” DI refer to downstream and upstream HMM-

biased states, respectively. HMM-biased states are plotted to show the correspondence with TAD boundaries (Y axis is not informative in

this case). According to the HMM state shifts, six TADs and seven TAD boundaries are present. DI, directionality index.

370 Genomics Proteomics Bioinformatics 16 (2018) 365–372
to save and load full contact matrices of the aforementioned

dataset, whereas saving and loading our parsed data requires
less than 2 min for both (hardware: 2.9 GHz Intel Core i5,
16 GB of RAM). At higher resolutions (smaller bin sizes), con-

tact matrices become more sparse; therefore the advantage
given by this data format is more remarkable in terms of stor-
age usage and computation time (Table 2).

Differently from contact matrices, domain coordinates are
saved in a format to be read directly. Each line of the txt file
refers to a TAD, with tab separated start and end coordinates,
allowing quick access and readability.
Software requirements

The software that are required to run GITAR include Python
(>2.7), Bowtie 2, BEDTools, SAMtools, and SRA Toolkit.
The Python libraries needed include Numpy, Scipy, Math,

Matplotlib, Matplotlib.pyplot, Csv, Pybedtools, Pandas, Mul-
tiprocessing (if used), and Biopython. Additionally, Python
packages HiFive and Hmmlearn are also needed, with the for-

mer used to normalize contact data and the latter serving the
HMM to calculate the biased states used to extract TAD
coordinates.

Results

Here, we demonstrate the capability of GITAR to handle

high-resolution Hi-C data by processing and visualizing the
in situHi-C dataset GSM1551550. For more details about data
processing, refer to File S1.

After raw data are downloaded and converted to fastq for-
mat (SRA Toolkit), each of the two fastq files containing

Table 2 Comparison between full and optimized normalized contact data for the entire human genome

Data type
Bin size

(kb)

Storage usage

txt format (MB)

Storage usage

zip format (MB)

Saving time

(min:sec)
Loading time

Full 1000 6.1 2.7 00:01 00:01

Optimized 1000 2.9 (48%) 1.4 (52%) 00:01 (100%) 00:01 (100%)

Full 100 341.4 105.9 01:07 00:30

Optimized 100 110.4 (32%) 49.9 (47%) 00:25 (37%) 00:17 (57%)

Full 40 1566.7 213 06:18 03:24

Optimized 40 208.6 (13%) 93.1 (44%) 01:50 (29%) 01:14 (36%)

Full 10 19,957.8 451.3 90:16 85:41

Optimized 10 393.6 (2%) 177.1 (39%) 26:31 (29%) 18:49 (22%)

Note: The dataset was obtained from [9] (GEO accession number: GSM1551550). Hardware: 2.9 GHz Intel Core i5, 16 GB of RAM. The

percentage of optimization (optimized/full) at each resolution is indicated in the parentheses. kb, kilobase; MB, megabyte.

Calandrelli R et al / GITAR: Genome Interaction Tools and Resources 371
paired-end reads is used as input of a Python function, which
performs the pre-truncation step. Among the total 202,095,066

read pairs, 29,851,195 (14.78 %) and 28,681,691 (14.20 %)
reads, from the first and the second fastq files, respectively,
contained a potential ligation junction and were thus trun-

cated. Then, the two pre-truncated fastq files are mapped inde-
pendently (Bowtie 2) and only reads aligned with MAPQ �30
are kept, that is, 172,973,813 (85.59%) and 161,438,783

(79.88%) reads, for the first and the second fastq files, respec-
tively. Finally, only paired reads are selected, thus resulting in
a total of 143,415,284 read pairs that go to the normalization

pipeline as two separate BAM files, together with the FEND
BED file. FEND files for humans (hg38) and mice (mm10)
for the most commonly-used restriction enzymes (HindIII,
NcoI, DpnII, and MboI) are available for direct download;

otherwise, any FEND file for a custom species or restriction
enzyme can be computed by following our pipeline.

In the normalization pipeline (Python package HiFive [24]),

the two BAM files and the FEND file are first used together to
generate an HiCData object in HDF5 format, while PCR
duplicates, non-informative reads, and spurious ligation prod-

ucts are removed. Then, the HiCData object is loaded into an
HiCProject object (HDF5 format), which is used to estimate
the distance-dependence signal and run the binning algorithm
to perform the correction model for contact counts of Yaffe

and Tanay [19]. All these separate steps from HiFive are per-
formed together in our pipeline, by simply using one line of
Python code. At this point, normalized contact matrices per

each chromosome at a definite bin size can be computed using
a single Python function call. To expedite the process of nor-
malization for multiple chromosomes at once, parallelized pro-

cessing is available through a single Python function as well.
Contact maps can be plotted now (Figure 2). The plotting
functionality is enclosed in two separate functions: the first

can be used to plot observed, expected, and normalized contact
matrices (Figure 2A), and the second to plot O/E contact
matrices (Figure 2B). Histograms can be produced by setting
a boolean parameter in the plotting functions.

Normalized contact matrices at the 40-kb resolution are
used to calculate DI values, ‘‘true” DI values with HMM
and TAD coordinates. DI and ‘‘true” DI values are saved to

txt file and can also be plotted to infer the presence of TADs
in the genomic region under analysis (Figure 3B). TAD coor-
dinates are saved to txt file as well in a tab-separated format.

Each of these mentioned tasks is performed in Python using
a single function call.
Conclusion

GITAR is a framework that incorporates all the fundamental

steps to process, normalize, visualize, and store Hi-C data in
an efficient way. It is freely available as an open-source soft-
ware at https://genomegitar.org. GITAR consists of two mod-

ules: HiCtool and a processed data library. HiCtool is a
complete pipeline to work with Hi-C data. It allows to prepro-
cess the raw data, normalize intrachromosomal contact matri-

ces, visualize heatmaps, and also includes TAD analysis. It is
built with the aim of making every type of users able to carry
out Hi-C data analysis, simply by following a step-by-step doc-
umentation available at https://doc.genomegitar.org. Contact

matrices are stored in an efficient way to reduce storage occu-
pation and time of I/O operations. The processed data library
(https://data.genomegitar.org) is a large collection of pro-

cessed datasets for different cell lines and conditions of
humans and mice, allowing consistent comparison among
datasets or further analyses. Future developments of GITAR

may include the incorporation of annotation features, addi-
tional normalization methods (for example, the scalable matrix
balancing method adopted in Hi-Corrector [18]), and expan-
sion of the processed data library with additional datasets.
Authors’ contributions

RC and SZ conceived the project. RC and QW developed the
software and performed the analysis. RC wrote the paper with
the contribution of QW and JG. All authors read and

approved the final manuscript.
Competing interests

SZ is a cofounder and a board member of Genemo Inc., which
however does not do business related to the work described in
this paper.
Acknowledgments

This work was supported by the National Institutes of Health,
United States (Grant Nos. U01CA200147 and

DP1HD087990) awarded to SZ.

https://genomegitar.org
https://doc.genomegitar.org
https://data.genomegitar.org

372 Genomics Proteomics Bioinformatics 16 (2018) 365–372
Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2018.06.006.
References

[1] Misteli T. Beyond the sequence: cellular organization of genome

function. Cell 2007;128:787–800.

[2] Dekker J. Gene regulation in the third dimension. Science

2008;319:1793–4.

[3] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromo-

some conformation. Science 2002;295:1306–11.

[4] Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P,

Wang S, et al. Circular chromosome conformation capture (4C)

uncovers extensive networks of epigenetically regulated intra- and

interchromosomal interactions. Nat Genet 2006;38:1341–7.

[5] Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL,

Honan TA, et al. Chromosome Conformation Capture Carbon

Copy (5C): a massively parallel solution for mapping interactions

between genomic elements. Genome Res 2006;16:1299–309.

[6] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M,

Ragoczy T, Telling A, et al. Comprehensive mapping of long-

range interactions reveals folding principles of the human genome.

Science 2009;326:289–93.

[7] Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, et al.

ChIA-PET analysis of transcriptional chromatin interactions.

Methods 2012;58:289–99.

[8] Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al.

Topological domains in mammalian genomes identified by anal-

ysis of chromatin interactions. Nature 2012;485:376–80.

[9] Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID,

Robinson JT, et al. A 3D map of the human genome at kilobase

resolution reveals principles of chromatin looping. Cell

2014;159:1665–80.

[10] Ay F, Noble WS. Analysis methods for studying the 3D

architecture of the genome. Genome Biol 2015;16:183.

[11] Shavit Y, Lio P. Combining a wavelet change point and the Bayes

factor for analysing chromosomal interaction data. Mol Biosyst

2014;10:1576–85.

[12] Lun AT, Smyth GK. diffHic: a Bioconductor package to detect

differential genomic interactions in Hi-C data. BMC Bioinfor-

matics 2015;16:258.

[13] Wu HJ, Michor F. A computational strategy to adjust for copy

number in tumor Hi-C data. Bioinformatics 2016;32:3695–701.

[14] Lazaris C, Kelly S, Ntziachristos P, Aifantis I, Tsirigos A. HiC-

bench: comprehensive and reproducible Hi-C data analysis

designed for parameter exploration and benchmarking. BMC

Genomics 2017;18:22.

[15] Schmid MW, Grob S, Grossniklaus U. HiCdat: a fast and easy-to-

use Hi-C data analysis tool. BMC Bioinformatics 2015;16:277.

[16] Imakaev M, Fudenberg G, McCord RP, Naumova N, Golobor-

odko A, Lajoie BR, et al. Iterative correction of Hi-C data reveals
hallmarks of chromosome organization. Nat Methods

2012;9:999–1003.

[17] Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm:

removing biases in Hi-C data via Poisson regression. Bioinfor-

matics 2012;28:3131–3.

[18] Li W, Gong K, Li Q, Alber F, Zhou XJ. Hi-Corrector: a fast,

scalable and memory-efficient package for normalizing large-scale

Hi-C data. Bioinformatics 2015;31:960–2.

[19] Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps

eliminates systematic biases to characterize global chromosomal

architecture. Nat Genet 2011;43:1059–65.

[20] Akdemir KC, Chin L. HiCPlotter integrates genomic data with

interaction matrices. Genome Biol 2015;16:198.

[21] Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP,

et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data

processing. Genome Biol 2015;16:259.

[22] Levy-Leduc C, Delattre M, Mary-Huard T, Robin S. Two-

dimensional segmentation for analyzing Hi-C data. Bioinformat-

ics 2014;30:i386–92.

[23] Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder

S, Fraser P, et al. HiCUP: pipeline for mapping and processing

Hi-C data. F1000Res 2015;4:1310.

[24] Sauria ME, Phillips-Cremins JE, Corces VG, Taylor J. HiFive: a

tool suite for easy and efficient HiC and 5C data analysis. Genome

Biol 2015;16:237.

[25] Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K,

Strobelt H, et al. HiGlass: web-based visual exploration and

analysis of genome interaction maps. Genome Biol 2018;19:125.

[26] Hwang YC, Lin CF, Valladares O, Malamon J, Kuksa PP, Zheng

Q, et al. HIPPIE: a high-throughput identification pipeline for

promoter interacting enhancer elements. Bioinformatics

2015;31:1290–2.

[27] Servant N, Lajoie BR, Nora EP, Giorgetti L, Chen CJ, Heard E,

et al. HiTC: exploration of high-throughput ‘C’ experiments.

Bioinformatics 2012;28:2843–4.

[28] Huang J, Marco E, Pinello L, Yuan GC. Predicting chromatin

organization using histone marks. Genome Biol 2015;16:162.

[29] Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH,

Lander ES, et al. Juicer provides a one-click system for analyzing

loop-resolution Hi-C experiments. Cell Syst 2016;3:95–8.

[30] Serra F, Bau D, Goodstadt M, Castillo D, Filion GJ, Marti-

Renom MA. Automatic analysis and 3D-modelling of Hi-C data

using TADbit reveals structural features of the fly chromatin

colors. PLoS Comput Biol 2017;13:e1005665.

[31] Weinreb C, Raphael BJ. Identification of hierarchical chromatin

domains. Bioinformatics 2016;32:1601–9.

[32] Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP,

Lander ES, et al. Juicebox provides a visualization system for Hi-

C contact maps with unlimited zoom. Cell Syst 2016;3:99–101.

[33] Robinson JT, Turner D, Durand NC, Thorvaldsdottir H, Mesirov

JP, Aiden EL. Juicebox.js provides a cloud-based visualization

system for Hi-C. Data. Cell Syst 2018;6:256–8.e1.

[34] Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT,

Lomvardas S, et al. The 4D nucleome project. Nature

2017;549:219–26.

https://doi.org/10.1016/j.gpb.2018.06.006
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0005
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0005
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0010
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0010
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0015
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0015
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0020
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0020
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0020
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0020
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0025
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0025
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0025
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0025
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0030
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0030
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0030
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0030
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0035
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0035
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0035
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0040
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0040
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0040
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0045
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0045
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0045
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0045
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0050
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0050
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0055
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0055
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0055
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0060
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0060
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0060
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0065
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0065
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0070
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0070
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0070
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0070
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0075
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0075
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0080
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0080
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0080
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0080
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0085
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0085
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0085
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0090
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0090
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0090
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0095
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0095
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0095
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0100
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0100
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0105
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0105
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0105
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0110
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0110
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0110
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0115
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0115
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0115
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0120
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0120
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0120
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0125
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0125
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0125
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0130
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0130
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0130
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0130
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0135
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0135
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0135
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0140
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0140
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0145
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0145
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0145
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0150
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0150
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0150
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0150
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0150
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0155
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0155
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0160
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0160
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0160
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0165
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0165
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0165
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0170
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0170
http://refhub.elsevier.com/S1672-0229(18)30433-9/h0170

	GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
	Introduction
	Implementation
	HiCtool: a standardized pipeline to process and visualize Hi-C data
	Processed data library
	Software requirements

	Results
	Conclusion
	Authors’ contributions
	Competing interests
	Acknowledgments
	Supplementary material
	References

